September 2001 Revised October 2001

FAIRCHILD

SEMICONDUCTOR TM

74ALVC162601

Low Voltage 18-Bit Universal Bus Transceivers with 3.6V Tolerant Inputs and Outputs and 26Ω Series Resistors in the B-Port Outputs

General Description

The 74ALVC162601, 18-bit universal bus transceiver, combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes.

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs. For A-to-B data flow, the device operates in the transparent mode when LEAB is HIGH. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH-to-LOW logic level. If LEAB is LOW, the A bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of CLKAB. Output-enable OEAB is active-LOW. When OEAB is HIGH, the outputs are in the HIGH-impedance state.

 $\frac{\text{Data flow for B to A is similar to that of A to B but uses}}{\overline{\text{OEBA}}, \text{LEBA}, \text{CLKBA and }\overline{\text{CLKENBA}}.}$

The 74ALVC162601 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V. The 74ALVC162601 is also designed with 26 Ω series resistors in the B-Port outputs. This design reduces line noise in applications such as memory address drivers, clock drivers, and bus transceivers/transmitters.

Features

- 1.65V–3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- 26Ω series resistors in B-Port outputs
- t_{PD} (A to B) 4.3 ns max for 3.0V to 3.6V V_{CC}
 - 5.1 ns max for 2.3V to 2.7V V_{CC}
 - 9.2 ns max for 1.65V to 1.95V V_{CC}
- Power-down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance: Human body model > 2000V Machine model >200V

Note 1: To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description							
74ALVC162601T	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide							
Devices also available in	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.								

© 2001 Fairchild Semiconductor Corporation DS500676

74ALVC162601

Pin Descriptions

Pin Names	Description
OEAB, OEBA	Output Enable Inputs (Active LOW)
LEAB, LEBA	Latch Enable Inputs
CLKAB, CLKBA	Clock Inputs
CLKENAB, CLKENBA	Clock Enable Inputs
A ₁ -A ₁₈	Side A Inputs or 3-STATE Outputs
B ₁ -B ₁₈	Side B Inputs or 3-STATE Outputs

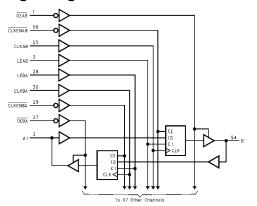
Function Table (Note 2)

	In	puts			Outputs
CLKENAB	OEAB	LEAB	CLKAB	A _n	B _n
Х	Н	Х	Х	Х	Z
х	L	н	х	L	L
х	L	н	х	Н	н
Н	L	L	х	Х	B ₀ (Note 3)
Н	L	L	х	Х	B ₀ (Note 3)
L	L	L	Ŷ	L	L
L	L	L	\uparrow	Н	н
L	L	L	L	Х	B ₀ (Note 3)
L	L	L	н	Х	B ₀ (Note 4)

Connection Diagram

OEAB -	1	\bigcirc	56	- CLKENAB
LEAB -	2		55	-CLKAB
A1	3		54	— в,
GND -	4		53	- GND
A ₂ —	5		52	— в ₂
A3 —	6		51	— B ₃
v _{cc} —	7		50	-v _{cc}
A4 —	8		49	— B ₄
A ₅ —	9		48	— в ₅
A ₆ —	10		47	— B ₆
GND —	11		46	— GND
A ₇ —	12		45	— В ₇
А ₈ —	13		44	— B ₈
A ₉ —	14		43	— В ₉
A ₁₀ —	15		42	— B ₁₀
A ₁₁ -	16		41	— B ₁₁
A ₁₂ —	17		40	— B ₁₂
GND —	18		39	- GND
A ₁₃ —	19		38	— B _{1 3}
A ₁₄ —	20		37	— B _{1.4}
A ₁₅ —	21		36	— B ₁₅
v _{cc} —	22		35	-v _{cc}
A ₁₆ —	23		34	— B ₁₆
A ₁₇ -	24		33	- B ₁₇
GND —	25		32	- GND
A ₁₈ —	26		31	— B ₁₈
OEBA -	27		30	- CLKBA
LEBA —	28		29	- CLKENBA

Logic Diagram



H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs may not float) Z = High Impedance

Note 2: A-to-B data flow is shown; B-to-A flow is similar but uses $\overline{\text{OEBA}}$, LEBA, CLKBA, and $\overline{\text{CLKENBA}}$.

