FAIRCHILD

SEMICONDUCTOR

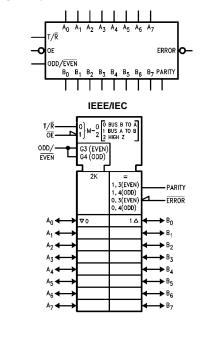
March 1988 Revised August 1999

74F657 Octal Bidirectional Transceiver with 8-Bit Parity Generator/Checker and 3-STATE Outputs

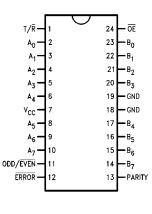
General Description

The 74F657 contains eight non-inverting buffers with 3-STATE outputs and an 8-bit parity generator/checker. It is intended for bus-oriented applications. The buffers have a guaranteed current sinking capability of 24 mA at the A Port and 64 mA at the B Port.

Features


- 300 Mil 24-pin slimline DIP
- Combines 74F245 and 74F280A functions in one package
- 3-STATE outputs
- B Outputs sink 64 mA
- 12 mA source current. B side
- Input diodes for termination effects

Ordering Code:


Order Number	Package Number	Package Description
75F657SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F657SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300 Wide
Devices also such lable	in Trans and Deal Onesite	her serves disc the sufficient tetter (V/2) to the sudscience of the

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS009584

Unit Loading/Fan Out

D : N	D	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
A ₀ -A ₇	Data Inputs/	4.5/0.15	90 μA/– 90 μA	
	3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)	
B ₀ -B ₇	Data Inputs/	3.5/0.117	70 μA/–70 μA	
	3-STATE Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)	
T/R	Transmit/Receive Input	2.0/0.067	40 μA/–40 μA	
OE	Enable Input	2.0/0.067	40 μA/–40 μA	
PARITY	Parity Input/	3.5/0.117	70 μA/–70μA	
	3-STATE Output	600/106.6 (80)	–12 mA/64 mA (48 mA)	
ODD/EVEN	ODD/EVEN Parity Input	1.0/0.033	20 μA/–20 μA	
ERROR	Error Output	600/106.6 (80)	–12 mA/64 mA (48 mA)	

Functional Description

The Transmit/Receive (T/\overline{R}) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active HIGH) enables data from the A Port to the B Port; Receive (active LOW) enables data from the B Port to the A Port.

<u>The Output</u> Enable ($\overline{\text{OE}}$) input disables the parity and ERROR outputs and both the A and B Ports by placing them in a HIGH-Z condition when the Output Enable input is HIGH.

When transmitting (T/ \overline{R} HIGH), the parity generator detects whether an even or odd number of bits on the A Port are HIGH and compares these with the condition of the parity

select (ODD/EVEN). If the Parity Select is HIGH and an even number of A inputs are HIGH, the Parity output is HIGH.

In receiving mode (T/R LOW), the parity select and number of HIGH inputs on port B are compared to the condition of the Parity input. If an even number of bits on the B Port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, then ERROR will be HIGH to indicate no error. If an odd number of bits on the B Port are HIGH, th<u>e parity</u> select is HIGH, and the PARITY input is HIGH, the ERROR will be LOW indicating an error.

Outputs

Bus B Data to Bus A

Bus A Data to Bus B

High-Z State

Number of Inputs that		Inpu	its	Input/ Output	Outputs		
are HIGH	OE	T/R	ODD/ EVEN	Parity	ERROR	Outputs Mode	
0, 2, 4, 6, 8	L	Н	Н	Н	Z	Transmit	
	L	н	L	L	Z	Transmit	
	L	L	Н	н	н	Receive	
	L	L	н	L	L	Receive	
	L	L	L	н	L	Receive	
	L	L	L	L	н	Receive	
1, 3, 5, 7	L	Н	Н	L	Z	Transmit	
	L	н	L	н	Z	Transmit	
	L	L	н	н	L	Receive	
	L	L	Н	L	н	Receive	
	L	L	L	н	н	Receive	
	L	L	L	L	L	Receive	
Immaterial	Н	Х	Х	Z	Z	Z	
H = HIGH Voltage L = LOW Voltage		I					

