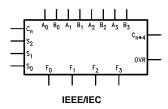
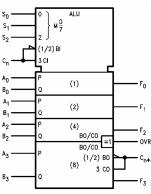
SEMICONDUCTORIM

74F382 4-Bit Arithmetic Logic Unit

General Description

The 74F382 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select input codes force the Function outputs LOW or HIGH. An Overflow output is provided for convenience in twos complement arithmetic. A Carry output is provided for ripple expansion. For high-speed expansion using a Carry Lookahead Generator, refer to the 74F381 data sheet.


Features


- Performs six arithmetic and logic functions
- \blacksquare Selectable LOW (clear) and HIGH (preset) functions
- LOW input loading minimizes drive requirements
- Carry output for ripple expansion
- Overflow output for twos complement arithmetic

Ordering Code:

Order Number	Package Number	Package Description
74F382SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74F382SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F382PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

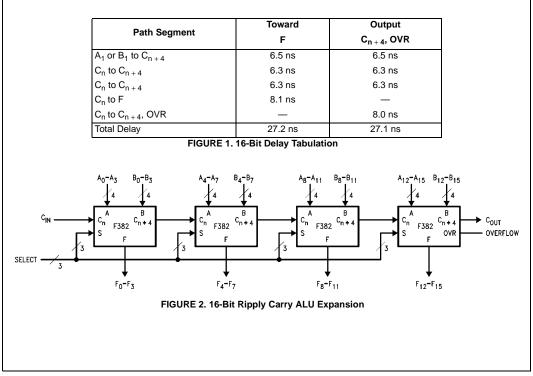
Logic Symbols

Connection Diagram

				1
A1-	1	\bigcirc	20	-v _{cc}
в ₁ —	2		19	- A2
A0-	3		18	— в ₂
B ₀ —	4		17	- A3
s _o —	5		16	— В ₃
s ₁ -	6		15	-c _n
s ₂ -	7		14	-c _{n+4}
F ₀ —	8		13	— OVR
F1-	9		12	-F3
GND —	10		11	— F ₂
				I

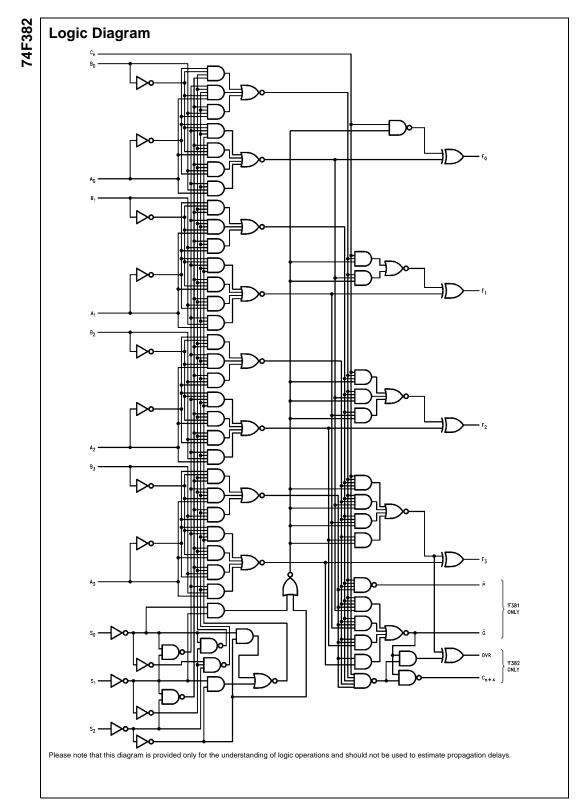
Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
A ₀ -A ₃	A Operand Inputs	1.0/4.0	20 µA/-2.4 mA		
B ₀ -B ₃	B Operand Inputs	1.0/4.0	20 µA/–2.4 mA		
S ₀ -S ₂	Function Select Inputs	1.0/1.0	20 µA/–0.6 mA		
C _n	Carry Input	1.0/5.0	20 µA/–3.0 mA		
C _{n + 4}	Carry Output	50/33.3	–1 mA/20 mA		
OVR	Overflow Output	50/33.3	–1 mA/20 mA		
F ₀ -F ₃	Function Outputs	50/33.3	–1 mA/20 mA		