Note 3: Output level before the indicated steady-state input conditions were established.

Note 4: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

Absolute Maximum Ratings(Note 5)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (V _I)	-0.5V to 4.6V
Output Voltage (V _O) (Note 6)	-0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 7) Power Supply 0 Operating 1.65V to 3.6V Input Voltage 0V to V_{CC} Output Voltage (V_O) 0V to V_{CC} Free Air Operating Temperature (T_A) -40° C to $+85^{\circ}$ C Minimum Input Edge Rate (Δ t/ Δ V) $V_{IN} = 0.8V$ to 2.0V, V_{CC} = 3.0V 10 ns/V

74ALVC162601

Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 6: I_O Absolute Maximum Rating must be observed.

Note 7: Floating or unused control inputs must be held HIGH or LOW.

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Мах	Units
V _{IH}	HIGH Level Input Voltage		1.65 - 1.95	$0.65 \times V_{CC}$		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		$0.35 \times V_{CC}$	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
	A Outputs	$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		$I_{OH} = -12 \text{ mA}$	2.3	1.7		
	HIGH Level Output Voltage B Outputs		2.7	2.2		
		$\begin{tabular}{ c c c c c c c } \hline I_{OH} = -6 & mA & 2.3 & 2.0 & & \\ \hline I_{OH} = -12 & mA & & & & & & & & & & \\ \hline I_{OH} = -12 & mA & & & & & & & & & & & & \\ \hline I_{OH} = -24 & mA & & & & & & & & & & & & & & \\ \hline I_{OH} = -24 & mA & & & & & & & & & & & & & & & \\ \hline I_{OH} = -24 & mA & & & & & & & & & & & & & & & & \\ \hline I_{OH} = -24 & mA & & & & & & & & & & & & & & & & \\ \hline I_{OH} = -2 & mA & & & & & & & & & & & & & & & & & $				
		I _{OH} = -24 mA	3.0	2		V
	HIGH Level Output Voltage		1.65 - 3.6	V _{CC} - 0.2		v
В	B Outputs		1.65	1.2		
		$I_{OH} = -4 \text{ mA}$	2.3	1.9		
		$I_{OH} = -6 \text{ mA}$	2.3	1.7		
			3.0	2.4		
		$I_{OH} = -8 \text{ mA}$	2.7	2		
		$I_{OH} = -12 \text{ mA}$	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
	A Outputs	$I_{OL} = 4 \text{ mA}$	$\begin{array}{ c c c c c c c } \hline 2.3 & -2.7 & 1.7 \\ 2.7 & -3.6 & 2.0 \\ \hline 1.65 & -1.95 & 0.35 \times V_{CC} \\ 2.3 & -2.7 & 0.7 \\ 2.7 & -3.6 & 0.8 \\ \hline 0 \mu A & 1.65 & -3.6 & V_{CC} & -0.2 \\ \hline nA & 1.65 & 1.2 & 0.6 \\ \hline nA & 1.65 & 1.2 & 0.6 \\ \hline nA & 1.65 & 1.2 & 0.6 \\ \hline nA & 1.65 & 1.2 & 0.6 \\ \hline nA & 1.65 & -3.6 & V_{CC} & -0.2 \\ \hline nA & 1.65 & -3.6 & V_{CC} & -0.2 \\ \hline nA & 1.65 & -3.6 & V_{CC} & -0.2 \\ \hline nA & 1.65 & 1.2 & 0.6 \\ \hline nA & 1.65 & -3.6 & V_{CC} & -0.2 \\ \hline nA & 1.65 & -3.6 & V_{CC} & -0.2 \\ \hline nA & 1.65 & -3.6 & 0.2 \\ \hline nA & 2.3 & 1.7 & 0.4 \\ \hline nA & 2.7 & 2 & 0.4 \\ \hline nA & 2.7 & 2 & 0.4 \\ \hline nA & 1.65 & 0.45 \\ \hline A & 2.3 & 0.7 \\ \hline 2.7 & 0.4 \\ \hline A & 1.65 & 0.45 \\ \hline A & 2.3 & 0.7 \\ \hline 2.7 & 0.4 \\ \hline A & 1.65 & 0.45 \\ \hline A & 2.3 & 0.55 \\ \hline A & 2.7 & 0.6 \\ \hline \end{array}$			
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	
		$I_{OL} = 12 \text{ mA}$	2.3		0.7	
			2.7		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
	LOW Level Output Voltage	$I_{OL} = 100 \ \mu A$	1.65 - 3.6		0.2	V
	B Outputs	$I_{OL} = 2 \text{ mA}$	1.65		0.45	
		$I_{OL} = 4 \text{ mA}$	2.3		0.4	
		$I_{OL} = 6 \text{ mA}$	2.3		0.55	
			3.0		0.55	
		I _{OL} = 8 mA	2.7		0.6	
		$I_{OL} = 12 \text{ mA}$	3.0		0.8	