Function Table

H H = HIGH Voltage Level

Function Table

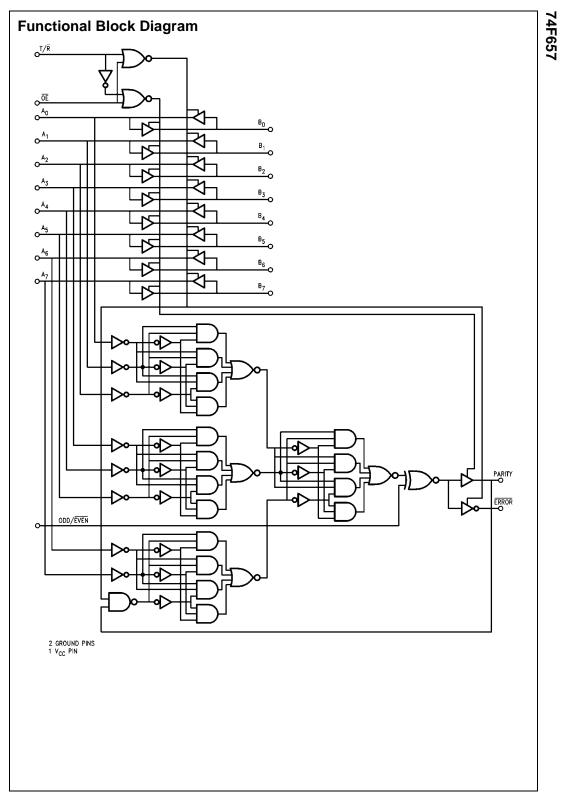
Inputs

T/R

L

н

Х


L = LOW Voltage Level X = Immaterial

OE L

L

www.fairchildsemi.com

X = Immaterial Z = High Impedance

74F657

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

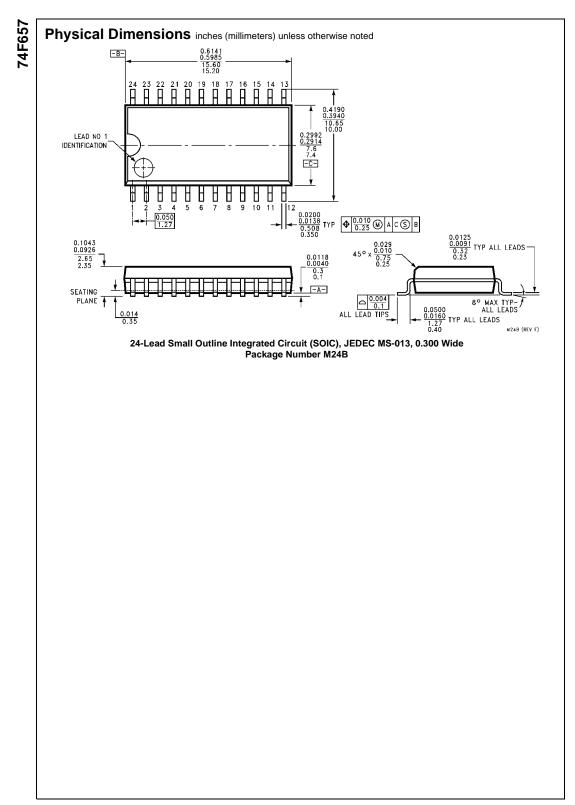
Recommended Operating Conditions

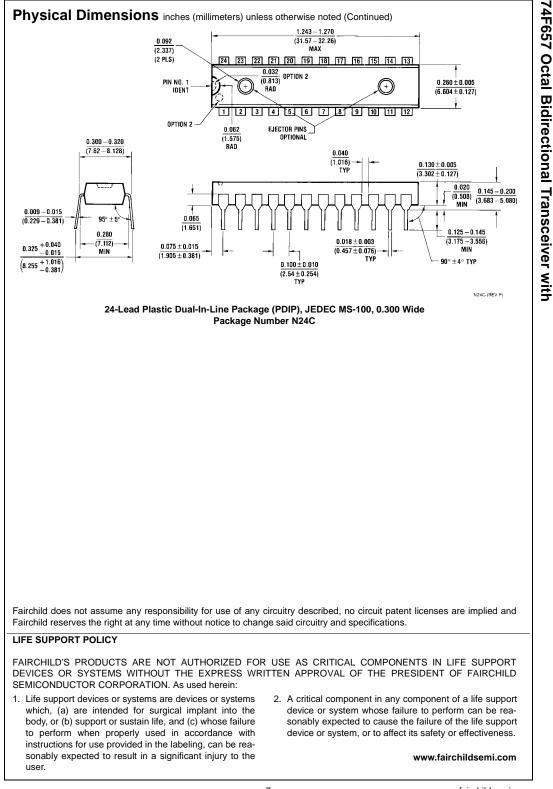
Free Air Ambient Temperature	е
Supply Voltage	

