74ACT16646 16-Bit Transceiver/Register with 3-STATE Outputs

General Description

Features

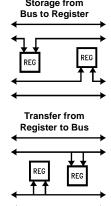
- Independent registers for A and B buses
- Multiplexed real-time and stored data transfers
- Separate control logic for each byte
- 16-bit version of the ACT646
- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering Code:

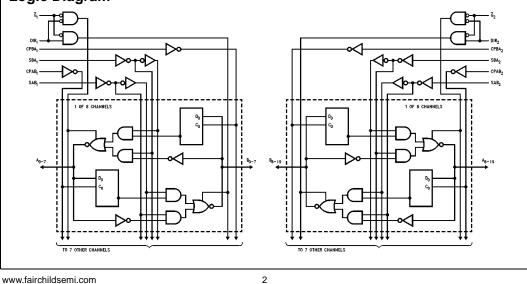
General De The ACT16646 cc registered bus trar sion of data direct storage registers. which can be shor DIR inputs determ device. The CPAB	646 ansceiver	overting bidirectional nultiplexed transmis- or from the internal arate control inputs 6-bit operation. The ata flow through the	vith 3-STATE O Features Independent registers for A Multiplexed real-time and s Separate control logic for e 16-bit version of the ACT64 Outputs source/sink 24 mA TTL-compatible inputs	and B buses stored data transfers sach byte 46	74ACT16646 16-Bit Transceiver/Register with	
Ordering C	Ode: Package Number		Package Description	n	er w	
74ACT16646SSC	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide				
74ACT16646MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				
Device also available ir Logic Sym		y appending suffix letter "X" t	to the ordering code. Connection Diagr	am	STATE Outputs	

Logic Symbol	Connection Di	iagram	I
Logic Symbol	Connection DI DIR, - CPAR, - SAR, - GND - A ₀ - A ₁ - V _{CC} - A ₁ - A ₂ - A ₃ - A ₄ - GND - A ₅ - A ₆ - A ₇ - A ₆ - A ₇ - A ₇ - A ₈ - A ₇ - A ₈ - A ₇ - A ₈ - A ₇ - A ₈ - A ₇ - CPAB ₇ - DIR ₂ -	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
FACT™ is a trademark of Fairchild Semiconductor Corporation.			

www.fairchildsemi.com



Function Table Inputs Data I/O (Note 1) **Output Operation Mode** CPAB₁ CPBA₁ DIR₁ SAB₁ SBA₁ B₀₋₇ G₁ A₀₋₇ H or L Isolation Н Х H or L Х Х н Х Clock An Data into A Register Х Х Х Input Input Х Clock Bn Data Into B Register Н Х Х Х Н A_n to B_n —Real Time (Transparent Mode) L Х Х L Х Clock An Data to A Register L Н Х L Х Input Output ~ L н H or L Х н Х A Register to B_n (Stored Mode) Clock An Data into A Register and Output to Bn н н L Х Х Х Х B_n to A_n—Real Time (Transparent Mode) L Х L L Clock Bn Data into B Register Х L L Х L Output Input ~ Х B Register to An (Stored Mode) L L Н Х H or L L Х Clock B_n into B Register and Output to A_n L Х н H = HIGH Voltage Level X = Immaterial L = LOW Voltage Level Note 1: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs. Also applies to data I/O (A and B: 8-15) and #2 control pins. **Real Time Transfer** Storage from



Logic Diagram

2

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
$V_{1} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V_{CC} + 0.5V
DC Output Source/Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin	±50 mA
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	

74ACT16646

V_{CC} @ 4.5V, 5.5V

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

Symbol	Parameter	V _{CC}	T _A = -	+25°C $T_A = -40°C \text{ to}+85°C$		Units	Conditions
		(V)	Typ Guaranteed Limits		aranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH	4.5	1.5	.5 2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
V _{IL}	Maximum LOW	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{он}	Minimum HIGH	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	i _{OUT} = -50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	I _{OH} = -24 mA
		5.5		4.86	4.76		I _{OH} = -24 mA (Note
V _{OL}	Maximum LOW	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	1001 - 30 mA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 3
I _{OZT}	Maximum I/O	5.5		±0.5	±5.0	μA	$V_{IN} = V_{IL}, V_{IH}$
	Leakage Current	5.5		10.5	±0.0	μΑ	$V_{O} = V_{CC}, GND$
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND
	Leakage Current	0.0		-0.1	1.0	μΛ	
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$
I _{CC}	Max Quiescent	5.5		8.0	80.0	μA	$V_{IN} = V_{CC}$ or GND
	Supply Current	0.0		0.0	00.0	μΛ	
OLD	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 4)	5.5			-75	mA	V _{OHD} = 3.85V Min

