

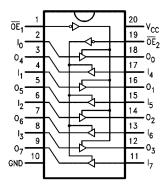
July 1989 Revised November 1999

74ACQ244 • 74ACTQ244 Quiet Series™ Octal Buffer/Line Driver with 3-STATE Outputs

General Description

The ACQ/ACTQ244 is an octal buffer and line driver designed to be employed as a memory address driver, clock driver and bus oriented transmitter or receiver which provides improved PC board density. The ACQ/ACTQ utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance.

Features

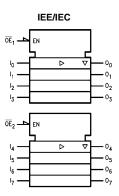

- I_{CC} and I_{OZ} reduced by 50%
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Improved latch-up immunity
- 3-STATE outputs drive bus lines or buffer memory address registers
- Outputs source/sink 24 mA
- Faster prop delays than the standard AC/ACT244

Ordering Code:

Order Number	Package Number	Package Description			
74ACQ244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body			
74ACQ244SJ	M20D	0-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74ACQ244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
74ACTQ244SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body			
74ACTQ244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74ACTQ244QSC	MQA20	20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide			
74ACTQ244MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide			
74ACTQ244PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram



Pin Descriptions

Pin Names	Description
\overline{OE}_1 , \overline{OE}_2	3-STATE Output Enable Inputs
I ₀ —I ₇	Inputs
O ₀ -O ₇	Outputs

FACT™, Quiet Series™, FACT Quiet Series™, and GTO™ are trademarks of Fairchild Semiconductor Corporation.

Logic Symbol

Truth Tables

Inp	uts	Outputs
OE ₁	In	(Pins 12, 14, 16, 18)
L	L	L
L	Н	Н
Н	Х	Z

Inp	uts	Outputs
OE ₂	In	(Pins 3, 5, 7, 9)
L	L	L
L	Н	Н
Н	Х	Z

H = HIGH Voltage Level L = LOW Voltage Level X = Inmaterial Z = HIGH Impedance

-40°C to +85°C

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{c} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$

DC Output Diode Current (I_{OK})

$$\begin{split} \text{V}_{\text{O}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \end{split}$$

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I $_{\rm CC}$ or I $_{\rm GND}$) ± 50 mA Storage Temperature (T $_{\rm STG}$) $-65^{\circ}{\rm C}$ to $+150^{\circ}{\rm C}$

DC Latch-Up Source or

Sink Current ±300 mA

Junction Temperature (T _J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} ACQ & 2.0V \text{ to } 6.0V \\ ACTQ & 4.5V \text{ to } 5.5V \\ \text{Input Voltage (V_I)} & 0V \text{ to } V_{CC} \\ \text{Output Voltage (V_O)} & 0V \text{ to } V_{CC} \\ \end{array}$

Operating Temperature (T_A) Minimum Input Edge Rate $\Delta V/\Delta t$

ACQ Devices

 $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$

V_{CC} @ 3.0V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate $\Delta V/\Delta t$

ACTQ Devices V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for ACQ

Symbol	Parameter	v _{cc}	T _A = -	$T_A = +25$ °C $T_A = -40$ °C to $+85$ °C		Units	Conditions	
Зуппоп		(V)	Тур	Gı	uaranteed Limits	Ullits	Conditions	
√ıH	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V	
		5.5	2.75	1.65	1.65			
V _{ОН}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 2	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		0.36	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.44	V	I _{OL} = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$, GND	
(Note 4)	Leakage Current	5.5		±0.1	±1.0	μΛ	VI = VCC, GIVD	
OLD	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μА	V _{IN} = V _{CC} or GND	
(Note 4)	Supply Current	3.3		4.0	40.0	μΛ		
OZ	Maximum 3-STATE						$V_I(OE) = V_{IL}, V_{IH}$	
	Leakage Current	5.5		±0.25	±2.5	μΑ	$V_I = V_{CC}$, GND	
							$V_O = V_{CC}$, GND	