 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Мах	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Volta	ge			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (A_n)$
	Voltage	10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n B_n, \text{ Parity, } \overline{\text{ERROR}})$
		10% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (B_n, \text{ Parity}, \overline{\text{ERROR}})$
		5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA} (A_n)$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n, B_n, \text{ Parity, } \overline{\text{ERROR}})$
V _{OL}	Output LOW	10% V _{CC}			0.5			$I_{OL} = 24 \text{ mA} (A_n)$
	Voltage	10% V _{CC}			0.55	V	Min	$I_{OL} = 64 \text{ mA} (B_n \text{ Parity, } \overline{\text{ERROR}})$
IIH	Input HIGH				20			V _{IN} = 2.7V (ODD/EVEN)
	Current				40	μA	Max	$V_{IN} 2.7V (T/\overline{R}, \overline{OE})$
I _{BVI}	Input HIGH Current							
DVI	Breakdown Test				100	μA	$V_{CC} = 0$	$V_{IN} = 7.0V (T/\overline{R}, \overline{OE}, ODD/\overline{EVEN})$
I _{BVIT}	Input HIGH Current				1.0			V _{IN} = 5.5V (Parity, B _n)
DVII	Breakdown Test (I/O)				2.0	mA	Max	$V_{IN} = 5.5V (A_n)$
l _{IL}	Input LOW				-20			$V_{IN} = 0.5V (ODD/EVEN)$
	Current				-40	μA	Max	$V_{IN} = 0.5V (T/\overline{R}, \overline{OE})$
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V (ERROR)
I _{OZL}	Output Leakage Current				-50	μA	Max	$V_{OUT} = 0.5V (\overline{ERROR})$
I _{IH} + I _{OZH}	Output Leakage				70		Max	V _{I/O} = 2.7V (B _n , Parity)
	Current				90	μA	iviax	$V_{I/O} = 2.7V (A_n)$
I _{IL} + I _{OZL}	Output Leakage				-70	μA	Max	V _{I/O} = 0.5V (B _n , Parity)
	Current				-90	μΑ	IVIAX	$V_{I/O} = 0.5V (A_n)$
los	Output Short-Circuit		-60		-150	mA	Max	$V_{OUT} = 0V (A_n)$
	Current		-100		-225	1114	IVIAA	$V_{OUT} = 0V (B_n, Parity, \overline{ERROR})$
I _{CEX}	Output HIGH Leakage				250	μΑ	Max	$V_{OUT} = V_{CC}$ (ERROR)
	Current				1.0	mA	Max	V _{OUT} = V _{CC} (B _n , Parity)
					2.0	mA	Max	$V_{OUT} = V_{CC} (A_n)$
I _{ZZ}	Bus Drainage Test				500	μA	0.0V	$V_{OUT} = 5.25V (A_n, B_n, Parity, \overline{ERROR})$
I _{CCH}	Power Supply Current			101	125	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			112	150	mA	Max	V _O = LOW
I _{CCZ}	Power Supply Current			109	145	mA	Max	V _O = HIGH Z

		T _A = +25°C			$T_A = -55^{\circ}C$ to $+125^{\circ}C$		$T_A = 0^{\circ}C$	to +70°C	
	-	V _{CC} = +5.0V			V _{CC} = +5.0V		V _{CC} = +5.0V		
Symbol	Parameter		C _L = 50 pF		C _L = 50 pF		C _L = 50 pF		Units
		Min	Тур	Max	Min	Max	Min	Max	ł
t _{PLH}	Propagation Delay	2.5	4.5	8.0	2.5	9.5	2.5	9.0	ns
t _{PHL}	A _n to B _n , B _n to A _n	3.0	4.9	7.5	3.0	8.5	3.0	8.0	115
t _{PLH}	Propagation Delay	6.5	10.1	14.0	5.5	18.0	6.0	16.0	ns
t _{PHL}	A _n to Parity	7.0	10.9	15.0	5.5	20.5	6.0	16.5	115
t _{PLH}	Propagation Delay	4.5	7.8	11.0	4.0	14.0	4.0	13.0	ns
t _{PHL}	ODD/EVEN to PARITY	4.5	8.8	12.0	4.5	16.5	4.5	13.5	
t _{PLH}	Propagation Delay	4.5	7.5	11.0	4.0	14.0	4.0	13.0	
t _{PHL}	ODD/EVEN to ERROR	4.5	8.2	12.0	4.5	16.5	4.5	13.5	ns
t _{PLH}	Propagation Delay	8.0	14.0	20.5	7.5	27.0	7.5	23.0	ns
t _{PHL}	B _n to ERROR	8.0	15.0	21.5	7.5	28.5	7.5	23.5	
t _{PLH}	Propagation Delay	7.0	10.8	15.5	6.0	20.0	6.0	17.0	
t _{PHL}	PARITY to ERROR	7.5	11.8	16.5	6.5	22.0	7.5	18.5	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	2.5	11.0	2.5	9.5	
t _{PZL}	OE to A _n /B _n	4.0	6.5	10.0	3.5	13.5	3.5	11.0	ns
t _{PHZ}	Output Disable Time	1.0	4.5	8.0	1.0	9.5	1.0	9.0	
t _{PLZ}	OE to A _n /B _n	1.0	4.9	7.5	1.0	8.5	1.0	8.0	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	2.5	11.0	2.5	9.5	
t _{PZL}	OE to ERROR (Note 3)	4.0	7.7	10.0	3.5	13.5	3.5	11.0	ns
t _{PHZ}	Output Disable Time	1.0	4.5	8.0	1.0	9.5	1.0	9.0	
t _{PLZ}	OE to ERROR	1.0	4.9	7.5	1.0	8.5	1.0	8.0	ns
t _{PZH}	Output Enable Time	3.0	5.0	8.0	2.5	11.0	2.5	9.5	
t _{PZL}	OE to PARITY	4.0	7.7	10.0	3.5	13.5	3.5	11.0	ns
t _{PHZ}	Output Disable Time	1.0	4.6	8.0	1.0	9.5	1.0	9.0	
t _{PLZ}	OE to PARITY	1.0	5.1	7.5	1.0	8.5	1.0	8.0	ns

Note 3: These delay times reflect the 3-STATE recovery time only and not the signal time through the buffers or the parity check circuity. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuity (same as A to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \geq (A to PARITY) + (Output Enable Time).

74F657

