

Unit Loading/Fan Out			
Pin Names	Description	U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	3-STATE Output Enable Input (Active LOW)	1.0/1.667	$20 \mu \mathrm{~A} /-1 \mathrm{~mA}$
OE_{2}	3-STATE Output Enable Input (Active HIGH)	1.0/1.667	$20 \mu \mathrm{~A} /-1 \mathrm{~mA}$
$\mathrm{Ian}, \mathrm{I}_{\mathrm{bn}}$	Inputs	1.0/2.667 (Note 1)	$20 \mu \mathrm{~A} /-1.6 \mathrm{~mA}$
$\mathrm{O}_{\mathrm{an}}, \mathrm{O}_{\mathrm{bn}}$	Outputs	750/20	$-15 \mathrm{~mA} / 12 \mathrm{~mA}$

Note 1: Worst-case F2244 disabled

Truth Table

$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{\text {an }}$	$\mathrm{O}_{\text {an }}$	$\overline{\mathrm{OE}}_{2}$	I_{bn}	$\mathbf{O}_{\text {bn }}$
H	X	Z	H	X	Z
L	H	H	L	H	H
L	L	L	L	L	L

H = HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Immaterial
Z = High Impedance

Absolute Maximum Ratings（Note 2）

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage（Note 3）
Input Current（Note 3）
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

-30 mA to +5.0 mA

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output

$$
\begin{array}{cr}
\text { in LOW State (Max) } & \text { twice the rated } \mathrm{I}_{\mathrm{OL}}(\mathrm{~mA}) \\
\text { ESD Last Passing Voltage (Min) } & 4000 \mathrm{~V}
\end{array}
$$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 2：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 3：Either voltage limit or current limit is sufficient to protect inputs．

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.4 \\ & 2.0 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{V} \text { OL }}$	Output LOW Voltage			$\begin{aligned} & \hline 0.50 \\ & 0.75 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}=1 \mathrm{~mA} \\ & \mathrm{IOL}=12 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All other pins grounded } \end{aligned}$
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\begin{aligned} & \mathrm{V}_{\text {IOD }}=150 \mathrm{mV} \\ & \text { All other pins grounded } \end{aligned}$
IL	Input LOW Current			$\begin{aligned} & \hline-1.0 \\ & -1.6 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \mathrm{OE}_{2}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{I}_{\mathrm{n}}\right) \end{aligned}$
$\overline{\mathrm{I}} \mathrm{OZH}$	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {OzL }}$	Output Leakage Current			－50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
Ios	Output Short－Circuit Current	－100		－225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		40	60	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCL }}$	Power Supply Current		60	90	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current		60	90	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay	1.5		7.0	2.0	6.5	1.5	7.0	ns
$\mathrm{t}_{\text {PHL }}$	Data to Output	2.5		8.0	2.0	7.0	2.0	8.0	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	1.5		9.0	2.0	7.0	1.0	9.5	
$\mathrm{t}_{\text {PZL }}$		2.5		11.5	2.0	8.5	2.5	12.0	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	1.5		9.0	2.0	7.0	1.0	9.5	
$t_{\text {PLZ }}$		1.5		8.5	2.0	7.5	1.5	9.5	

[^0]
[^0]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

