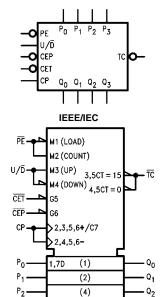
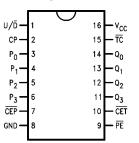
74AC169 4-Stage Synchronous Bidirectional Counter

General Description


Features

- I_{CC} reduced by 50%
- Synchronous counting and loading
- Built-In lookahead carry capability
- Presettable for programmable operation
- Outputs source/sink 24 mA


Ordering Code:

FAIRCI			November 1988 Revised November 1999			
74AC16 4-Stage	•	ous Bidire	ctional Counter			
General D	escription		Features			
The AC169 is a preset capability head for easy carbon of countries of the	modulo-16 binary c for programmable or ascading and a U/D ting. All state change ading, are initiated b Clock.	ige up/down counter. counter. It features a peration, carry looka- input to control the es, whether in count- by the LOW-to-HIGH	 I_{CC} reduced by 50% Synchronous counting and loading Built-In lookahead carry capability Presettable for programmable operation Outputs source/sink 24 mA 			
Ordering (Package Number	[Package Description			
Order Number		16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body				
Order Number 74AC169SC	M16A	16-Lead Small Outline				
74AC169SC	M16A	16-Lead Small Outline	Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body			

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description			
CEP	Count Enable Parallel Input			
CET	Count Enable Trickle Input			
CP	Clock Pulse Input			
P ₀ –P ₃	Parallel Data Inputs			
PE	Parallel Enable Input			
U/D	Up-Down Count Control Input			
$Q_0 - Q_3$	Flip-Flop Outputs			
TC	Terminal Count Output			

FACT™ is a trademark of Fairchild Semiconductor Corporation.

P,

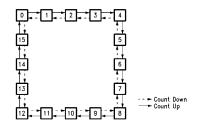
(8)

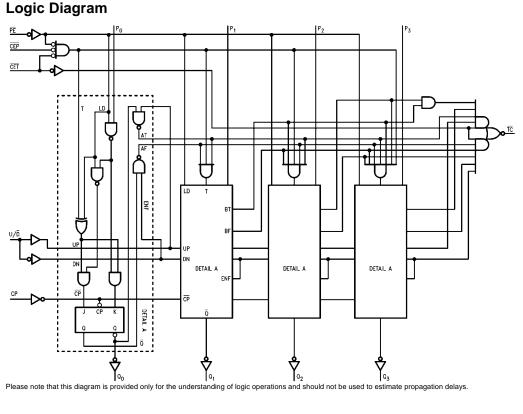
Q3

Functional Description

The AC169 uses edge-triggered J-K-type flip-flops and have no constraints on changing the control or data input signals in either state of the Clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over the other operations, as indicated in the Mode Select Table. When PE is LOW, the data on the $\mathsf{P}_0\text{-}\mathsf{P}_3$ inputs enters the flip-flops on the next rising edge of the Clock. In order for counting to occur, both $\overrightarrow{\text{CEP}}$ and $\overrightarrow{\text{CET}}$ must be LOW and $\overrightarrow{\text{PE}}$ must be HIGH; the U/D input then determines the direction of counting. The Terminal Count (TC) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the Count Down mode or reaches 15 in the Count Up mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. If an illegal state occurs, the AC169 will return to the legitimate sequence within two counts. Since the TC signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on \overline{TC} . For this reason the use of \overline{TC} as a clock signal is not recommended (see logic equations below).

- 1. Count Enable = $\overline{\text{CEP}} \cdot \overline{\text{CET}} \cdot \overline{\text{PE}}$
- 2. Up: $\overline{\text{TC}} = Q_0 \bullet Q_1 \bullet Q_2 Q_3 \bullet (\text{Up}) \bullet \overline{\text{CET}}$
- 3. Down: $\overline{\text{TC}} = \overline{\text{Q}}_0 \bullet \overline{\text{Q}}_1 \bullet \overline{\text{Q}}_2 \bullet \overline{\text{Q}}_3 \bullet (\text{Down}) \bullet \overline{\text{CET}}$




