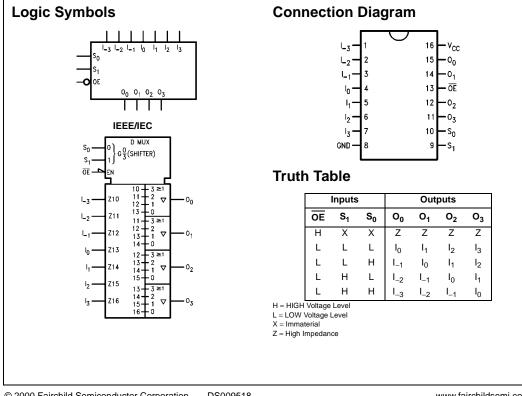
April 1988 Revised September 2000

74F350 4-Bit Shifter with 3-STATE Outputs

General Description

FAIRCHILD

SEMICONDUCTOR


The 74F350 is a specialized multiplexer that accepts a 4-bit word and shifts it 0, 1, 2 or 3 places, as determined by two Select (S_0, S_1) inputs. For expansion to longer words, three linking inputs are provided for lower-order bits; thus two packages can shift an 8-bit word, four packages a 16-bit word, etc. Shifting by more than three places is accomplished by paralleling the 3-STATE outputs of different packages and using the Output Enable (OE) inputs as a third Select level. With appropriate interconnections, the 74F350 can perform zero-backfill, sign-extend or endaround (barrel) shift functions.

Features

- Linking inputs for word expansion
- 3-STATE outputs for extending shift range

Ordering Code:

Order Number	Package Number	Package Description
74F350SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F350SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F350PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

74F350

Unit Loading/Fan Out

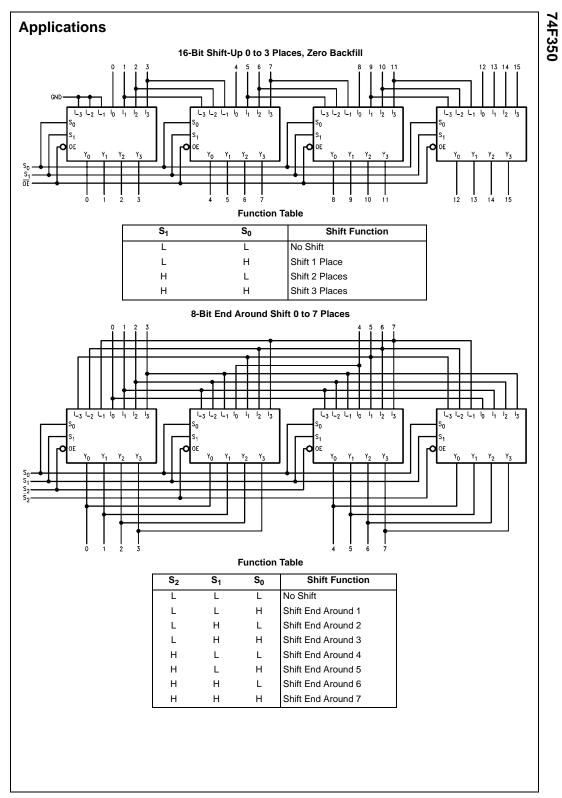
Dia Nama	Description	U.L.	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}	
Pin Names	Description	HIGH/LOW		
S ₀ , S ₁	Select Inputs	1.0/2.0	20 μA/–1.2 mA	
I_3I3	Data Inputs	1.0/2.0	20 μA/–1.2 mA	
OE	Output Enable Input (Active LOW)	1.0/2.0	20 μA/–1.2 mA	
O ₀ –O ₃	3-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)	

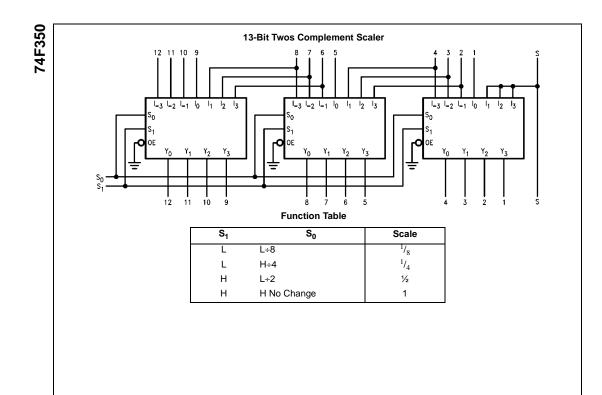
Functional Description

The 74F350 is operationally equivalent to a 4-input multiplexer with the inputs connected so that the select code causes successive one-bit shifts of the data word. This internal connection makes it possible to perform shifts of 0, 1, 2 or 3 places on words of any length.