DC Electrical Characteristics

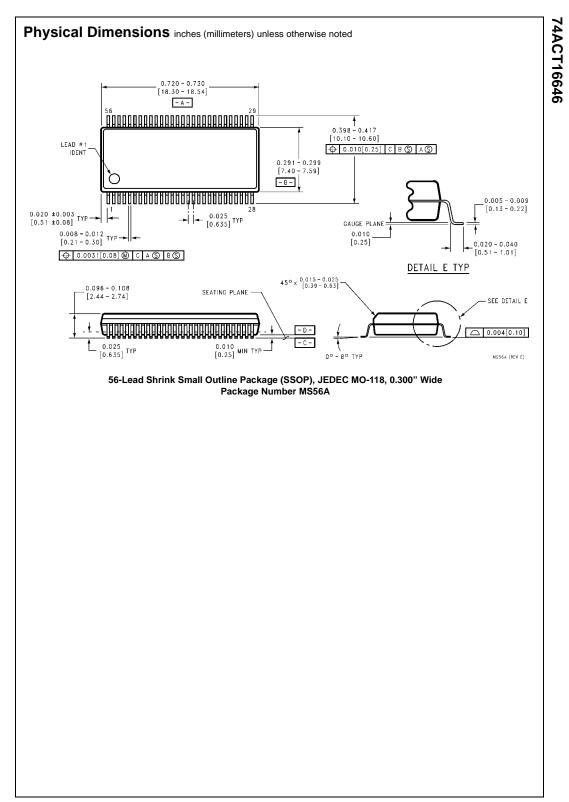
Note 4: Maximum test duration 2.0 ms; one output loaded at a time.

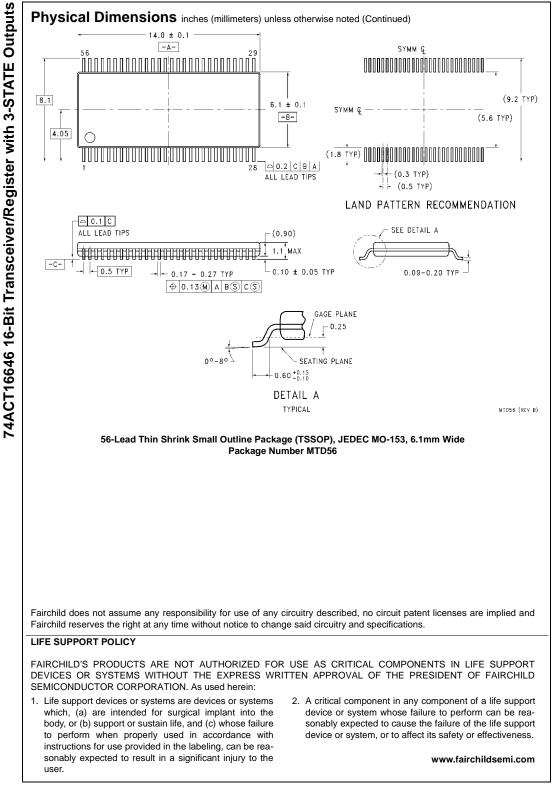
www.fairchildsemi.com

ഴ
4
Ō
õ
~
F
C
Ā
4
~

AC Electrical Characteristics

Symbol		V _{cc}	T _A = +25°C C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Units
	Parameter	(V)						
		(Note 5)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	5.0	4.6	6.9	9.4	3.6	10.1	200
t _{PLH}	Clock to Bus	5.0	4.3	6.5	8.9	3.3	9.7	ns
t _{PHL}	Propagation Delay	5.0	4.0	6.2	8.5	2.9	9.2	
t _{PLH}	Bus to Bus	5.0	4.1	6.4	8.6	3.2	9.3	ns
t _{PHL}	Propagation Delay	5.0	4.0	6.4	8.9	3.1	9.6	ns
t _{PLH}	Select to Bus		4.2	6.7	9.5	3.2	10.4	
	(w/An or Bn HIGH or LOW)							
t _{PZL}	Enable Time	5.0	5.3	7.8	10.5	3.8	11.4	ns
t _{PZH}	G to An/Bn	5.0	4.6	6.9	9.4	3.3	10.2	
t _{PLZ}	Disable Time	5.0	3.0	5.5	8.1	2.3	8.6	ns
t _{PHZ}	G to An/Bn	5.0	3.4	5.7	8.3	2.6	8.6	115
t _{PZL}	Enable Time	5.0	5.1	8.2	11.8	4.3	12.7	ns
t _{PZH}	DIR to An/Bn	5.0	4.6	7.5	10.8	3.7	11.7	115
t _{PLZ}	Disable Time	5.0	2.9	5.8	9.2	2.0	9.8	-
t _{PHZ}	DIR to An/Bn	5.0	3.4	6.1	9.2	2.5	9.7	ns


AC Operating Requirements


Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF	T _A = -40°C to +85°C C _L = 50 pF	Units
		(Note 6)	Guarantee	I	
t _S	Setup Time, H or L	5.0	3.0	3.0	ns
	Bus to Clock				
t _H	Hold Time, H or L Bus to Clock	5.0	1.5	1.5	ns
t _W	Clock Pulse Width H or L	5.0	4.0	4.0	ns

Note 6: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

Symbol Parameter		Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	95	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com