

Functional Description

The AC／ACT161 count in modulo－16 binary sequence． From state 15 （HHHH）they increment to state 0 （LLLL）． The clock inputs of all flip－flops are driven in parallel through a clock buffer．Thus all changes of the Q outputs （except due to Master Reset of the AC／ACT161）occur as a result of，and synchronous with，the LOW－to－HIGH transi－ tion of the CP input signal．The circuits have four funda－ mental modes of operation，in order of precedence： asynchronous reset，parallel load，count－up and hold．Five control inputs－Master Reset，Parallel Enable（ $\overline{\mathrm{PE}}$ ），Count Enable Parallel（CEP）and Count Enable Trickle（CET）－ determine the mode of operation，as shown in the Mode Select Table．A LOW signal on $\overline{\mathrm{MR}}$ overrides all other inputs and asynchronously forces all outputs LOW．A LOW signal on $\overline{\mathrm{PE}}$ overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip－flops on the next rising edge of CP．With $\overline{\mathrm{PE}}$ and $\overline{\mathrm{MR}}$ HIGH，CEP and CET permit counting when both are HIGH．Conversely， a LOW signal on either CEP or CET inhibits counting．
The AC／ACT161 use D－type edge－triggered flip－flops and changing the $\overline{P E}, \mathrm{CEP}$ ，and CET inputs when the CP is in either state does not cause errors，provided that the recom－ mended setup and hold times，with respect to the rising edge of CP，are observed．
The Terminal Count（TC）output is HIGH when CET is HIGH and counter is in state 15．To implement synchro－ nous multistage counters，the TC outputs can be used with the CEP and CET inputs in two different ways．
Figure 1 shows the connections for simple ripple carry，in which the clock period must be longer than the CP to TC delay of the first stage，plus the cumulative $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$ delays of the intermediate stages，plus the $\overline{\mathrm{CET}}$ to CP setup time of the last stage．This total delay plus setup time sets the upper limit on clock frequency．For faster clock rates，the carry lookahead connections shown in Figure 2 are recommended．In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode，or min to max in the Down mode，to start its final cycle．Since this final cycle requires 16 clocks to com－ plete，there is plenty of time for the ripple to progress through the intermediate stages．The critical timing that lim－
its the clock period is the CP to $\overline{\mathrm{TC}}$ delay of the first stage plus the $\overline{\mathrm{CEP}}$ to CP setup time of the last stage．The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip－flops，registers or counters．
Logic Equations：Count Enable $=\mathrm{CEP} \cdot \mathrm{CET} \cdot \overline{\mathrm{PE}}$

$$
\mathrm{TC}=\mathrm{Q}_{0} \cdot \mathrm{Q}_{1} \cdot \mathrm{Q}_{2} \cdot \mathrm{Q}_{3} \cdot \mathrm{CET}
$$

Mode Select Table

$\overline{\text { PE }}$	CET	CEP	Action on the Rising Clock Edge（ - ）
X	X	X	Reset（Clear）
L	X	X	Load $\left(\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}\right)$
H	H	H	Count（Increment）
H	L	X	No Change（Hold）
H	X	L	No Change（Hold）

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L＝LOW Voltage Level
X＝Immaterial

State Diagram

FIGURE 1．Multistage Counter with Ripple Carry

FIGURE 2．Multistage Counter with Lookahead Carry

DC Electrical Characteristics for ACT

Symbol	Parameter	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		(V)	Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { OH }}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 5) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{IOL}_{2}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 5) \end{aligned}$
$\overline{I_{\text {I }}}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
${ }_{\text {ICCT }}$	Maximum $\mathrm{I}_{\mathrm{CC}} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
TOLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD	Output Current (Note 6)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{I}_{\text {CC }}$	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$

Note 5: All outputs loaded; thresholds on input associated with output under test.
Note 6: Maximum test duration 2.0 ms , one output loaded at a time.

AC Electrical Characteristics for AC

Symbol	Parameter	V_{cc} (V) (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Count Frequency	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 70 \\ 110 \end{gathered}$	$\begin{aligned} & 111 \\ & 167 \end{aligned}$		$\begin{aligned} & \hline 60 \\ & 95 \end{aligned}$		MHz
$\overline{t_{\text {PLH }}}$	Propagation Delay CP to Q_{n} ($\overline{\mathrm{PE}}$ Input HIGH or LOW)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 12 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay CP to Q_{n} ($\overline{\mathrm{PE}}$ Input HIGH or LOW)	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 13 \\ & 10 \end{aligned}$	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay CP to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 15 \\ 10.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & 11.5 \end{aligned}$	ns
${ }_{\text {t }}$	Propagation Delay CP to TC	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 15.5 \\ & 11.5 \end{aligned}$	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay CET to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11 \\ & 7.5 \end{aligned}$	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay CET to TC	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 6.5 \\ 5 \end{gathered}$	$\begin{gathered} \hline 11 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 12.5 \\ 9.5 \end{gathered}$	ns
$\overline{t_{\text {PHL }}}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{MR}} \text { to } Q_{n} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 13.5 \\ 10 \end{gathered}$	ns
${ }_{\text {tPHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{MR}} \text { to } \mathrm{TC} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 17.5 \\ & 13.5 \end{aligned}$	ns
Note 7: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$								

AC Operating Requirements for ACT						
Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}$$\mathrm{(V)}$(Note 10)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ		nteed Minimum	
t_{s}	Setup Time, HIGH or LOW P_{n} to CP	5.0	4.0	9.5	11.5	ns
t_{H}	Hold Time, HIGH or LOW P_{n} to CP	5.0	-5.0	0	0	ns
t_{s}	$\begin{aligned} & \text { Setup Time, HIGH or LOW } \\ & \overline{\mathrm{PE}} \text { to CP } \end{aligned}$	5.0	4.0	8.5	9.5	ns
t_{H}	$\begin{aligned} & \text { Hold Time, HIGH or LOW } \\ & \overrightarrow{\text { PE to CP }} \end{aligned}$	5.0	-5.5	-0.5	-0.5	ns
t_{s}	Setup Time, HIGH or LOW CEP or CET to CP	5.0	2.5	5.5	6.5	ns
t_{H}	Hold Time, HIGH or LOW CEP or CET to CP	5.0	-3.0	0	0	ns
t_{W}	Clock Pulse Width, (Load) HIGH or LOW	5.0	2.0	3.0	3.5	ns
t_{W}	Clock Pulse Width, (Count) HIGH or LOW	5.0	2.0	3.0	3.5	ns
$t_{\text {W }}$	$\overline{\text { MR Pulse Width, LOW }}$	5.0	3.0	3.0	7.5	ns
$\mathrm{t}_{\text {REC }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	5.0	0	0	0.5	ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	45.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIA.J EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M16DRevB1

16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
