00EL16 5V ECL Differential Receiver

FAIRCHILD

SEMICONDUCTOR®

100EL16 5V ECL Differential Receiver

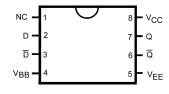
General Description

The 100EL16 is a 5V differential receiver that contains an internally supply voltage source, V_{BB} . When used in a single ended input condition the unused input must be tied to V_{BB} . When operating in this mode use a 0.01 μF capacitor to decouple V_{BB} and V_{CC} and also limit the current sinking or sourcing capability to 0.5mA. When V_{BB} is not used it should be left open.

With inputs open or both inputs at V_{EE} the differential Q output defaults LOW.

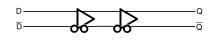
The 100 series is temperature compensated.

Features


- Typical propagation delay of 250 ps
- Typical I_{EE} of 18 mA
- Internal pull-down resistors on inputs
- Fairchild MSOP-8 package is a drop-in replacement to ON TSSOP-8
- Meets or exceeds JEDEC specification EIA/JESD78 IC latch-up test
- Moisture Sensitivity Level 1
- ESD Performance: Human Body Model > 2000V Machine Model > 200V

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description
100EL16M	M08A	KEL16	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
100EL16M8 (Preliminary)	MA08D	KL16	8-Lead Molded Small Outline Package (MSOP), JEDEC MO-187, 3.0mm Wide


Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Top View

Logic Diagram

Pin Descriptions

Pin Name	Description					
Q, <u>Q</u>	ECL Data Outputs					
D, D	ECL Data Inputs					
V _{BB}	Reference Voltage					
V _{CC}	Positive Supply					
V _{EE}	Negative Supply					
NC	No Connect					

www.fairchildsemi.com

00EL16

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

PECL Supply Voltage (V _{CC})		Conditions						
$V_{EE} = 0V$	0.0V to +8.0V	PECL Power Supply	ower Supply					
NECL Supply Voltage (V _{EE})		$(V_{EE} = 0V)$	$V_{CC} = 4.2V$ to 5.5V					
$V_{CC} = 0V$	0.0V to -8.0V	NECL Power Supply						
PECL DC Input Voltage (VI)		$(V_{CC} = 0V)$	$V_{\text{EE}} = -4.2 \text{V}$ to -5.5V					
$V_{EE} = 0V$	0.0V to +6.0V	Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$					
NECL DC Input Voltage (VI)								
$V_{CC} = 0V$	0.0V to -6.0V							
DC Output Current (I _{OUT})								
Continuous	50 mA	Note 1: The "Absolute Maximum Ratings" are t						
Surge	100 mA	the safety of the device cannot be guaranteed. operated at these limits. The parametric value						
V _{BB} Sink/Source Current (I _{BB})	±0.5 mA	Characteristics tables are not guaranteed at the	absolute maximum rating.					
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	The "Recommended Operating Conditions" tabl for actual device operation.	e will define the conditions					

100EL PECL DC Electrical Characteristics $V_{CC} = 5.0V$; $V_{EE} = 0.0V$ (Note 2)

Symbol	Parameter		−40°C		25°C			85°C			Units
	Faranieter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		18	22		18	22		21	26	mA
V _{OH}	Output HIGH Voltage (Note 3)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 3)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
VIH	Input HIGH Voltage (Single Ended)	3835		4120	3835		4120	3835		4120	mV
VIL	Input LOW Voltage (Single Ended)	3190		3525	3190		3525	3190		3525	mV
V _{BB}	Output Voltage Reference	3.62		3.74	3.62		3.74	3.62		3.74	V
VIHCMR	Input HIGH Voltage Common Mode	2.5		4.6	2.5		4.6	2.5		4.6	V
	Range (Differential) (Note 4)	2.5		4.0	2.5		4.0	2.5		4.0	v
I _{IH}	Input HIGH Current (Note 5)			150			150			150	μA
I _{IL}	Input LOW Current (Note 5)	0.5			0.5			0.5			μA

Note 2: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary +0.8V/-0.5V.

Note 3: Outputs are terminated through a 50 Ω Resistor to V_{CC} – 2.0V.

Note 4: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1-to-1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 5: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

100EL NECL DC Electrical Characteristics $V_{CC} = 0.0V$; $V_{EE} = -5.0V$ (Note 6)

Symbol	Parameter	-40°C				25°C		85°C			Units
	Falameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
I _{EE}	Power Supply Current		18	22		18	22		21	26	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 7)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 8)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
I _{IH}	Input HIGH Current (Note 9)			150			150			150	μA
IIL	Input LOW Current (Note 9)	0.5			0.5			0.5			μA

Note 6: Input and output parameters vary 1 to 1 with V_{CC}. V_{EE} can vary +0.8V/-0.5V.

Note 7: Outputs are terminated through a 50 Ω Resistor to V $_{CC}$ – 2.0 V.

Note 8: V_{IHCMR} minimum varies 1 to 1 with V_{EE}. V_{IHCMR} maximum varies 1 to 1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PPMIN} and 1V.