Functional Description

Signals applied to the Select inputs S₀–S₂ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active HIGH or active LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active HIGH operands, LOW for active LOW operands) into the C_n input of the least significant package. Ripple expansion is illustrated in Figure 2. The overflow output OVR is the Exclusive-OR of C_{n+3} and C_{n+4}; a HIGH signal on OVR indicates overflow in twos complement operation. Typical delays for Figure 2 are given in Figure 1.

Function Select Table


	Select	Operation				
S ₀	S ₁	S ₂	Operation			
L	L	L	Clear			
н	L	L	B Minus A			
L	н	L	A Minus B			
н	н	L	A Plus B			
L	L	н	A ⊕ B			
н	L	н	A + B			
L	н	н	AB			
н	н	н	Preset			

H = HIGH Voltage Level L = LOW Voltage Level

	Inputs						Outputs						
Function	S ₀	S ₁	S ₂	C _n	A _n	B _n	F ₀	F ₁	F ₂	F ₃	OVR	C _{n + 4}	
CLEAR	L	L	L	L	Х	Х	L	L	L	L	н	Н	
				Н	х	Х	L	L	L	L	н	н	
B MINUS A	н	L	L	L	L	L	Н	Н	Н	Н	L	L	
				L	L	н	L	н	н	Н	L	н	
				L	н	L	L	L	L	L	L	L	
				L	н	н	н	н	н	Н	L	L	
				н	L	L	L	L	L	L	L	н	
				н	L	н	н	н	н	Н	L	н	
				н	н	L	н	L	L	L	L	L	
				н	н	н	L	L	L	L	L	н	
A MINUS B	L	Н	L	L	L	L	Н	Н	Н	Н	L	L	
				L	L	н	L	L	L	L	L	L	
				L	н	L	L	н	н	Н	L	н	
				L	н	н	н	н	н	н	L	L	
				н	L	L	L	L	L	L	L	н	
				н	L	н	н	L	L	L	L	L	
				н	н	L	н	н	н	Н	L	Н	
				н	н	н	L	L	L	L	L	н	
A PLUS B	Н	Н	L	L	L	L	L	L	L	L	L	L	
				L	L	н	н	н	н	Н	L	L	
				L	н	L	н	н	н	Н	L	L	
				L	н	н	L	н	н	н	L	Н	
				н	L	L	н	L	L	L	L	L	
				н	L	н	L	L	L	L	L	н	
				н	н	L	L	L	L	L	L	Н	
				н	н	н	н	н	н	н	L	Н	
A ⊕ B	L	L	Н	Х	L	L	L	L	L	L	L	L	
				х	L	н	н	н	н	Н	L	L	
				L	н	L	н	н	н	н	L	L	
				х	н	н	L	L	L	L	н	Н	
				Н	Н	L	Н	Н	Н	Н	Н	Н	
A + B	н	L	н	х	L	L	L	L	L	L	L	L	
				Х	L	н	н	Н	н	Н	L	L	
				Х	н	L	Н	Н	Н	Н	L	L	
				L	н	н	Н	Н	Н	Н	L	L	
				Н	Н	Н	Н	Н	Н	Н	Н	Н	
AB	L	н	н	х	L	L	L	L	L	L	н	Н	
				Х	L	н	L	L	L	L	L	L	
				Х	Н	L	L	L	L	L	Н	н	
				L	Н	H	Н	Н	н	Н	L	L	
				Н	H	Н	Н	H	Н	H	Н	Н	
PRESET	Н	Н	Н	Х	L	L	Н	Н	Н	Н	L	L	
				Х	L	H	Н	Н	н	Н	L	L	
				Х	Н	L	Н	Н	Н	Н	L	L	
				L	Н	Н	Н	Н	Н	Н	L	L	
= HIGH Voltage Le			Voltage Le	Н	H X = Imm	Н	Н	Н	Н	Н	Н	Н	

