September 1992 Revised March 2005

FAIRCHILD

SEMICONDUCTOR®

74ABT2541 Octal Buffer/Line Driver with 25Ω Series Resistors in the Outputs

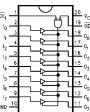
General Description

The ABT2541 is an octal buffer and line driver designed to drive the capacitive inputs of MOS memory drivers, address drivers, clock drivers, and bus-oriented transmitters/receivers. Functionally identical to the ABT541.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Features

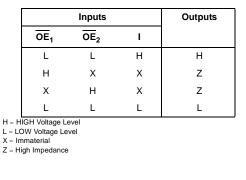
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and
- 250 pF loads
- Guaranteed simultaneously switching noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus contention

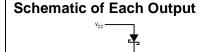

Ordering Code:

Order Number	Package Number	Package Description
74ABT2541CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ABT2541CSJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT2541CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ABT2541CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

. . .


Connection Diagram



Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	Output Enable Input (Active LOW)
I ₀ —I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Table

© 2005 Fairchild Semiconductor Corporation DS011502

Output

Absolute Maximum Ratings(Note 1)

Storage Temperature	−65°C to +150°C
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	–55°C to +150°C
V_{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
DC Latchup Source Current	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	-40°C to +85°C
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parame	eter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vol	tage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
			2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.8	V	Min	I _{OL} = 15 mA
I _{IH}	Input HIGH Current				1	μA	Max	V _{IN} = 2.7V (Note 3)
					1			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current				7	μA	Max	V _{IN} = 7.0V
	Breakdown Test							
IIL	Input LOW Current				-1	μA	Max	V _{IN} = 0.5V (Note 3)
					-1			$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Curre	nt			10	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Curre	nt			-10	μA	0 – 5.5V	V _{OUT} = 0.5V; OE _n = 2.0V
I _{OS}	Output Short-Circuit C	urrent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output High Leakage	Current			50	μA	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μA	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current				50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				50	μA	Max	$\overline{OE}_n = V_{CC};$
								All Others at V _{CC} or GND
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_{I} = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
		Outputs 3-STATE			50	μA		Data Input V _I = V _{CC} - 2.1V
								All Others at V _{CC} or GND
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Max	Outputs OPEN
-	(Note 4)				0.1	MHz		$\overline{OE}_n = GND$ (Note 3)
								One Bit Toggling, 50% Duty Cycle

Note 3: Guaranteed, but not tested.

Note 4: For 8 bit toggling, $I_{CCD} < 0.8 \mbox{ mA/MHz}.$

DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $C_L = 50 \text{ pF}, R_L = 500 \Omega$
/ _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.6	0.8	V	5.0	$T_A = 25^{\circ}C$ (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.5	-0.4		V	5.0	T _A = 25°C (Note 5)
V _{ОНV}	Minimum HIGH Level Dynamic Output Voltage	2.7	3.1		V	5.0	T _A = 25°C (Note 6)
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.0	1.4		V	5.0	$T_A = 25^{\circ}C$ (Note 7)
/ _{ILD}	Maximum LOW Level Dynamic Input Voltage		1.2	0.8	V	5.0	T _A = 25°C (Note 7)

Note 5: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

Note 6: Max number of data inputs (n) switching. n-1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 7: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25 \degree C$ $V_{CC} = +5V$ $C_L = 50 \ \text{pF}$			T _A = -40°0 V _{CC} = 4 C _L =	Units	
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay Data to Outputs	1.0	2.3	3.6	1.0	3.6	
t _{PHL}		1.0	3.3	4.1	1.0	4.1	ns
t _{PZH}	Output Enable Time	1.5	3.7	6.0	1.5	6.0	20
t _{PZL}		1.5	4.3	6.5	1.5	6.5	ns
t _{PHZ}	Output Disable Time	1.0	3.5	6.0	1.0	6.0	ns
t _{PLZ}		1.0	3.7	5.6	1.0	5.6	115

Extended AC Electrical Characteristics

Symbol	Parameter	vo	40°C to +85° _{CC} = 4.5V–5. C _L = 50 pF utputs Switc (Note 8)	5V	V _{CC} = 4 C _L = 2 1 Output	C to +85°C .5V–5.5V 250 pF Switching te 9)	V _{CC} = 4 C _L = 2 8 Outputs	C to +85°C .5V–5.5V 250 pF s Switching e 10)	Units	
		Min	Тур	Мах	Min	Max	Min	Max		
f _{TOGGLE}	Maximum Toggle Frequency		100						MHz	
t _{PLH}	Propagation Delay	1.5		5.0	1.5	6.0	2.5	8.5	ns	
t _{PHL}	Data to Outputs	1.5		5.5	1.5	10.0	2.5	11.0	115	
t _{PZH}	Output Enable Time	1.5		6.5	2.5	7.5	2.5	9.5		
t _{PZL}		1.5		7.0	2.5	11.0	2.5	12.5	ns	
t _{PHZ}	Output Disable Time	1.0		6.0	(Note 11)		(Note 11)		20	
t _{PLZ}		1.0		6.0					ns	

Note 8: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 11: The 3-STATE delays are dominated by the RC network (5000, 250 pF) on the output and have been excluded from the datasheet.

