74F545 Octal Bidirectional Transceiver with 3-STATE Outputs

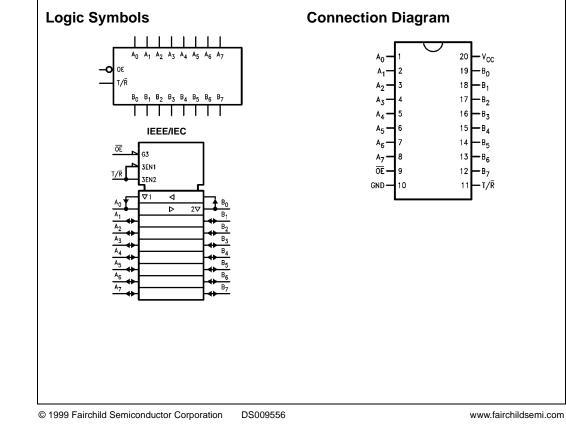
General Description

FAIRCHILD

SEMICONDUCTOR

The 74F545 is an 8-bit, 3-STATE, high-speed transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 24 mA bus drive capability on the A Ports and 64 mA bus drive capability on the B Ports.

One input, Transmit/Receive (T/\overline{R}) determines the direction of logic signals through the bidirectional transceiver. Transmit enables data from A-to-B Ports; Receive enables data from B-to-A Ports. The Output Enable input disables both A and B Ports by placing them in a 3-STATE condition.


Features

- Higher drive than 8304
- 8-bit bidirectional data flow reduces system package count
- 3-STATE inputs/outputs for interfacing with bus-oriented systems
- 24 mA and 64 mA bus drive capability on A and B Ports, respectively
- Transmit/Receive and Output Enable simplify control logic
- Guaranteed 4000V minimum ESD protection

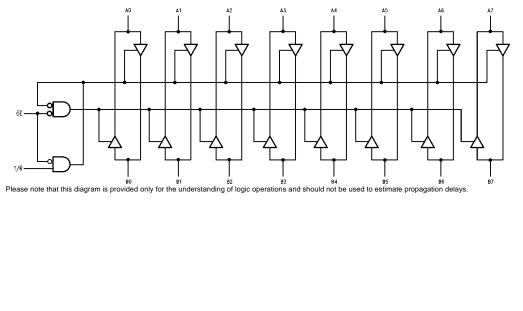
Ordering Code:

Order Number	Package Number	e Number Package Description					
74F545SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide					
74F545PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					
Devices also evoilable	Devices also successful in Tana and Basi. Chasily by appending the suffix letter "V" to the ordering code						

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

74F545

Unit Loading/Fan Out


-	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
OE	Output Enable Input (Active LOW)	1.0/2.0	20 µA/–1.2 mA		
T/R	Transmit/Receive Input	1.0/2.0	20 µA/–1.2 mA		
A ₀ -A ₇	Side A 3-STATE Inputs or	3.5/1.083	70 μA/–650 μA		
	3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)		
B ₀ -B ₇	Side B 3-STATE Inputs or	3.5/1.083	70 μA/–650 μA		
	3-STATE Outputs	600/106.6 (80)	–12 mA/64 mA (48 mA)		

Truth Table

Inp	uts	Outputs
OE T/R		
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Logic Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

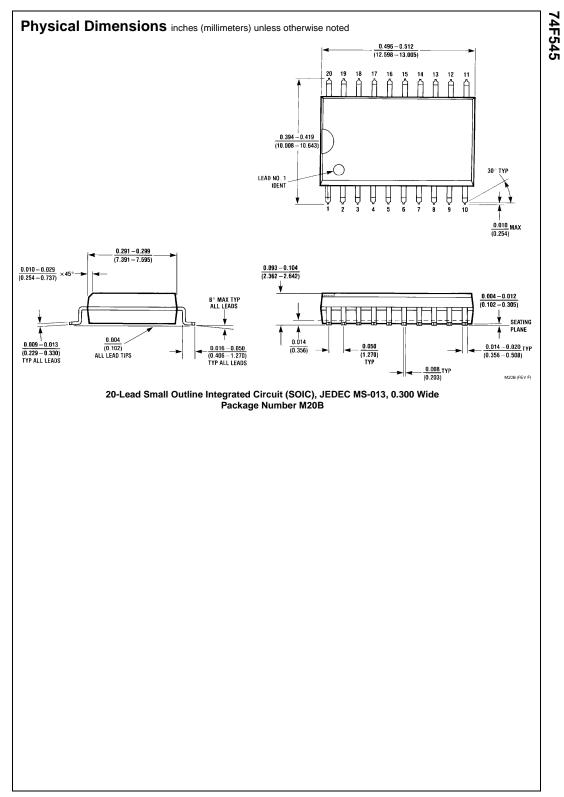
Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage 74F545

