

Function Table

Inputs						Inputs/Outputs (Note 1)		Operating Mode
OEAB	$\overline{\text { OEBA }}$	CPAB	CPBA	SAB	SBA	A_{0} thru A_{7}	B_{0} thru B_{7}	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\sim	\sim	X	X			Store A and B Data
X	H	\sim	H or L	X	X	Input	Not Specified	Store A, Hold B
H	H	\sim	\sim	X	X	Input	Output	Store A in Both Registers
L	X	H or L	\sim	X	X	Not Specified	Input	Hold A, Store B
L	L	\sim	\sim	X	X	Output	Input	Store B in Both Registers
L	L	X	X	X	L	Output	Input	Real-Time B Data to A Bus
L	L	X	H or L	X	H			Store B Data to A Bus
H	H	X	X	L	X	Input	Output	Real-Time A Data to B Bus
H	H	H or L	X	H	X			Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

H = HIGH Voltage Leve
L = LOW Voltage Level
X = Immaterial
Note 1: The data output functions may be enabled or disabled by various signals at OEAB or $\overline{O E B A}$ inputs. Data input functions are always enabled, i.e data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both.
The select (SAB, SBA) controls can multiplex stored and real-time.
The examples in Figure 1 demonstrate the four fundamental bus-management functions that can be performed with the Octal bus transceivers and receivers.

Note A: Real-Time Transfer Bus B to Bus A

Note C: Storage

Data on the A or B data bus, or both can be stored in the internal D-type flip-flop by LOW to HIGH transitions at the appropriate Clock Inputs (CPAB, CPBA) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and $\overline{O E B A}$. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in a HIGH impedance state, each set of bus lines will remain at its last state.

Note B: Real-Time
Transfer Bus A to Bus B

Note D: Transfer Storage Data to A or B

FIGURE 1.

Absolute Maximum Ratings(Note 2)

Supply Voltage (V_{CC})
DC Input Diode Current ($I_{I K}$)
$V_{1}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
-0.5 V to +7.0 V

DC Input Voltage (V_{l})
DC Output Diode Current (lok)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$+20 \mathrm{~mA}$
DC Output Voltage (V_{O})
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source
or Sink Current (I_{O})
DC $V_{C C}$ or Ground Current
per Output Pin (ICC or $I_{G N D}$)
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
DC Latch-Up Source

> or Sink Current
mA
Junction Temperature (T_{J})
PDIP
$140^{\circ} \mathrm{C}$

Recommended Operating

 Conditions| Supply Voltage (V_{CC}) | 4.5 V to 5.5 V |
| :---: | :---: |
| Input Voltage (V_{l}) | OV to V_{Cc} |
| Output Voltage (V_{O}) | 0 V to V_{Cc} |
| Operating Temperature (T_{A}) | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$ | |
| $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V | |
| $\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$ | $125 \mathrm{mV} / \mathrm{ns}$ |
| Note 2: Absolute maximum ratings are to the device may occur. The databoo out exception, to ensure that the syst supply, temperature, and output/input recommend operation of $\mathrm{FACT}^{\text {M }}$ circu | yond which damage should be met, withable over its power Fairchild does not ok specifications. |

DC Electrical Characteristics

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{1}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 3) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	Iout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 3) \end{aligned}$
$\overline{\mathrm{IN}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
Iozt	Maximum I/O Leakage Current	5.5		± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
${ }^{\text {CCT }}$	Maximum Icc/Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
Iold	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current (Note 4)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
I_{CC}	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
Note 3: All outputs loaded; thresholds on input associated with output under test. Note 4: Maximum test duration 2.0 ms , one output loaded at a time.							

AC Electrical Characteristics

Symbol	Parameter	V_{Cc} （V） （Note 5）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Max．Clock Frequency	5.0						MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Clock to Bus	5.0	2.0	7.0	9.5	2.0	10.0	ns
$\begin{aligned} & \overline{t_{\mathrm{PLH}}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Bus to Bus	5.0	2.0	6.5	9.0	2.0	9.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay SBA or SAB to A or B	5.0	2.5	6.5	10.0	2.5	10.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time OEBA to A（Note 5）	5.0	2.0	7.0	10.5	2.0	11.0	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time OEBA to A（Note 5）	5.0	1.0	5.0	8.0	1.0	8.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Enable Time OEAB to B	5.0	2.0	7.0	10.5	2.0	11.0	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time OEAB to B	5.0	1.0	5.0	8.0	1.0	8.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time，HIGH or LOW，Bus to Clock	5.0	3.0			3.0		ns
$\begin{aligned} & \hline t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold Time，HIGH or LOW，Bus to Clock	5.0	1.5			1.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width HIGH or LOW	5.0	4.0			4.0		ns

Note 5：Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ ．

Capacitance

Symbol	Parameter	Typ	Units	
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	54	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
