

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I O H}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Control Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
D_{SR}	Serial Data Input (Shift Right)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
D_{SL}	Serial Data Input (Shift Left)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 74F194 contains four edge-triggered D-type flip-flops and the necessary interstage logic to synchronously perform shift right, shift left, parallel load and hold operations. Signals applied to the Select $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ inputs determine the type of operation, as shown in the Mode Select Table. Signals on the Select, Parallel data $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ and Serial data ($\mathrm{D}_{\mathrm{SR}}, \mathrm{D}_{\mathrm{SL}}$) inputs can change when the clock is in either state, provided only that the recommended setup and hold times, with respect to the clock rising edge, are observed. A LOW signal on Master Reset ($\overline{\mathrm{MR}}$) overrides all other inputs and forces the outputs LOW.

Mode Select Table

Operating Mode	Inputs						Outputs			
	$\overline{M R}$	S_{1}	S_{0}	$\mathrm{D}_{\text {SR }}$	$\mathrm{D}_{\text {SL }}$	P_{n}	Q_{0}	Q_{1}	Q_{2}	Q_{3}
Reset	L	X	X	X	X	X	L	L	L	L
Hold	H	I	I	X	X	X	q_{0}	q_{1}	q_{2}	q_{3}
Shift Left	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	I	$\begin{aligned} & \hline X \\ & X \end{aligned}$	h	$\begin{aligned} & \hline X \\ & X \end{aligned}$		$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \end{aligned}$	L H
Shift Right	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$					$\begin{aligned} & \hline X \\ & X \end{aligned}$		$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$		$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Parallel Load	H	h	h	X	X	p_{n}	p_{0}	p_{1}	p_{2}	p_{3}

$H(h)=$ HIGH Voltage Level
$L(I)=$ LOW Voltage Level
$p_{n}\left(q_{n}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW-to-HIGH clock transition.
X = Immaterial

Logic Diagram

[^0]
Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA

$$
\begin{aligned}
& -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
& -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{aligned}
$$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.5			$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}$
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
${ }_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
I_{LL}	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
Ios	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{CC}	Power Supply Current		33	46	mA	Max	

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Shift Frequency	105	150		90		90		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P$ to Q_{n}	$\begin{aligned} & \hline 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $\overline{M R} \text { to } Q_{n}$	4.5	8.6	12.0	4.5	14.5	4.5	14.0	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	4.0		6.0		4.0		
$t_{s}(\mathrm{~L})$	P_{n} or $\mathrm{D}_{\text {SR }}$ or $\mathrm{D}_{\text {SL }}$ to CP	4.0		4.0		4.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	1.0		1.5		1.0		ns
$t_{H}(\mathrm{~L})$	P_{n} or $D_{S R}$ or $D_{S L}$ to $C P$	0		1.0		1.0		
$\mathrm{t}_{\mathrm{S}}(\mathrm{H})$	Setup Time, HIGH or LOW	10.0		10.5		11.0		
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	S_{n} to CP	8.0		8.0		8.0		S
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		0		ns
$t_{H}(\mathrm{~L})$	S_{n} to CP	0		0		0		
${ }^{\mathrm{t}_{\mathrm{w}}(\mathrm{H})}$	CP Pulse Width, HIGH	5.0		5.5		5.5		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{MR}}$ Pulse Width, LOW	5.0		5.0		5.0		ns
$t_{\text {REC }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	9.0		9.0		11.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M16A

[^0]: Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

