

Connection Diagram

Pin Descriptions

Pin Names	Description
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
CP	Clock Pulse Input
$\overline{\mathrm{SR}}$	Synchronous Reset Input
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs
$\overline{\mathrm{PE}}$	Parallel Enable Input
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-Flop Outputs
TC	Terminal Count Output

Logic Symbols

Mode Select Table

$\overline{\mathbf{S R}}$	$\overline{\text { PE }}$	CET	CEP	Action on the Rising Clock Edge (- $)$
L	X	X	X	Reset (Clear)
H	L	X	X	Load $\left(P_{n} \rightarrow Q_{n}\right)$
H	H	H	H	Count (Increment)
H	H	L	X	No Change (Hold)
H	H	X	L	No Change (Hold)

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immateria

Functional Description

The AC/ACT163 counts in modulo-16 binary sequence. From state 15 (HHHH) it increments to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence synchronous reset, parallel load, count-up and hold. Four control inputs-Synchronous Reset (SR), Parallel Enable $(\overline{\mathrm{PE}})$, Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on PE overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{\mathrm{PE}}$ and $\overline{\mathrm{SR}}$ HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.
The AC/ACT163 uses D-type edge-triggered flip-flops and changing the $\mathrm{SR}, \mathrm{PE}, \mathrm{CEP}$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.
The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 15 . To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways.
Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to TC delay of the first stage, plus the cumulative CET to TC delays of the intermediate stages, plus the $\overline{\mathrm{CET}}$ to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 16 clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to $\overline{T C}$ delay of the first stage plus the CEP to CP setup time of the last stage. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters.
Logic Equations: Count Enable $=\mathrm{CEP} \cdot \mathrm{CET} \cdot \overline{\mathrm{PE}}$

$$
\mathrm{TC}=\mathrm{Q}_{0} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2} \cdot \mathrm{Q}_{3} \cdot \mathrm{CET}
$$

State Diagram

Absolute Maximum Ratings（Note 1）	
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V
DC Input Diode Current（ $\mathrm{I}_{1 \mathrm{~K}}$ ）	
$V_{1}=-0.5 \mathrm{~V}$	－20 mA
$V_{1}=V_{C C}+0.5 \mathrm{~V}$	＋20 mA
DC Input Voltage（ V_{l} ）	-0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
DC Output Diode Current（ $\mathrm{IOK}^{\text {）}}$	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current（ I_{O} ）	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current per Output Pin（I I_{CC} or $\mathrm{I}_{\mathrm{GND}}$ ）	$\pm 50 \mathrm{~mA}$
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

PDIP
$140^{\circ} \mathrm{C}$ Note 1：Absolute maximum ratings are those values beyond which damage to the device may occur．The databook specifications should be met，with out exception，to ensure that the system design is reliable over its power supply，temperature，and output／input loading variables．Fairchild does not recommend operation of circuits outside databook specifications

DC Electrical Characteristics for AC

Symbol	Parameter	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		（V）	Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{array}{r} \hline 3.0 \\ 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.9 \\ & 1.35 \\ & 1.65 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.99 \\ 4.49 \\ 5.49 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note 2) } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LL}}=24 \mathrm{~mA} \\ & \left.\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note } 2\right) \end{aligned}$
$\overline{I_{\text {IN }}(\text { Note 4）}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ ，GND
ToLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD	Output Current（Note 3）	5.5			－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$I_{\text {CC }}$ （Note 4）	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$

Note 2：All outputs loaded；thresholds on input associated with output under test．
Note 3：Maximum test duration 2.0 ms ，one output loaded at a time．
Note 4： I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit＠ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ ．

DC Electrical Characteristics for ACT

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \hline \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 5) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{gathered} \hline 0.1 \\ 0.1 \end{gathered}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 5) \\ & \hline \end{aligned}$
I_{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
${ }_{\text {ICCT }}$	Maximum $\mathrm{I}_{\mathrm{CC}} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
IoLD	Minimum Dynamic Output Current (Note 6)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD		5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
${ }_{\text {CC }}$	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$
Note 5: All outputs loaded; thresholds on input associated with output under te Note 6: Maximum test duration 2.0 ms , one output loaded at a time. AC Electrical Characteristics for AC							

Symbol	Parameter	V_{cc} (V) (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 70 \\ 110 \end{gathered}$	$\begin{gathered} \hline 95 \\ 140 \end{gathered}$		$\begin{aligned} & 60 \\ & 95 \end{aligned}$		MHz
tplh	Propagation Delay, CP to Q_{n} ($\overline{\mathrm{PE}}$ Input HIGH or LOW)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 12.5 \\ 9.0 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay, CP to } \mathrm{Q}_{\mathrm{n}} \\ & (\overline{\mathrm{PE}} \text { Input HIGH or LOW }) \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 12.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PLH }}$	Propagation Delay CP to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 3.0 \\ 2.0 \end{gathered}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.5 \end{aligned}$	ns
tpLH	Propagation Delay CET to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CET to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{array}{r} \hline 12.5 \\ 9.5 \end{array}$	ns
Note 7: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$								

AC Operating Requirements for ACT

Symbol	Parameter	v_{cc} (V) (Note 10)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ	Guaranteed Minimum		
ts	Setup Time, HIGH or LOW P_{n} to CP	5.0	4.0	10.0	12.0	ns
t_{H}	Hold Time, HIGH or LOW P_{n} to CP	5.0	-5.0	0.5	0.5	ns
t_{S}	Setup Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	5.0	4.0	10.0	11.5	ns
t_{H}	Hold Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	5.0	-5.5	-0.5	-0.5	ns
t_{S}	Setup Time, HIGH or LOW $\overline{\mathrm{PE}}$ to CP	5.0	4.0	8.5	10.5	ns
t_{H}	Hold Time, HIGH or LOW $\overline{\mathrm{PE}}$ to CP	5.0	-5.5	-0.5	0	ns
t_{s}	Setup Time, HIGH or LOW CEP or CET to CP	5.0	2.5	5.5	6.5	ns
t_{H}	Hold Time, HIGH or LOW CEP or CET to CP	5.0	-3.0	0	0.5	ns
t_{W}	Clock Pulse Width (Load) HIGH or LOW	5.0	2.0	3.5	3.5	ns
t_{W}	Clock Pulse Width (Count) HIGH or LOW	5.0	2.0	3.5	3.5	ns

Note 10: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	45.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