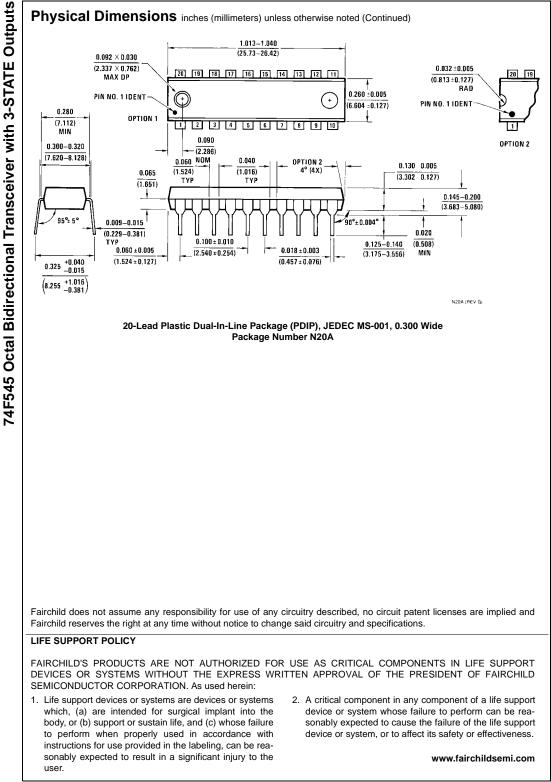
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions	
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA} (\overline{OE}, \text{ T/R})$	
V _{OH}	Output HIGH	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (A_n)$	
	Voltage	10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n)$	
		10% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA} (B_n)$	
		5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA} (A_n)$	
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n)$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	Min	$I_{OL} = 24 \text{ mA} (A_n)$	
	Voltage	10% V _{CC}			0.55	v	IVIIII	$I_{OL} = 64 \text{ mA} (B_n)$	
I _{IH}	Input HIGH				5.0		Max	$V_{IN} = 2.7V (\overline{OE}, T/\overline{R})$	
	Current	nt 5.0		μΑ	IVIAX	VIN - 2.7 V (UE, 1/K)			
I _{BVI}	Input HIGH Current				7.0	A	Мач	$V_{IN} = 7.0V (\overline{OE}, T/\overline{R})$	
	Breakdown Test				7.0	μA	Max	$V_{IN} = 7.0V (OE, 1/R)$	
I _{BVIT}	Input HIGH Current				0.5		Maria		
	Breakdown (I/O)				0.5	mA	Max	$V_{IN} = 5.5V (A_n, B_n)$	
I _{CEX}	Output HIGH				50	μA	Max	V – V	
	Leakage Current				50	μΑ	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA	
			4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current				5.75	μΛ	0.0	All Other Pins Grounded	
IIL	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V (\overline{OE}, T/\overline{R})$	
I _{IH} + I _{OZH}	Output Leakage Current				70	μA	Max	$V_{OUT} = 2.7V (A_n, B_n)$	
I _{IL} + I _{OZL}	Output Leakage Current				-650	μA	Max	$V_{OUT} = 0.5V (A_n, B_n)$	
l _{os}	Output Short-Circuit Current		-60		-150		Max	$V_{OUT} = 0V (A_n)$	
			-100		-225	mA	IVIAX	$V_{OUT} = 0V (B_n)$	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
I _{CCH}	Power Supply Current			70	90	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			95	120	mA	Max	$V_0 = LOW$	
I _{CCZ}	Power Supply Current			85	110	mA	Max	V _O = HIGH Z	


74F545

AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			C to +125°C - +5.0V 50 pF	$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	2.5	4.2	6.0	2.0	7.5	2.5	7.0	
t _{PHL}	A _n to B _n or B _n to A _n	2.5	4.6	6.0	2.0	7.5	2.5	7.0	ns
t _{PZH}	Output Enable Time	3.0	5.3	7.0	2.5	9.0	3.0	8.0	
t _{PZL}		3.5	6.0	8.0	3.0	10.0	3.5	9.0	
t _{PHZ}	Output Disable Time	3.0	5.0	6.5	2.5	9.0	3.0	7.5	ns
t _{PLZ}		2.0	5.0	6.5	2.0	10.0	2.0	7.5	

www.fairchildsemi.com

www.fairchildsemi.com

6