74ACT841 10-Bit Transparent Latch with 3-STATE Outputs

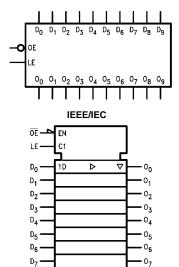
74ACT841 **10-Bit Transparent Latch with 3-STATE Outputs**

General Description

FAIRCHILD

SEMICONDUCTOR

Features


The ACT841 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity. The ACT841 is a 10-bit transparent latch, a 10-bit version of the ACT373.

- ACT841 has TTL-compatible inputs
- Outputs source/sink 24 mA
- Non-inverting 3-STATE outputs

Ordering Code:

Order Number	Package Number	Package Description			
74ACT841SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide			
74ACT841MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
74ACT841SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide			
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. (SPC not available in Tape and Reel.)					


Logic Symbols

08

0.

Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ -D ₉	Data Inputs
O ₀ –O ₉	3-STATE Outputs
OE	Output Enable
LE	Latch Enable

FACT™ is a trademark of Fairchild Semiconductor Corporation.

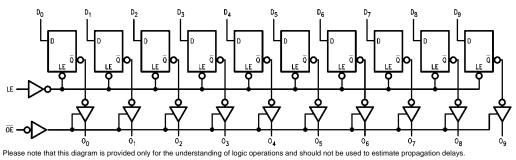
D₈

D_o

© 2000 Fairchild Semiconductor Corporation DS010156 www.fairchildsemi.com

Functional Description

The ACT841 consists of ten D-type latches with 3-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition.


On the LE HIGH-to-LOW transition, the data that meets the setup and hold time is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state.

Function Table

Inputs			Internal	Output	Franction	
OE	LE	D	Q	0	Function	
Х	Х	Х	Х	Z	High Z	
н	н	L	L	Z	High Z	
н	н	н	н	Z	High Z	
н	L	х	NC	Z	Latched	
L	н	L	L	L	Transparent	
L	н	н	Н	н	Transparent	
L	L	х	NC	NC	Latched	

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance NC = No Change

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	$-0.5V$ to $V_{CC} + 0.5V$
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5V$ to $V_{CC} + 0.5V$
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

74ACT841

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
		(V)	Typ Guaranteed Limits		Units	Conditions		
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$	
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$	
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
	Output Voltage	5.5	5.49	5.4	5.4	v	i _{OUT} = -50 μA	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)	
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA	
	Output Voltage	5.5	0.001	0.1	0.1	v i _{OUT} = 5	$I_{OUT} = 50 \mu A$	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}, GND$	
	Leakage Current	5.5		±0.1	1.0	μΛ	$v_{\rm I} = v_{\rm CC}, {\rm GND}$	
I _{OZ}	Maximum 3-STATE	5.5	5.5 ±0.5 ±5.0	±5.0	μA	$V_I = V_{IL}, V_{IH}$		
	Leakage Current	0.0		±0.5	±0.0	μΛ	$V_{O} = V_{CC}, GND$	
I _{CCT}	Maximum	5.5	0.6		1.5	μA	$V_{I} = V_{CC} - 2.1V$	
	I _{CC} /Input	0.0	0.0		1.5	μΛ	v] = v _{CC} = 2.1v	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		8.0	80.0	μΑ	$V_{IN} = V_{CC}$	
	Supply Current	0.0			00.0		or GND	

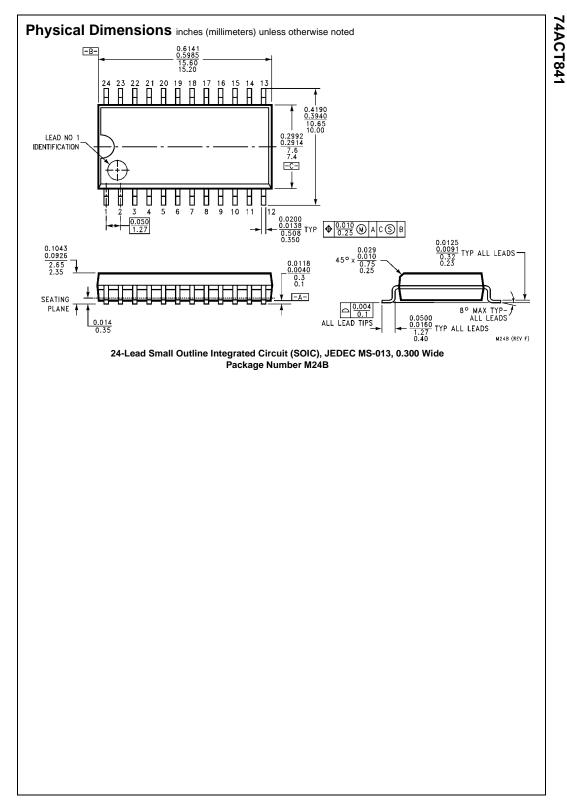
Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