74F382

4

Absolute Maximum Ratings(Note 1)

Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated $I_{OL} \mbox{(mA)}$

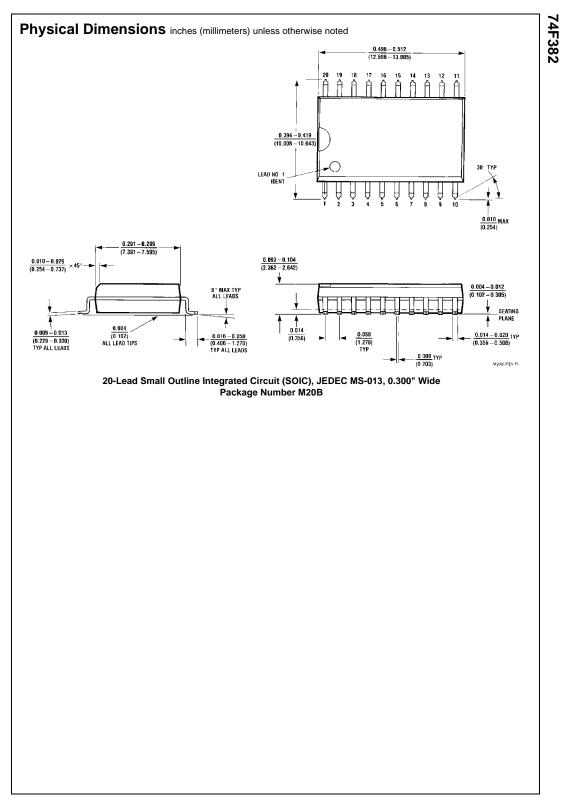
Recommended Operating Conditions

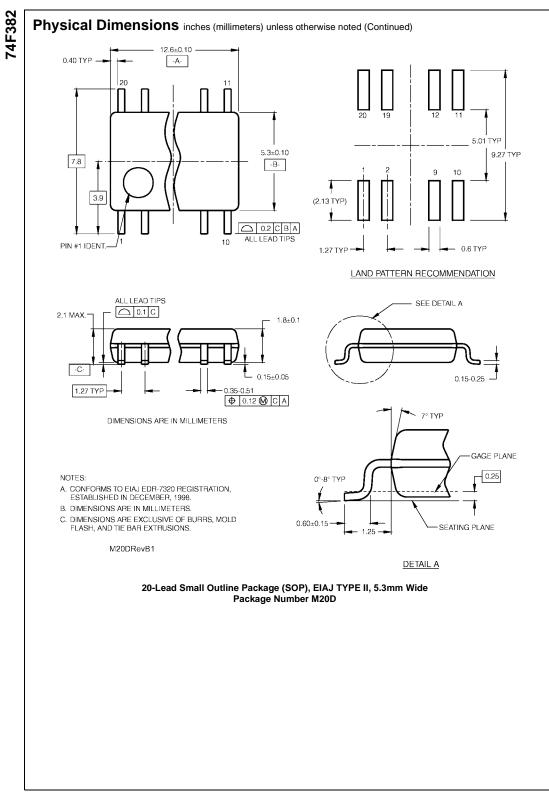
Free Air Ambient Temperature Supply Voltage

