

Absolute Maximum Ratings $($ Note 1$)$	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5 V to 5.5 V
in the HIGH State	-0.5 V to V CC

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
$-500 \mathrm{~mA}$
Over Voltage Latchup (I/O)

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |
| Minimum Input Edge Rate $(\Delta \mathrm{V} / \Delta \mathrm{t})$ | |
| \quad Data Input | $50 \mathrm{mV} / \mathrm{ns}$ |
| Enable Input | $20 \mathrm{mV} / \mathrm{ns}$ |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied
Note 2: Either voltage limit or current limit is sufficient to protect inputs

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{H}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \text { Min } \\ & \text { Min } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage			0.55	V	Min	$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$
$\overline{I_{H}}$	Input HIGH Current			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\text { Note } 4) \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ILL	Input LOW Current			$\begin{aligned} & \hline-1 \\ & -1 \end{aligned}$	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { Note } 4) \\ & \mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\mathrm{l}_{\text {OzH }}$	Output Leakage Current			10	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V} ; \overline{\mathrm{OE}}_{\mathrm{n}}=2.0 \mathrm{~V}$
lozl	Output Leakage Current			-10	$\mu \mathrm{A}$	0-5.5V	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V} ; \overline{\mathrm{OE}}_{\mathrm{n}}=2.0 \mathrm{~V}$
los	Output Short-Circuit Current	-100		-275	mA	Max	$\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Izz	Bus Drainage Test			100	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$; All Others GND
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current			50	$\mu \mathrm{A}$	Max	All Outputs HIGH
$\mathrm{I}_{\text {CLL }}$	Power Supply Current			30	mA	Max	All Outputs LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current			50	$\mu \mathrm{A}$	Max	$\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{V}_{\mathrm{CC}} ;$ All Others at V_{CC} or Ground
$I_{\text {CCT }}$	Additional I_{CC} /Input Outputs Enabled Outputs 3-STATE Outputs 3-STATE			$\begin{gathered} \hline 2.5 \\ 2.5 \\ 50 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	Max	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ Enable Input $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ Data Input $V_{I}=V_{C C}-2.1 \mathrm{~V}$; All Others at V_{CC} or Ground
${ }^{\text {CCD }}$	Dynamic $\mathrm{I}_{\mathrm{CC}} \quad$ No Load (Note 4)			0.1	$\begin{aligned} & \mathrm{mA} / \\ & \mathrm{MHz} \end{aligned}$	Max	Outputs Open, $\overline{\mathrm{OE}}_{\mathrm{n}}=\mathrm{GND}$, One Bit Toggling (Note 3), 50\% Duty Cycle
Note 3: For 8 bits toggling, $\mathrm{I}_{\mathrm{CCD}}<0.8 \mathrm{~mA} / \mathrm{MHz}$. Note 4: Guaranteed, but not tested.							

DC Electrical Characteristics

(SoIC Package)

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
$\overline{\mathrm{V} \text { OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$		0.7	1.0	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-1.3	-0.8		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)
$\mathrm{V}_{\text {OHV }}$	Minimum HIGH Level Dynamic Output Voltage	2.7	3.1		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	2.0	1.4		V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage		1.1	0.6	V	5.0	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)

Note 5: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output at LOW. Guaranteed, but not tested
Note 6: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . One output HIGH. Guaranteed, but not tested.
Note 7: Max number of data inputs (n) switching. $n-1$ inputs switching $0 V$ to 3 V . Input-under-test switching: 3 V to threshold ($\mathrm{V}_{\text {ILD }}$), 0 V to threshold ($\mathrm{V}_{\mathrm{IHD}}$). Guaranteed, but not tested.

AC Electrical Characteristics

(SOIC and SSOP Package)

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	1.0	2.0	3.6	1.0	3.6	ns
$\mathrm{t}_{\text {PHL }}$	Data to Outputs	1.0	2.4	3.6	1.0	3.6	
$\mathrm{t}_{\text {PZH }}$	Output Enable Time	1.5	3.1	6.0	1.5	6.0	ns
$\mathrm{t}_{\text {PZL }}$		1.5	3.7	6.0	1.5		
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	1.7	3.5	6.1	1.7	6.1	ns
$t_{\text {PLZ }}$		1.7	3.1	5.6	1.7	5.6	

Extended AC Electrical Characteristics

(SOIC Package)

Symbol	Parameter	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 8)			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 1 Output Switching (Note 9)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 10)		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {TOGGLE }}$	Max Toggle Frequency		100						MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Outputs	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \hline 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \hline 6.1 \\ & 5.6 \end{aligned}$					ns

Note 8: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase
(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase
(i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 11: The 3-STATE delays are dominated by the RC network ($500 \Omega, 250 \mathrm{pF}$) on the output and have been excluded from the datasheet.

Skew (SOIC Package)				
Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 12)	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}-5.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \end{gathered}$ 8 Outputs Switching (Note 13)	Units
toshl (Note 14)	Pin to Pin Skew, HL Transitions	1.3	2.3	ns
tosLh (Note 14)	Pin to Pin Skew, LH Transitions	1.0	1.8	ns
$t_{P S}$ (Note 15)	Duty Cycle, LH/HL Skew	2.0	3.5	ns
tost (Note 14)	Pin to Pin Skew, LH/HL Transitions	2.0	3.5	ns
t_{PV} (Note 16)	Device to Device Skew, LH/HL Transitions	2.0	3.5	ns

Note 12: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

Note 13: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.
Note 14: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$), LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (tost). The specification is guaranteed but not tested.
Note 15: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across al the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 16: Propagation delay variation for a given set of conditions (i.e., temperature and $V_{C C}$) from device to device. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	5.0	$\mathrm{~V}_{\mathrm{CC}}=0.0 \mathrm{~V}$	
$\mathrm{C}_{\mathrm{OUT}}$ (Note 17)	Output Capacitance	9.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Note 17: $\mathrm{C}_{\text {OUT }}$ is measured at frequency of $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

AC Loading

*Includes jig and probe capacitance

FIGURE 2. Test Input Signal Levels

Amplitude	Rep. Rate	$\mathbf{t}_{\mathbf{W}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
3.0 V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

AC Waveforms

FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

FIGURE 5. Propagation Delay, Pulse Width Waveforms
 Enable and Disable Time

FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

20－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS
NOTES
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONS AND TOLERANCES PER ANSI Y $14.5 \mathrm{M}, 1982$
MTC20RevD1

DETAIL A
20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