A 4-bit data word is introduced at the I_n inputs and is shifted according to the code applied to the select inputs $S_0,\ S_1.$ Outputs O_0-O_3 are 3-STATE, controlled by an active LOW output enable (\overline{OE}). When \overline{OE} is LOW, data outputs will follow selected data inputs; when HIGH, the data outputs will be forced to the high impedance state. This feature allows shifters to be cascaded on the same output lines or to a common bus. The shift function can be

Logic Diagram


logical, with zeros pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.


Logic Equations

- $$\begin{split} &O_0=\overline{S}_0\overline{S}_1I_0+S_0\overline{S}_1I_{-1}+\overline{S}_0S_1I_{-2}+S_0S_1I_{-3}\\ &O_1=\overline{S}_0\overline{S}_1I_1+S_0\overline{S}_1I_0+\overline{S}_0S_1I_{-1}+S_0S_1I_{-2}\\ &O_2=\overline{S}_0\overline{S}_1I_2+S_0\overline{S}_1I_1+\overline{S}_0S_1I_0+S_0S_1I_{-1} \end{split}$$
- $O_3 = \overline{S}_0 \overline{S}_1 I_3 + S_0 \overline{S}_1 I_2 + \overline{S}_0 S_1 I_1 + S_0 S_1 I_0$

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) -65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature Supply Voltage