PF	CEP	CET	U/D	Action on Rising	
PE	CEP	CET	0/D	Clock Edge	
L	Х	Х	Х	Load (P _n to Q _n)	
н	L	L	н	Count Up (Increment)	
н	L	L	L	Count Down (Decrement)	
н	н	Х	Х	No Change (Hold)	
н	Х	н	Х	No Change (Hold)	

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

State Diagram

www.fairchildsemi.com

2

Absolute Maximum F	Ratings(Note 1)	Recor
Supply Voltage (V _{CC})	-0.5V to +7.0V	Condi
DC Input Diode Current (IIK)		Supply V
$V_{I} = -0.5V$	–20 mA	Input Vol
$V_I = V_{CC} + 0.5V$	+20 mA	Output V
DC Input Voltage (VI)	$-0.5V$ to $V_{CC} + 0.5V$	Operatin
DC Output Diode Current (I _{OK})		Minimum
$V_{O} = -0.5V$	–20 mA	V _{IN} fro
$V_O = V_{CC} + 0.5V$	+20 mA	V _{CC} @
DC Output Voltage (V _O)	$-0.5V$ to $V_{CC} + 0.5V$	
DC Output Source		
or Sink Current (I _O)	±50 mA	
DC V_{CC} or Ground Current		
per Output Pin (I_{CC} or I_{GND})	±50 mA	Note 1: Abs
Storage Temperature (T _{STG})	-65°C to +150°C	to the device out exceptio
Junction Temperature (T _J)		supply, temp
PDIP	140°C	recommend
DC Electrical Charac	toristics	

mmended Operating litions

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate (ΔV/Δt)	
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns

74AC169

solute maximum ratings are those values beyond which damage ice may occur. The databook specifications should be met, with-tion, to ensure that the system design is reliable over its power perature, and output/input loading variables. Fairchild does not d operation of FACT™ circuits outside databook specifications.

C Electrical Characteristics L

Symbol	Parameter	V _{CC}	T _A =	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Symbol	Faialletei	(V)	Тур	Gu	aranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V
		5.5	2.75	3.85	3.85		
VIL	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$
		5.5	2.75	1.65	1.65		
V _{он}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND
(Note 4)	Leakage Current	5.5		10.1	±1.0	μΑ	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
(Note 4)	Supply Current	5.5		7.0	-0.0	μπ	or GND

Note 2: All outputs loaded; thresholds on input associated with output under test.

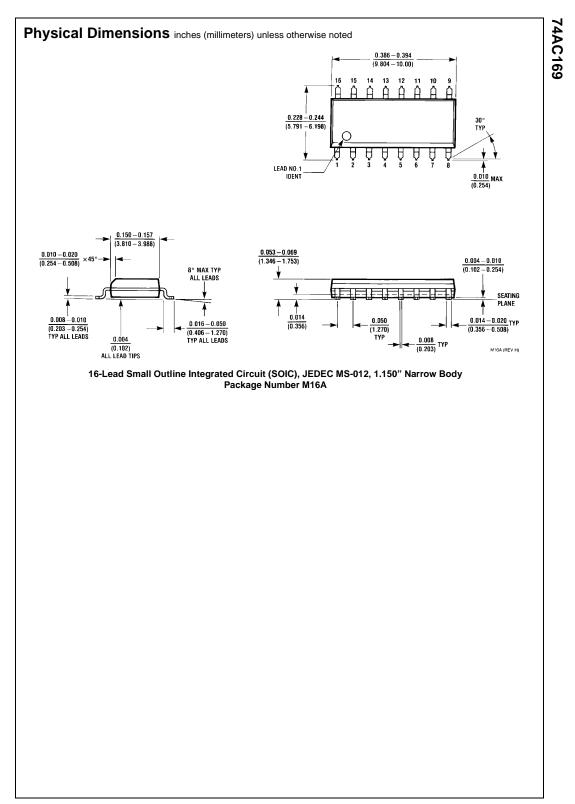
Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