DC Electrical Characteristics for ACQ (Continued)

Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
- Cyllibol	i arameter	(V) Typ		G	uaranteed Limits	Oilles		
V _{OLP}	Quiet Output	5.0	1.1	1.5		V	Figure 1, Figure 2	
	Maximum Dynamic V _{OL}	5.0	1.1	1.5		V	(Note 5)(Note 6)	
V _{OLV}	Quiet Output	5.0	-0.6	-1.2		V	Figure 1, Figure 2	
	Minimum Dynamic V _{OL}	ic V _{OL} 5.0 -0.6 -1		-1.2	.2		(Note 5)(Note 6)	
V _{IHD}	Minimum HIGH Level	5.0	5.0 3.1	3.5		V	(Note 5)(Note 7)	
	Dynamic Input Voltage	3.0	5.1	5.5		•	(14016-3)(14016-1)	
V_{ILD}	Maximum LOW Level	5.0	1.9	1.5		V	(Note 5)(Note 7)	
	Dynamic Input Voltage	3.0	1.9	1.5		V	(Note 3)(Note 1)	

Note 2: All outputs loaded thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

Note 5: DIP package.

Note 6: Max number of outputs defined as (n). Data Inputs are driven 0V to 5V. One output @ GND.

Note 7: Max number of Data Inputs (n) switching. (n-1) Inputs switching 0V to 5V (ACQ). Input-under-test switching: 5V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) , f=1 MHz.

DC Electrical Characteristics for ACTQ

Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Unite	Conditions	
Farameter	(V)	Тур	Gi	uaranteed Limits	Units	Conditions
Minimum HIGH Level	4.5	1.5	2.0	2.0	\/	V _{OUT} = 0.1V
Input Voltage	5.5	1.5	2.0	2.0	V	or V _{CC} – 0.1V
Maximum LOW Level	4.5	1.5	0.8	0.8		V _{OUT} = 0.1V
Input Voltage	5.5	1.5	0.8	0.8	V	or V _{CC} – 0.1V
Minimum HIGH Level	4.5	4.49	4.4	4.4		I _{OUT} = -50 μA
Output Voltage	5.5	5.49	5.4	5.4	V	1 _{OUT} = -50 μΑ
						$V_{IN} = V_{IL}$ or V_{IH}
	4.5		3.86	3.76	V	I _{OH} = -24 mA
	5.5		4.86	4.76		I _{OH} = -24 mA (Note 8)
Maximum LOW Level	4.5	0.001	0.1	0.1		I _{OUT} = 50 μA
Output Voltage	5.5	0.001	0.1	0.1	V	1 _{OUT} = 50 μA
						$V_{IN} = V_{IL}$ or V_{IH}
	4.5		0.36	0.44	V	I _{OL} = 24 mA
	5.5		0.36	0.44		I _{OL} = 24 mA (Note 8)
Maximum Input Leakage Current	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$, GND
Maximum 3-STATE	5.5		±0.25	±2.5	μА	$V_I = V_{IL}, V_{IH}$ $V_O = V_{CC}, GND$
Ü	5.5	0.6		1.5	mΑ	$V_1 = V_{CC} - 2.1V$
00 1		0.0				V _{OLD} = 1.65V Max
· '						V _{OHD} = 3.85V Min
	0.0			70	1117 (VOHD = 0.00 V IVIIII
	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC}$ or GND
11 7						Figure 1, Figure 2
· ·	5.0	1.1	1.5		V	(Note 10)(Note 11)
, 62						Figure 1, Figure 2
	5.0	-0.6	-1.2		V	(Note 10)(Note 11)
						(100 10)(1100 11)
	5.0	1.9	2.2		V	(Note 10)(Note 12)
, ,					 	
Dynamic Input Voltage	5.0	1.2	0.8		V	(Note 10)(Note 12)
	Input Voltage Maximum LOW Level Input Voltage Minimum HIGH Level Output Voltage Maximum LOW Level Output Voltage Maximum LOW Level Output Voltage Maximum 3-STATE Leakage Current Maximum I _{CC} /Input Minimum Dynamic Output Current (Note 9) Maximum Quiescent Supply Current Quiet Output Maximum Dynamic V _{OL} Quiet Output Minimum Dynamic V _{OL} Minimum HIGH Level Dynamic Input Voltage Maximum LOW Level Dynamic Input Voltage	Name	Name	Name	National High Level 4.5 1.5 2.0	Name

