

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)
Supply Voltage (V_{CC})
DC Input Diode Current ($\left.1_{1_{K}}\right)$
$\mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage (V_{l})
DC Output Diode Current (IOK)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Voltage (V_{O})
DC Output Source
or Sink Current (I_{O})
DC V_{CC} or Ground Current (ICC or $I_{G N D}$)
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
DC Latch-Up Source or
Sink Current
-0.5 V to +7.0 V
-20 mA
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
mA
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+20 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$\pm 400 \mathrm{~mA}$
$\pm 300 \mathrm{~mA}$

Recommended Operating

 Conditions (Note 2)| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2.0 V to 3.6 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{I}}\right)$ | 0 V to V_{CC} |
| Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)$ | 0 V to V_{CC} |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ | |
| V_{IN} from 0.8 V to 2.0 V | |
| $\mathrm{~V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ | $125 \mathrm{mV} / \mathrm{ns}$ |

DC Electrical Characteristics

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum High Level Input Voltage	3.0	1.5	2.0	2.0	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	3.0	2.99	2.9	2.9	V	IOUT $=-50 \mu \mathrm{~A}$
		3.0		2.58	2.48	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	3.0	0.002	0.1	0.1	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		3.0		0.36	0.44	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}(\text { Note } 3) \\ & \mathrm{IOL}^{2}=12 \mathrm{~mA} \end{aligned}$
I_{N}	Maximum Input Leakage Current	3.6		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
IoLD	$\begin{aligned} & \hline \text { Minimum Dynamic } \\ & \text { Output Current (Note 4) } \end{aligned}$	3.6			36	mA	$\mathrm{V}_{\text {OLD }}=0.8 \mathrm{~V}$ Max (Note 5)
І-		3.6			-25	mA	$\mathrm{V}_{\mathrm{OHD}}=2.0 \mathrm{~V}$ Min (Note 5)
${ }_{\text {CC }}$	Maximum Quiescent Supply Current	3.6		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
$\overline{\mathrm{I}} \mathrm{O}$	Maximum 3-STATE Leakage Current	3.6		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3	0.5	0.8		V	(Note 6)(Note 7)
$\mathrm{V}_{\text {OLV }}$	$\begin{array}{\|l} \hline \text { Quiet Output } \\ \text { Minimum Dynamic } \mathrm{V}_{\mathrm{OL}} \end{array}$	3.3	-0.3	-0.8		V	(Note 6)(Note 7)
$\mathrm{V}_{\text {IHD }}$	Maximum High Level Dynamic Input Voltage	3.3	1.7	2.0		V	(Note 6)(Note 8)
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage	3.3	1.6	0.8		V	(Note 6)(Note 8)
Note 3: All outputs loaded; thresholds on input associated with output under test. Note 4: Maximum test duration 2.0 ms , one output loaded at a time. Note 5: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ. Note 6: Worst case package. Note 7: Max number of outputs defined as (n). Data inputs are driven 0 V to 3.3 V ; one output at GND. Note 8: Max number of Data Inputs (n) switching. ($n-1$) inputs switching 0 V to 3.3V. Input-under-test switching: 3.3V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.							

Symbol	Parameter	V_{cc} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 55 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 70 \end{aligned}$		MHz
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to O_{n}	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.4 \\ 9.5 \end{gathered}$	$\begin{aligned} & 18.3 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 11.4 \\ 9.5 \end{gathered}$	$\begin{aligned} & 18.3 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 19.0 \\ & 13.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11.4 \\ 9.5 \end{gathered}$	$\begin{aligned} & 20.4 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \end{aligned}$	ns
toshL tosLh	Output to Output Skew (Note 9) CP to O_{n}	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	V_{CC} (V)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}-\text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ		eed Minimum	
t_{s}	Setup Time, HIGH or LOW D_{n} to CP	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	ns
t_{H}	Hold Time, HIGH or LOW D_{n} to CP	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns
t_{W}	CP Pulse Width, HIGH or LOW	$\begin{gathered} 2.7 \\ 3.3 \pm 0.3 \end{gathered}$	$\begin{aligned} & 2.4 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=$ Open
C_{PD} (Note 10)	Power Dissipation Capacitance	39	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$

Note 10: $C_{P D}$ is measured at 10 MHz .
Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
Package Number MQA20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