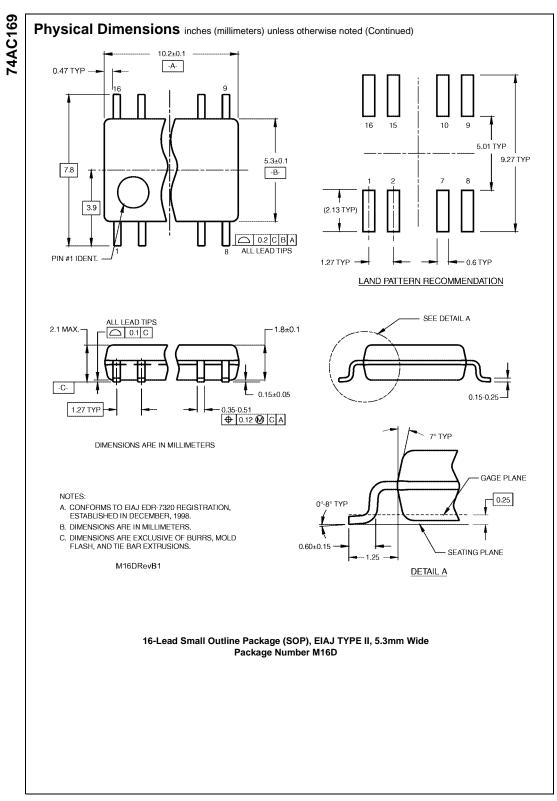
Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