74ABT2541

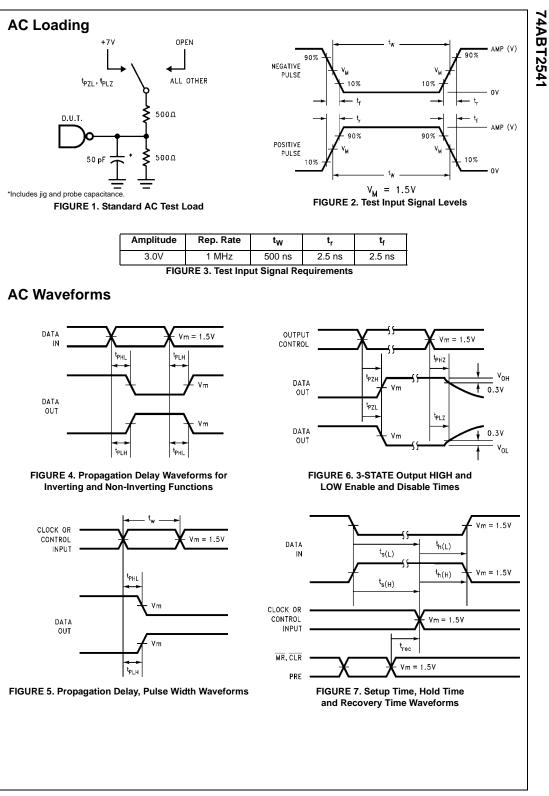
74ABT2541

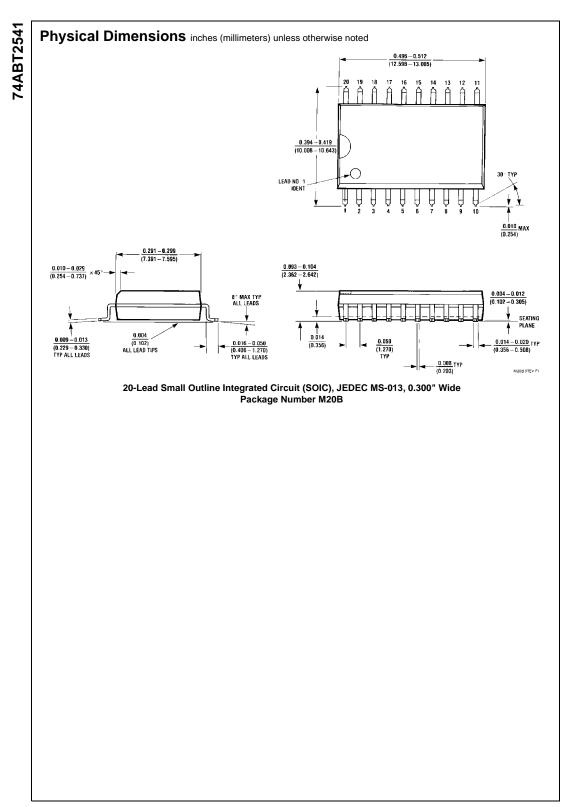
Skew

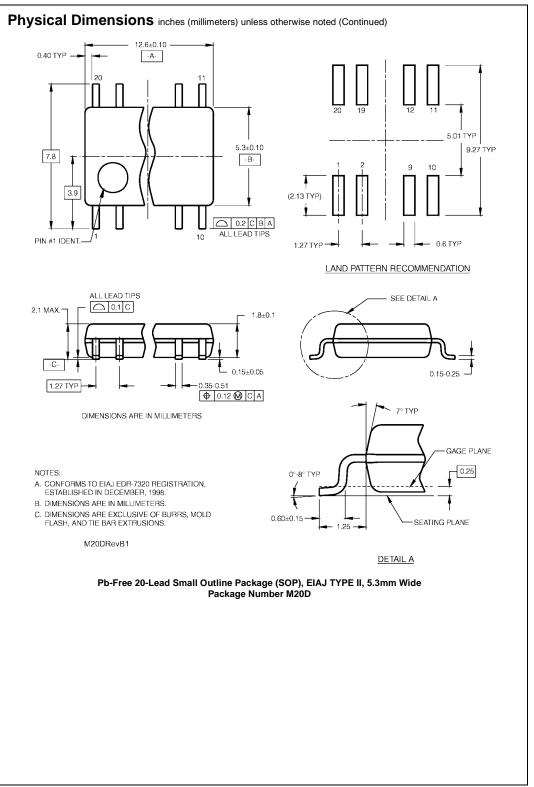
(SOIC Package) Symbol	Parameter	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_{L} = 50 \text{ pF}$ 8 Outputs Switching (Note 12) Max	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_{L} = 250 \text{ pF}$ 8 Outputs Switching (Note 13) Max	Units
t _{OSHL} (Note 14)	Pin to Pin Skew HL Transitions	1.3	2.3	ns
t _{OSLH} (Note 14)	Pin to Pin Skew LH Transitions	1.0	1.8	ns
t _{PS} (Note 15)	Duty Cycle LH-HL Skew	2.0	5.0	ns
t _{OST} (Note 14)	Pin to Pin Skew LH/HL Transitions	2.0	5.0	ns
t _{PV} (Note 16)	Device to Device Skew LH/HL Transitions	2.0	5.0	ns