Note 9: Absolute value of the input HIGH and LOW current should not exceed the absolute value of the stated Min or Max specification.

www.fairchildsemi.com

Note: Devices are designed to meet the DC specifications after thermal equilibrium has been established. Circuit is tested with air flow greater than 500LFPM maintained.

100EL AC Electrical Characteristics $V_{CC} = 5V$; $V_{EE} = 0.0V$ or $V_{CC} = 0.0V$; $V_{EE} = -5V$ (Note 10)(Note 11)

Symbol	Parameter	-40°C			25°C			85°C			Units	Figure
	Farameter	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units	Number
f _{MAX}	Maximum Toggle Frequency		TBD			TBD			TBD		GHz	
t _{PLH} , t _{PHL}	Propagation Delay to Output (Diff)	125	250	375	175	250	325	205	280	355	-	Figures
	(SE)	75	250	425	125	250	375	155	280	405	ps	1, 3
t _{SKEW}	Duty Cycle Skew (Note 12)		5	20		5	20		5	20	ps	
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps	
V _{PP}	Input Swing	150		1000	150		1000	150		1000	mV	Figure 1
t _r , t _f	Output Rise Times Q (20% to 80%)	100	190	350	100	190	350	100	190	350	ps	Figure 2

Note 10: V_{EE} can vary +0.8V / -0.5V.

Note 11: Measured using a 750 mV input swing centered at V_{CC} – 1.32V; 50% duty cycle clock source; $t_r = t_f = 250$ ps (20% - 80%) at $f_{IN} = 1$ MHz. All loading with 50 Ω to V_{CC} – 2.0V.

Note 12: Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device under identical conditions.

Switching Waveforms

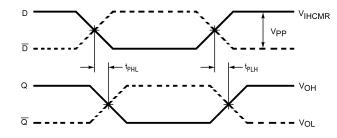
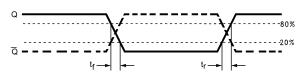
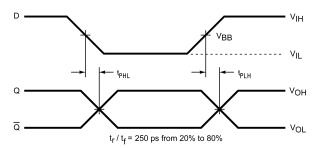
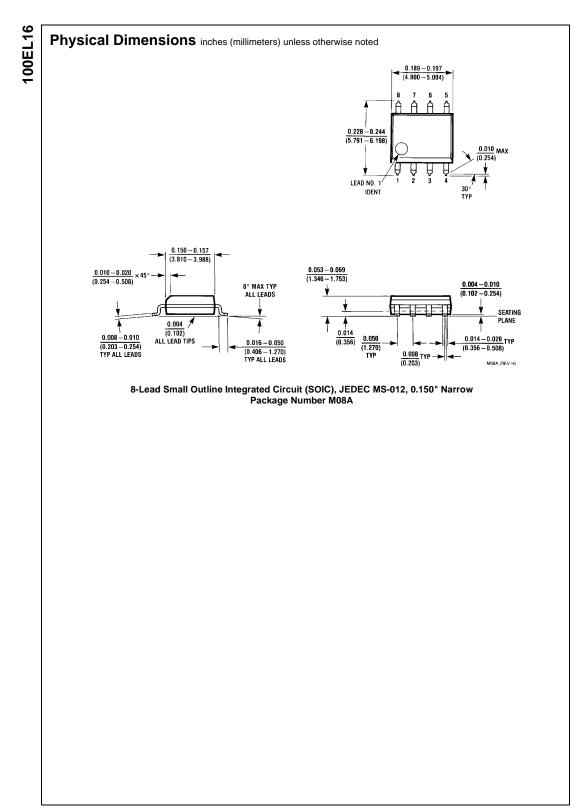
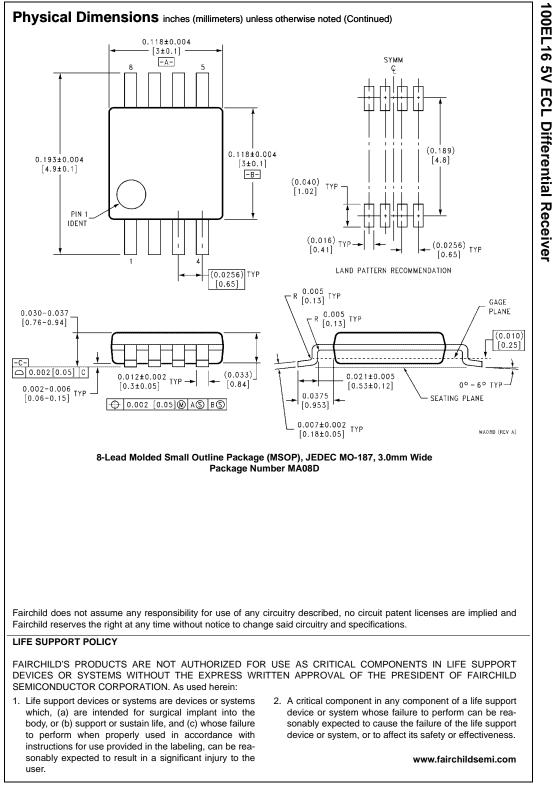


FIGURE 1. Differential to Differential Propagation Delay


FIGURE 2. Differential Output Edge Rates



www.fairchildsemi.com

100EL16

www.fairchildsemi.com