FAIRCHILD

SEMICONDUCTOR

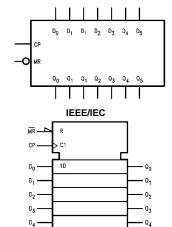
74F174 Hex D-Type Flip-Flop with Master Reset

General Description

The 74F174 is a high-speed hex D-type flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- Asynchronous common reset
- Guaranteed 4000V minimum ESD protection


Ordering Code:

_		
Order Number	Package Number	Package Description
74F174SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F174SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F174PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

.

Logic Symbols

D.

٥.

Connection Diagram

	_		
MR —	1	\bigcirc	16 V _{CC}
Q ₀ -	2		15 Q ₅
D ₀ —	3		14 D5
D1-	4		13 D ₄
Q ₁ -	5		12 Q4
D ₂ -	6		11 D3
Q2-	7		10 Q3
GND —	8		9 — CP

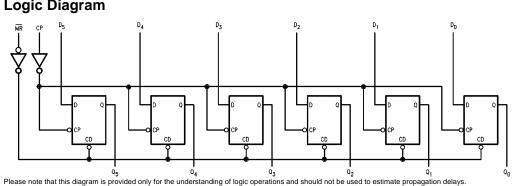
74F174

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₀ -D ₅	Data Inputs	1.0/1.0	20 µA/-0.6 mA	
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/-0.6 mA	
MR	Master Reset Input (Active LOW)	1.0/1.0	20 µA/-0.6 mA	
Q ₀ –Q ₅	Outputs	50/33.3	-1 mA/20 mA	

Functional Description

The 74F174 consists of six edge-triggered D-type flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (MR) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (MR) will force all outputs LOW independent of Clock or Data inputs. The 74F174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.


Truth Table

	Inputs				
MR	СР	D _n	Q _n		
L	Х	Х	L		
н	~	н	н		
н	~	L	L		

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

- = LOW-to-HIGH Clock Transition

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

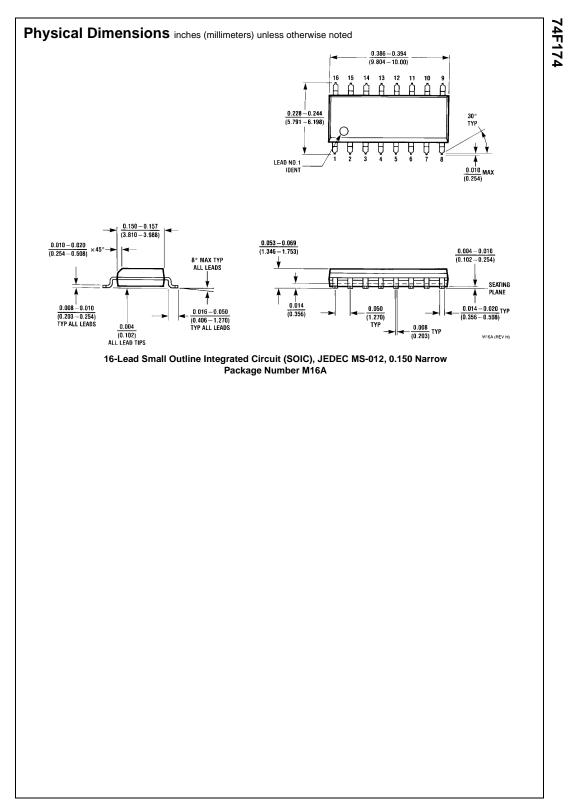
Recommended Operating Conditions

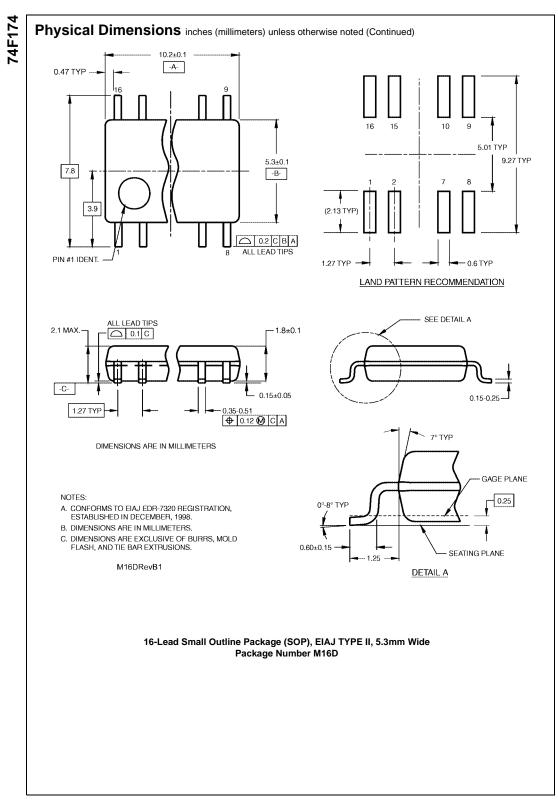
Free Air Ambient Temperature Supply Voltage 74F174