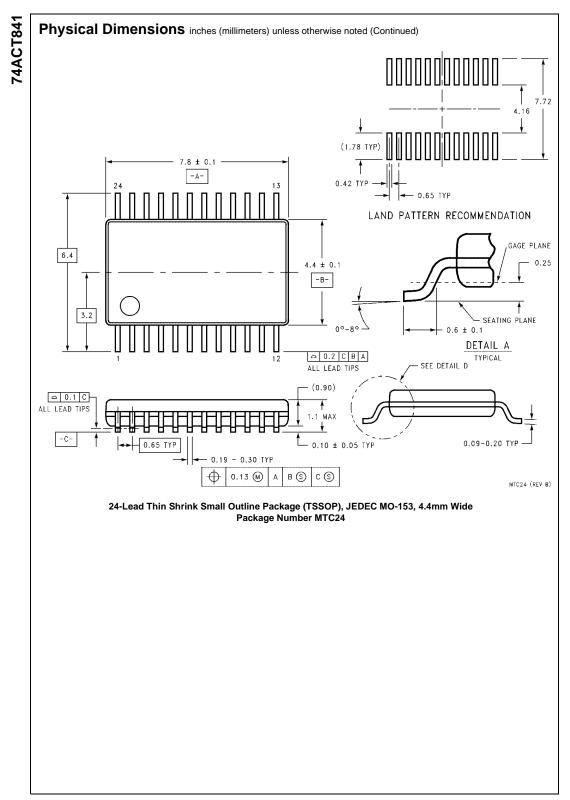
<u> </u>
4
œ
F
υ
∢
4
N

AC Electrical Characteristics

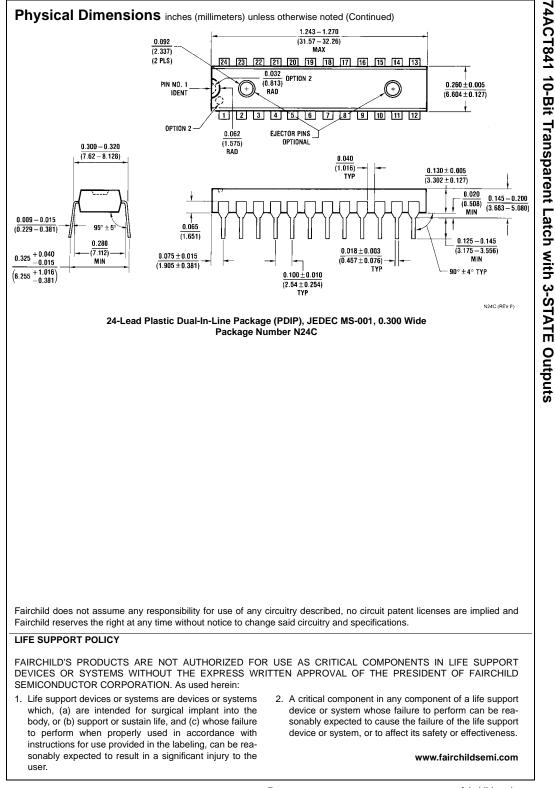
		V _{cc}	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Units
Symbol	Parameter	(V)						
		(Note 4)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay D _n to O _n	5.0	2.0	5.5	9.5	2.0	10.0	ns
t _{PHL}	Propagation Delay D _n to O _n	5.0	2.0	5.5	9.5	2.0	10.0	ns
t _{PLH}	Propagation Delay LE to O _n	5.0	2.0	5.5	9.0	2.0	10.0	ns
t _{PHL}	Propagation Delay LE to O _n	5.0	2.0	5.5	9.0	2.0	10.0	ns
t _{PZH}	Output Enable Time OE to O _n	5.0	2.0	5.5	9.5	2.0	10.5	ns
t _{PZL}	Output Enable Time OE to O _n	5.0	2.0	5.5	9.5	2.0	10.5	ns
t _{PHZ}	Output Disable Time \overline{OE} to O _n	5.0	2.0	6.0	10.5	2.0	11.0	ns
PLZ	Output Disable Time OE to O _n	5.0	2.0	6.0	10.5	2.0	11.0	ns


AC Operating Requirements

Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF		T _A = −40°C to +85°C C _L = 50 pF	Units
		(Note 5)	Тур	Guar	anteed Minimum	
t _S	Setup Time, HIGH or LOW D _n to LE	5.0	-0.5	0.5	1.0	ns
t _H	Hold Time, HIGH or LOW D _n to LE	5.0	0.5	2.0	2.0	ns
t _W	LE Pulse Width, HIGH	5.0	2.0	3.5	3.5	ns


Note 5: Voltage Range 5.0 is $5.0V \pm 0.5V$

Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = OPEN$
C _{PD}	Power Dissipation Capacitance	44	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com

www.fairchildsemi.com

www.fairchildsemi.com

7