Note 12: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

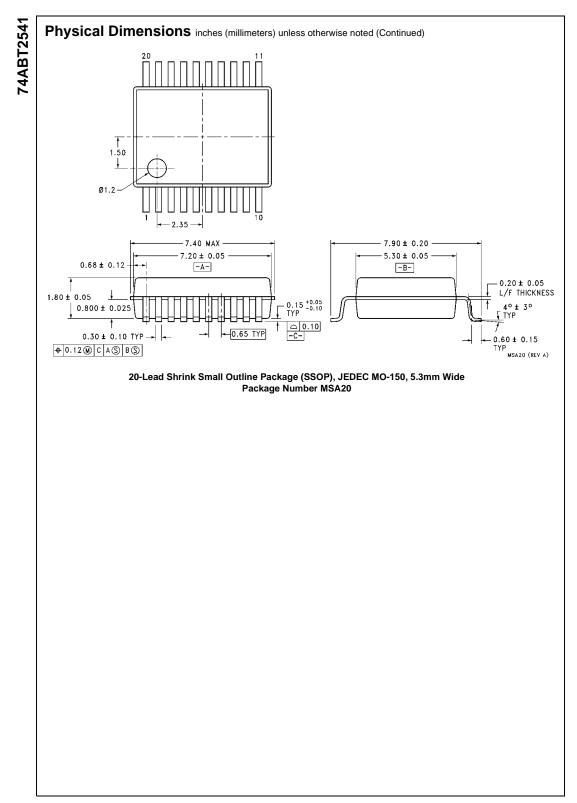
Note 13: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

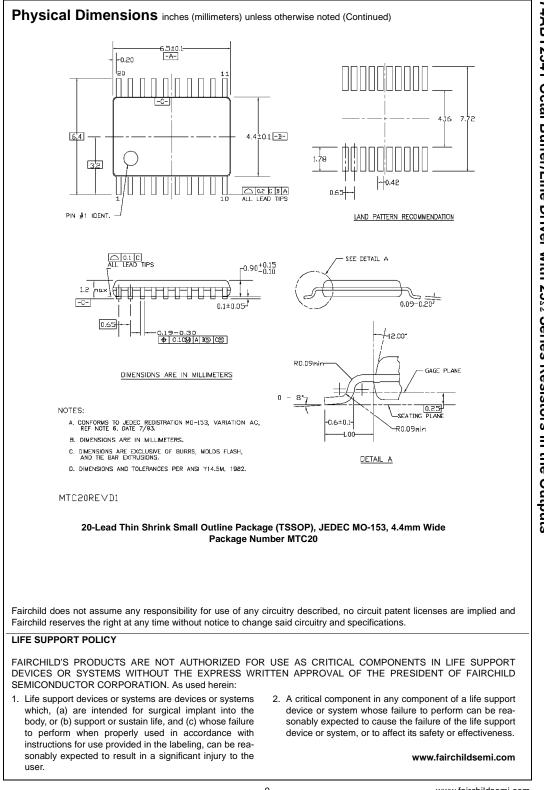

Note 14: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). The specification is guaranteed but not tested.


Note 15: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested. Note 16: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.


Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 17)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$


Note 17: C_{OUT} is measured at frequency f = 1 MHz; per MIL-STD-883, Method 3012.



74ABT2541

74ABT2541 Octal Buffer/Line Driver with 25 Ω Series Resistors in the Outputs