DC Electrical Characteristics

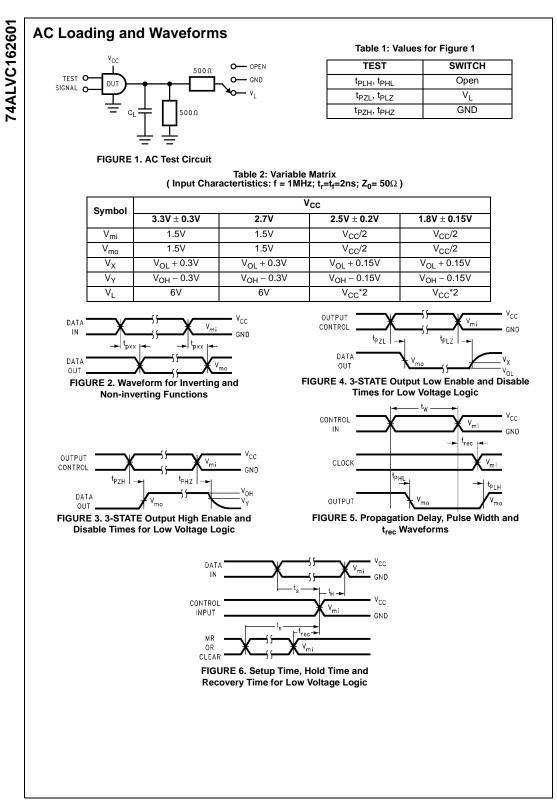
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
он	High Level Output Current		1.65		-4	
	A Outputs		2.3		-12	
			2.7		-12	
			3.0		-24	
	High Level Output Current		1.65		-2	mA
	B Outputs		2.3		-6	
			2.7		-8	
			3.0		-12	
I _{OL}	Low Level Output Current		1.65		4	
	A Outputs		2.3		12	
			2.7		12	
			3		24	mA
	Low Level Output Current		1.65		2	IIIA
	B Outputs		2.3		6	
			2.7		8	
			3.0		12	
l _l	Input Leakage Current	$0 \le V_1 \le 3.6V$	1.65 - 3.6		±5.0	μA
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$, $V_I = V_{IH}$ or V_{IL}	1.65 - 3.6		±10	μA
I _{OFF}	Power Off Leakage Current	$0V \le (V_I, V_O) \le 3.6V$	0		10	mA
lcc	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7 - 3.6		750	μA