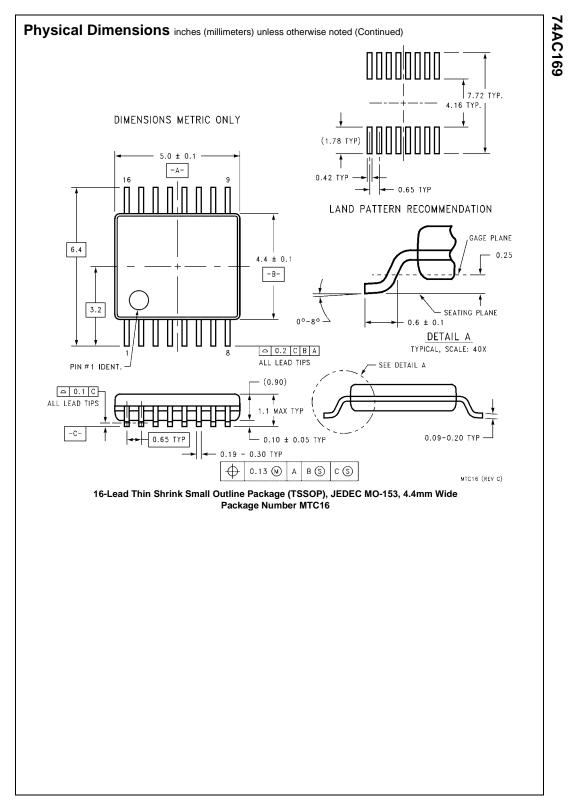
74AC169

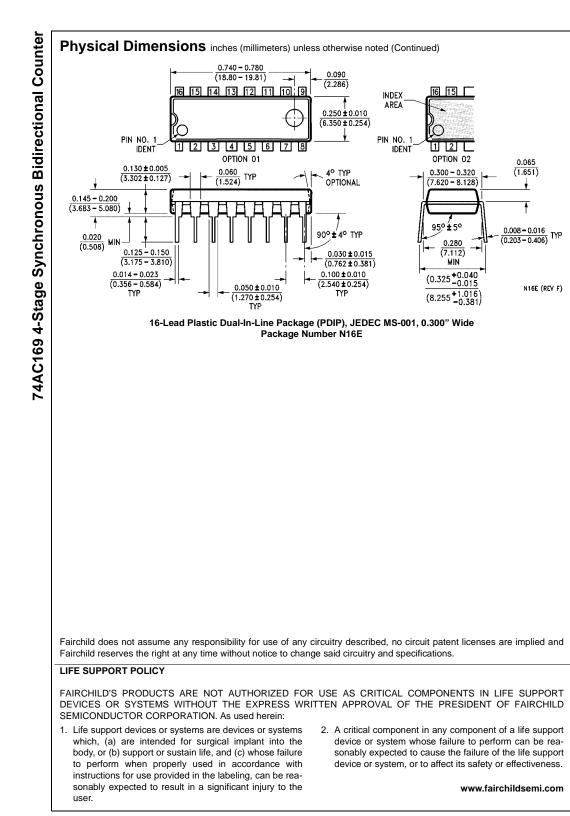
AC Electrical Characteristics

		V _{CC} (V)	$T_A = +25^{\circ}C$, $C_L = 50 \text{ pF}$			$T_{A}=-40^{\circ}C$ to $+85^{\circ}C,C_{L}=50~pF$		
Symbol	Parameter	(Note 5)	Min	Тур	Max	Min	Max	Units
f _{MAX}	Maximum Clock	3.3	75	118		65		MHz
	Frequency	5.0	100	154		90		
t _{PLH}	Propagation Delay	3.3	2.5	9.5	13.0	2.0	14.5	
	CP to Q _n (PE HIGH or LOW)	5.0	1.5	7.0	10.0	1.5	11.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	10.5	14.5	2.0	16.0	ns
	CP to Q _n (PE HIGH or LOW)	5.0	1.5	7.5	11.0	1.5	12.0	ns
t _{PLH}	Propagation Delay	3.3	4.5	13.5	18.0	3.5	22.0	ns
	CP to TC	5.0	3.0	9.5	13.0	2.0	14.0	
t _{PHL}	Propagation Delay	3.3	3.5	13.5	18.0	3.0	20.5	
	CP to TC	5.0	2.5	9.5	13.0	2.0	14.5	ns
t _{PLH}	Propagation Delay	3.3	3.5	11.0	15.0	3.0	16.5	ns
	CET to TC	5.0	3.0	8.0	10.5	2.5	12.0	ns
t _{PHL}	HL Propagation Delay 3.3	3.3	3.0	9.5	12.5	2.5	14.5	
	CET to TC	5.0	2.0	7.0	9.0	1.5	10.0	ns
t _{PLH}	Propagation Delay	3.3	3.5	11.0	15.0	3.0	17.0	<u>† </u>
	U/D to TC	5.0	2.5	8.0	10.5	2.0	12.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	10.0	13.5	2.0	15.5	
	U/D to TC	5.0	1.5	7.0	9.5	1.5	10.5	ns


Note 5: Voltage Range 3.3 is 3.3V \pm 0.3V $\,$ Voltage Range 5.0 is 5.0V \pm 0.5V


AC Operating Requirements


Symbol	Parameter	V _{CC} (V)	$T_A = +25^{\circ}C, C_L = 50 \text{ pF}$		$T_A = -40^\circ C$ to $+85^\circ C,\ C_L = 50\ pF$	Units
Symbol	Farameter	(Note 6)	e 6) Typ		Guaranteed Minimum	
t _S	Setup Time, HIGH or LOW	3.3	3.0	4.5	5.0	ns
	P _n to CP	5.0	1.5	2.5	2.5	113
t _H	Hold Time, HIGH or LOW	3.3	-1.5	0.5	0.5	
	P _n to CP	5.0	-0.5	1.5	1.5	ns
t _S	Setup Time, HIGH or LOW	3.3	7.5	10.5	12.5	
	CEP to CP	5.0	4.5	7.0	8.0	ns
t _H	Hold Time, HIGH or LOW	3.3	-4.5	0	0	
	CEP to CP	5.0	-2.0	0.5	1.0	ns
t _S	Setup Time, HIGH or LOW	3.3	7.0	10.0	12.0	
	CET to CP	5.0	4.0	6.5	8.0	ns
H Ho	Hold Time, HIGH or LOW	3.3	-6.0	0	0	ns
	CET to CP	5.0	-4.0	0.5	1.0	
t _S	Setup Time, HIGH or LOW	3.3	3.5	5.5	6.5	
	PE to CP	5.0	2.0	3.5	4.0	ns
t _H	Hold Time, HIGH or LOW	3.3	-3.5	0	0	
	PE to CP	5.0	-1.5	0.5	0.5	ns
t _S	Setup Time, HIGH or LOW	3.3	7.0	10.0	11.5	
	U/D to CP	5.0	4.5	6.5	7.5	ns
t _H	Hold Time, HIGH or LOW	3.3	-7.0	0	0	
	U/D to CP	5.0	-4.0	0.5	0.5	ns
t _W	CP Pulse Width,	3.3	2.0	3.0	4.0	
	HIGH or LOW	5.0	2.0	3.0	3.0	ns


Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	60.0	pF	$V_{CC} = 5.0V$