Note 8: All outputs loaded thresholds on input associated with output under test.

Note 9: Maximum test duration 2.0 ms, one output loaded at a time.

Note 10: DIP package.

DC Electrical Characteristics for ACTQ (Continued)

 $\textbf{Note 11:} \ \text{Max number of outputs defined as (n).} \ \text{Data Inputs are driven 0V to 3V.} \ \text{One output @ GND.}$

Note 12: Max number of Data Inputs (n) switching. (n-1) Inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

AC Electrical Characteristics for ACQ

		V _{CC}		T _A = +25°C		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)	$C_L = 50 \ pF$			$C_L = 50 \text{ pF}$		Units
		(Note 13)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	3.3	2.0	7.0	9.0	2.0	9.5	ns
t _{PLH}	Data to Output	5.0	1.5	5.0	6.0	1.5	6.5	115
t _{PZL} t _{PZH}	Output Enable Time	3.3	2.5	8.0	12.0	2.5	12.5	ns
		5.0	1.5	6.5	8.0	1.5	8.5	115
t _{PHZ} t _{PLZ}	Output Disable Time	3.3	1.0	9.0	13.5	1.0	14.0	ns
		5.0	1.0	7.5	9.0	1.0	9.5	115
toshl toslh	Output to Output	3.3		1.0	1.5		1.5	ns
	Skew Data to Output (Note 14)	5.0		0.5	1.0		1.0	115

Note 13: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Voltage Range 3.3 is 3.3V \pm 0.3V.

Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.

AC Electrical Characteristics for ACTQ

Symbol	Parameter	V _{CC} (V)	$T_A = +25^{\circ}C$ $C_L = 50 \text{ pF}$			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units
		(Note 15)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	5.0	1.5	5.5	6.5	1.5	7.0	ns
t _{PLH}	Data to Output							
t _{PZL}	Output Enable Time	5.0	1.5	7.0	8.5	1.5	9.0	ns
t _{PZH}								
t _{PHZ}	Output Disable Time	5.0	1.0	8.0	9.5	1.0	10.0	ns
t_{PLZ}								
t _{OSHL}	Output to Output	5.0		0.5	1.0		1.0	ns
toslh	Skew Data to Output (Note 16)							

Note 15: Voltage Range 5.0 is 5.0V \pm 0.5V.

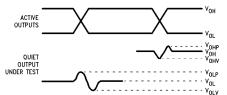
Note 16: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	70	pF	$V_{CC} = 5.0V$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.


Equipment:

Hewlett Packard Model 8180A Word Generator PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50 pF, 500Ω .
- Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Note 17: V_{OHV} and V_{OLP} are measured with respect to ground reference Note 18: Input pulses have the following characteristics: f = 1 MHz, $t_r = 3$ ns, $t_f = 3$ ns, skew < 150 ps.