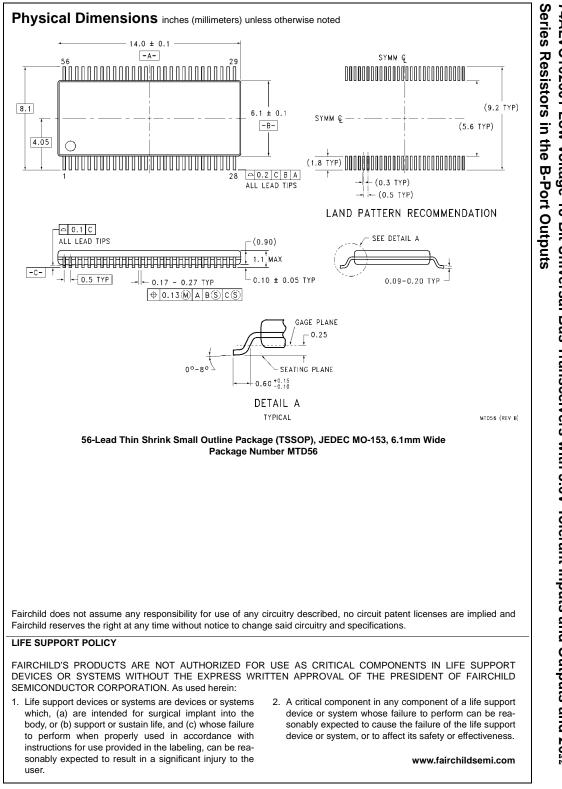
AC Electrical Characteristics

74ALVC162601

				$T_A = $	-40°C to +	85°C, R _L =	500 Ω			
Symbol	Parameter		C _L = 50 pF				$C_L = 30 \text{ pF}$			
	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC} =	= 2.7V	V _{CC} = 2.	$.5\pm0.2V$	V _{CC} = 1.8	$V \pm 0.15V$	Units
		Min	Max	Min	Max	Min	Мах	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		200		125		MHz
t _{PHL} , t _{PLH}	Propagation Delay A to B	1.3	4.3	1.5	5.1	1	4.6	1.5	9.2	
	Propagation Delay B to A	1.3	3.4	1.5	4.0	1	3.5	1.5	7.0	ns
t _{PHL} , t _{PLH}	Propagation Delay Clock to A	1.3	4.0	1.5	4.9	1.0	4.4	1.5	8.8	ns
	Propagation Delay Clock to B	1.3	4.9	1.5	6.0	1.0	5.5	1.5	9.8	
t _{PHL} , t _{PLH}	Propagation Delay LEBA to A	1.3	4.0	1.5	4.9	1.0	4.4	1.5	8.8	ns
	Propagation Delay LEAB to B	1.3	4.9	1.5	6.3	1.0	5.8	1.5	9.8	
t _{PZL} , t _{PZH}	Output Enable Time OEBA to A	1.3	4.3	1.5	5.4	1.0	4.9	1.5	9.8	ns
	Output Enable Time	1.3	4.8	1.5	6.4	1.0	5.9	1.5	9.8	

www.fairchildsemi.com


Symbol			$\mathbf{T}_{\mathbf{A}} = -40^{\circ}\mathbf{C} \text{ to } +85^{\circ}\mathbf{C}, \mathbf{R}_{\mathbf{L}} = 500\Omega$							
	Barrantan		C _L = 50 pF					Units		
	Parameter	V _{CC} = 3.	$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$		$V_{CC}=\textbf{2.5}\pm\textbf{0.2V}$		$V_{CC}=1.8V\pm0.15V$	
		Min	Max	Min	Max	Min	Мах	Min	Max	
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.2	1.5	4.7	1.0	4.2	1.5	7.6	ns
	Output Disable Time	1.3	4.8	1.5	5.4	1.0	4.9	1.5	8.8	


Symbol				$T_A = -$	-40°C to +	85°C, R _L =	500 Ω			
	Parameter		C _L = 50 pF				C _L = 30 pF			
		V _{CC} = 3.3	$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$		$V_{CC}=2.5\pm0.2V$		$V_{CC}=1.8V\pm0.15V$	
		Min	Max	Min	Max	Min	Max	Min	Max	
t _S	Setup Time	1.5		1.5		1.5		2.5		ns
t _H	Hold Time	1.0		1.0		1.0		1.0		ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns

Capacitance

Cumhal	Parameter		Conditions	T _A = -	Units	
Symbol	Parameter		Conditions	V _{CC}	Typical	Units
CIN	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance O	outputs Enabled	$f = 10 \text{ MHz}, C_L = 0 \text{ pF}$	3.3	20	۶F
				2.5	20	, pi

www.fairchildsemi.com

74ALVC162601 Low Voltage 18-Bit Universal Bus Transceivers with 3.6V Tolerant Inputs and Outputs and 26 Ω

www.fairchildsemi.com