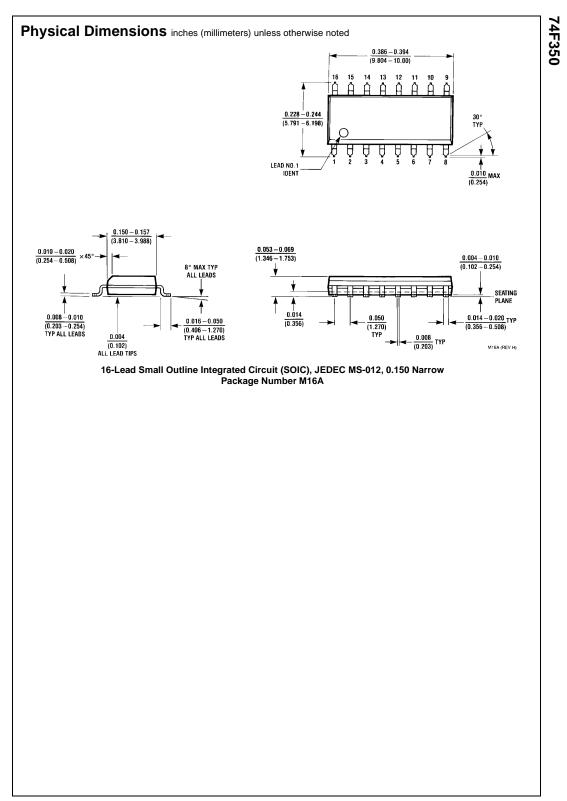
0°C to +70°C

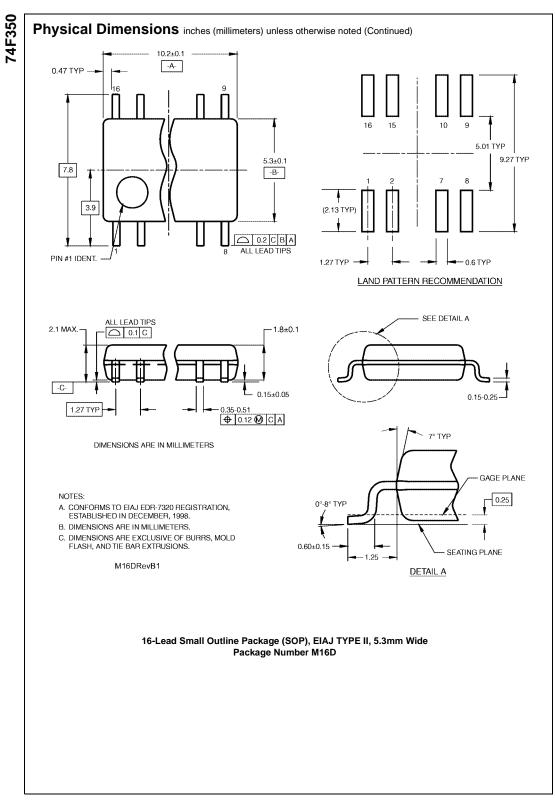
+4.5V to +5.5V

74F350

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

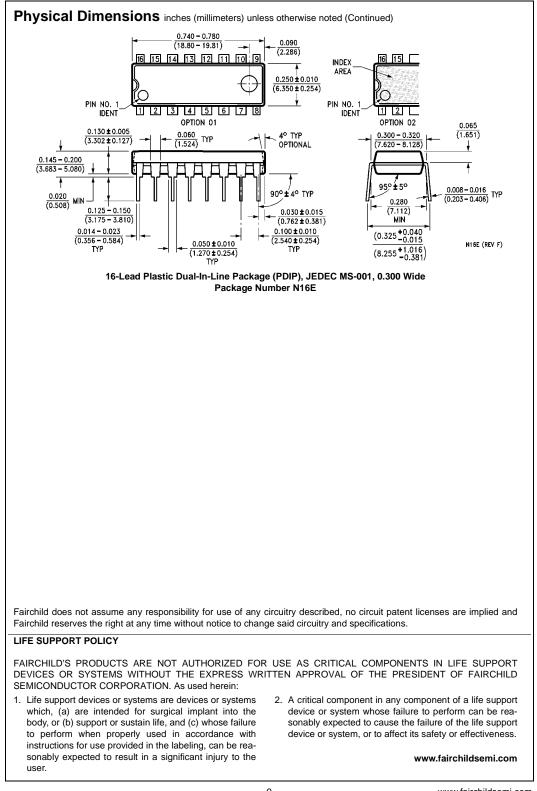
Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol Parameter Min V_{cc} Conditions Max Units Тур Input HIGH Voltage 2.0 V Recognized as a HIGH Signal VIH Input LOW Voltage 0.8 ۷ Recognized as a LOW Signal V_{IL} V_{CD} Input Clamp Diode Voltage -1.2 V Min $I_{IN} = -18 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ Output HIGH 10% V_{CC} 2.5 VOH 10% V_{CC} 2.4 $I_{OH} = -3 \text{ mA}$ Voltage V Min $I_{OH} = -1 \text{ mA}$ $5\% V_{CC}$ 2.7 10% V_{CC} 2.7 $I_{OH} = -3 \text{ mA}$ VOL Output LOW Voltage 10% V_{CC} 0.5 V Min I_{OL} = 24 mA Input HIGH Current $I_{\rm H}$ 5.0 μΑ Max $V_{IN} = 2.7V$ Input HIGH Current I_{BVI} 7.0 μA Max $V_{IN} = 7.0V$ Breakdown Test ICEX Output HIGH 50 μΑ Max $V_{OUT} = V_{CC}$ Leakage Current V_{ID} Input Leakage $I_{ID}=1.9\;\mu A$ 4.75 V 0.0 All Other Pins Grounded Test Output Leakage $V_{IOD} = 150 \text{ mV}$ IOD 3.75 μA 0.0 Circuit Current All Other Pins Grounded Input LOW Current -12 mΑ Max $V_{IN}=0.5V$ $I_{\rm IL}$ V_{OUT} = 2.7V Output Leakage Current 50 Max I_{OZH} μA Output Leakage Current -50 $V_{OUT} = 0.5V$ Max I_{OZL} μΑ los Output Short-Circuit Current -60 -150 mΑ Max $V_{OUT} = 0V$ V_{OUT} = 5.25V I_{ZZ} Bus Drainage Test 500 μΑ 0.0V V_O = HIGH Power Supply Current I_{CCH} 34 42 mA Max $V_0 = LOW$ Power Supply Current 40 57 mA Max ICCL Power Supply Current 40 57 $V_{O} = HIGH Z$ mΑ Max I_{CCZ}

74F350

AC Electrical Characteristics


Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units	
		Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	3.0	4.5	6.0	3.0	7.0	ns	
t _{PHL}	I _n to O _n	2.5	4.0	5.5	2.5	6.5		
t _{PLH}	Propagation Delay	4.0	7.8	10.0	4.0	13.5		
t _{PHL}	S _n to O _n	3.0	6.5	8.5	3.0	9.5	ns	
t _{PZH}	Output Enable Time	2.5	5.0	7.0	2.5	8.0		
t _{PZL}		4.0	7.0	9.0	4.0	10.0	20	
t _{PHZ}	Output Disable Time	2.0	3.9	5.5	2.0	6.5	ns	
t _{PLZ}		2.0	4.0	5.5	2.0	7.5		

www.fairchildsemi.com

8

9