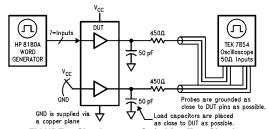
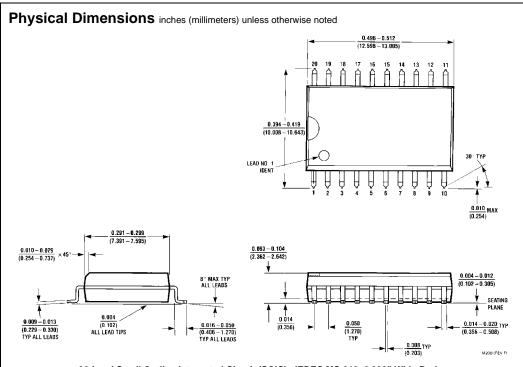
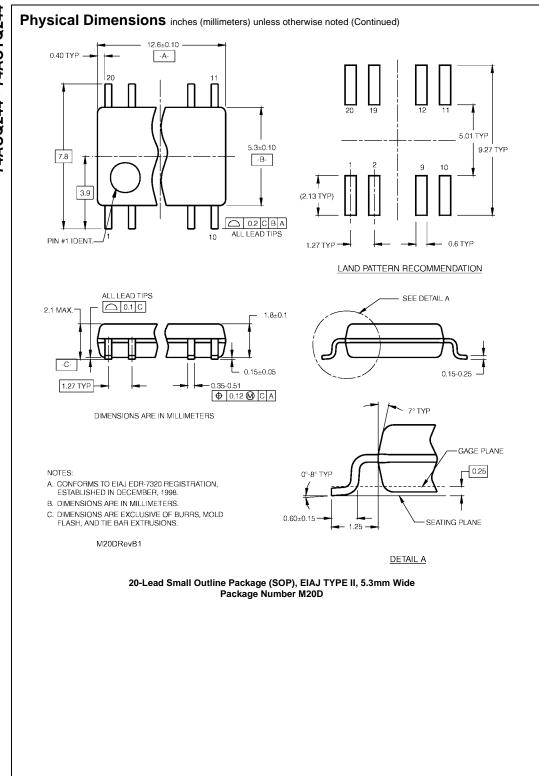
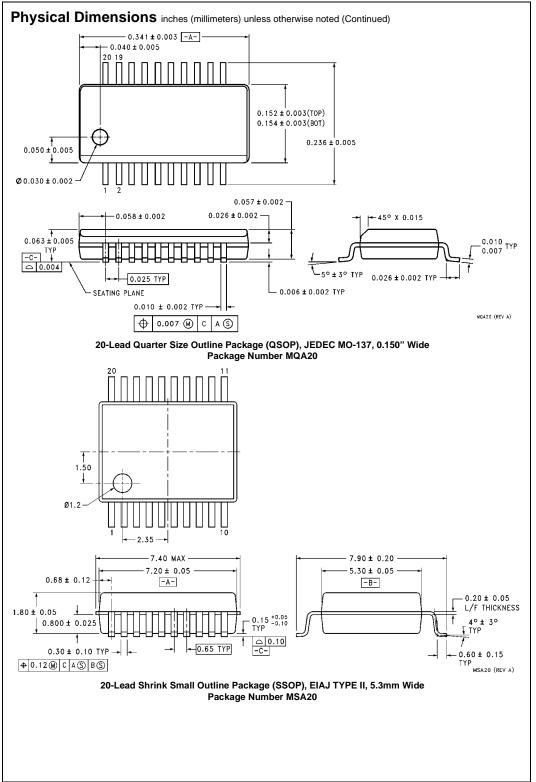
FIGURE 1. Quiet Output Noise Voltage Waveforms

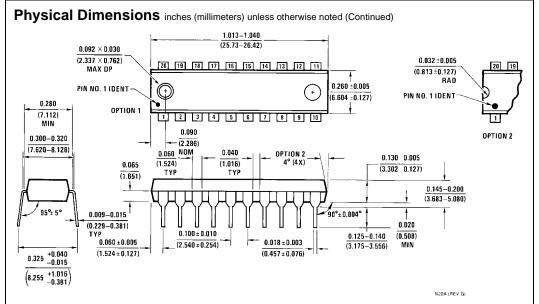
V_{OLP}/V_{OLV} and V_{OHP}/V _{OHV}:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case active and enable transition. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD}:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.


FIGURE 2. Simultaneous Switching Test Circuit

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com