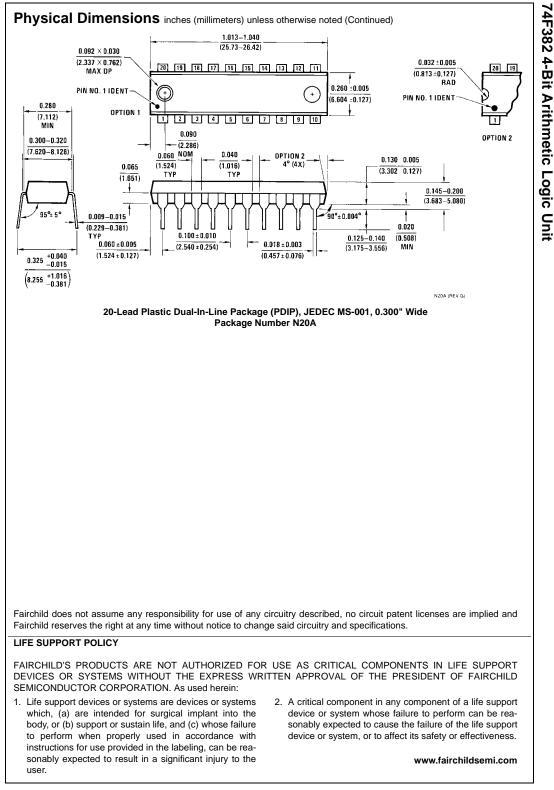
 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V 74F382

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


					•	0			
Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			v	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	v	Min	I _{OL} = 20 mA	
	Voltage	10 % VCC			0.5	v	IVIIII	10L - 20 MA	
I _{IH}	Input HIGH				5.0	μA	Max	V _{IN} = 2.7V	
	Current				5.0	μΑ	Wax	VIN - 2.7 V	
I _{BVI}	Input HIGH Current				7.0	μA	Max	V _{IN} = 7.0V	
	Breakdown Test				7.0	μΑ	IVIAA	VIN - 7.0V	
I _{CEX}	Output HIGH				50	μA	uA Max	V _{OUT} = V _{CC}	
	Leakage Current				50	μΑ	Wax	•001 - •CC	
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA	
	Test		4.70			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current				0.75	μΑ	0.0	All Other Pins Grounded	
IIL	Input LOW Current				-0.6			$V_{IN} = 0.5V (S_0 - S_2)$	
					-2.4	mA	Max	$V_{IN} = 0.5V (A_0 - A_3, B_0 - B_3)$	
					-3.0			$V_{IN} = 0.5V (C_n)$	
I _{OS}	Output Short-Circuit Curren	t	-60		-150	mA	Max	$V_{OUT} = 0V$	
I _{CC}	Power Supply Current			54	81	mA	Max		


DC Electrical Characteristics over Operating Temperature Range unless otherwise specified


74F382

AC Electrical Characteristics

Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$	1	T _A = 0°C V _{CC} = C _L =	Units		
		Min	Тур	Max	Min	Max	1	
t _{PLH}	Propagation Delay	3.0	8.1	12.0	3.0	13.0		
t _{PHL}	C _n to F _i	2.5	5.7	8.0	2.5	9.0	ns	
t _{PLH}	Propagation Delay	4.0	10.4	15.0	3.5	17.0	ns	
t _{PHL}	Any A or B to Any F	3.0	8.2	11.0	2.5	12.0	ns	
t _{PLH}	Propagation Delay	6.5	11.0	20.5	5.5	21.5		
t _{PHL}	S _i to F _i	4.0	8.2	15.0	4.0	17.5	ns	
t _{PLH}	Propagation Delay	3.5	6.0	8.5	3.5	11.0	ns	
t _{PHL}	A _i or B _i to C _n + 4	3.5	6.5	9.0	3.5	10.5	115	
t _{PLH}	Propagation Delay	7.0	12.5	16.5	7.0	17.5	ns	
t _{PHL}	Si to OVR or Cn + 4	5.0	9.0	12.0	5.0	14.5	115	
t _{PLH}	Propagation Delay	2.5	5.6	8.0	2.0	9.0	ns	
t _{PHL}	C _n to C _{n + 4}	3.5	6.3	9.0	2.0	10.0	115	
t _{PLH}	Propagation Delay	3.5	8.0	11.0	3.5	13.0	ns	
t _{PHL}	C _n to OVR	2.5	7.1	10.0	2.5	11.0	115	
t _{PLH}	Propagation Delay	7.0	11.5	15.5	7.0	16.5	ns	
t _{PHL}	A _i or B _i to OVR	3.0	8.0	10.5	3.0	11.5	115	