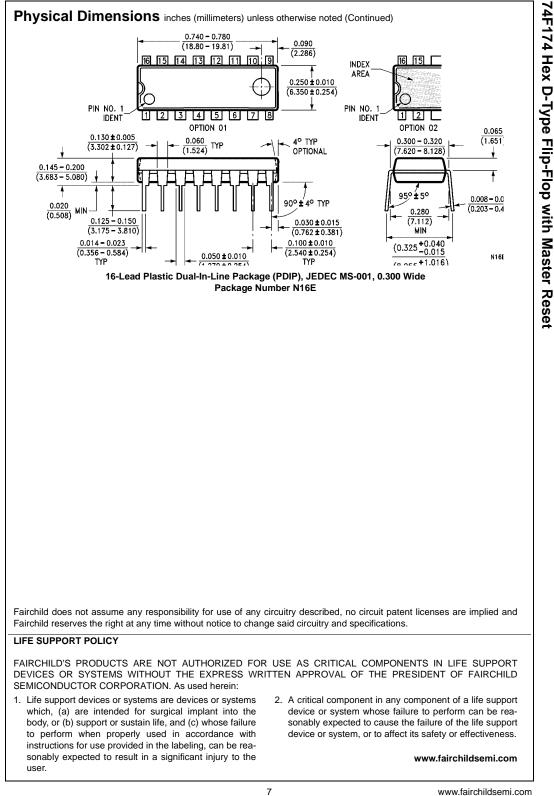
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7			v	IVIIII	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	v	Min	I _{OL} = 20 mA	
	Voltage	10% V _{CC}			0.5	v	IVIIII	$I_{OL} = 20 \text{ mA}$	
I _{IH}	Input HIGH				5.0	μA	Max	V _{IN} = 2.7V	
	Current				5.0	μΑ	IVIAX	$v_{\rm IN} = 2.7 v$	
I _{BVI}	Input HIGH Current				7.0		Max	V = 7.0V	
	Breakdown Test				7.0	μA	IVIAX	V _{IN} = 7.0V	
ICEX	Output HIGH				50	μA	Max	Varia – Var	
	Leakage Current				50	μΑ	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	0.0	I _{ID} = 1.9 μA
	Test		4.75			v	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μA	0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75	μΑ	0.0	All Other Pins Grounded	
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$	
ICCH	Power Supply Current			30	45	mA	Max	CP =	
								$D_n = \overline{MR} = HIGH$	
I _{CCL}	Power Supply Current			30	45	mA	Max	$V_0 = LOW$	


			$T_A = +25^{\circ}C$		$T_A = -55^{\circ}C$	C to +125°C	$T_A = 0^{\circ}C$	to +70°C	
Symbol	Parameter		V _{CC} = +5.0\	/	$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		Units
Symbol	Farameter		C _L = 50 pF			$C_L = 50 \ pF$		$C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	80			70		80		MH:
t _{PLH}	Propagation Delay	3.5	5.5	8.0	3.0	10.0	3.5	9.0	
t _{PHL}	CP to Q _n	4.0	7.0	10.0	4.0	12.0	4.0	11.0	ns
t _{PHL}	Propagation Delay	5.0	10.0	14.0	5.0	16.0	5.0	15.0	ns

AC Operating Requirements

		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}$ $V_{CC} = +5.0V$		$T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$		Units
Symbol	Parameter							
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	4.8		5.0		4.8		
t _S (L)	D _n to CP	4.0		5.0		4.0		ns
t _H (H)	Hold Time, HIGH or LOW	0		2.0		0		115
t _H (L)	D _n to CP	0		2.0		0		
t _W (H)	CP Pulse Width	4.0		5.0		4.0		ns
t _W (L)	HIGH or LOW	6.0		7.5		6.0		115
t _W (L)	MR Pulse Width, LOW	5.0		6.5		5.0		ns
t _{REC}	Recovery Time, MR to CP	5.0		6.0		5.0		

