

3 A LOW Vf Schottky Barrier Rectifier

DESCRIPTION

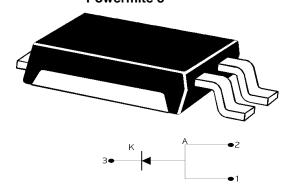
This UPS340e3 in the Powermite3® package is a high efficiency Schottky rectifier that is also RoHS compliant offering high current/power capabilities previously found only in much larger packages. They are ideal for SMD applications that operate at high frequencies. In addition to its size advantages, the Powermite3® package includes a full metallic bottom that eliminates the possibility of solder flux entrapment during assembly and a unique locking tab act as an efficient heat path to the heat-sink mounting. Its innovative design makes this device ideal for use with automatic insertion equipment.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

KEY FEATURES

- Very low thermal resistance package
- RoHS Compliant with e3 suffix part number
- Guard-ring-die construction for transient protection
- Efficient heat path with Integral locking bottom metal tab
- Low forward voltage
- Full metallic bottom eliminates flux entrapment
- Compatible with automatic insertion
- Low profile-maximum height of 1mm

ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$egin{array}{c} egin{array}{c} egin{array}$	40	V
RMS Reverse Voltage	V _{R (RMS)}	28	V
Average Rectified Output Current	Io	3	Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine wave Superimposed on Rated Load@ T _c =90 °C	I _{FSM}	50	А
Storage Temperature	T_{STG}	-55 to +150	°C
Junction Temperature	T_J	-55 to +125	°C

THERMAL CHARACTERISTICS

Thermal Resistance			
Junction-to-case (bottom)	$R_{\theta JC}$	3.2	°C/ Watt
Junction to ambient (1)	Rain	65	°C/ Watt

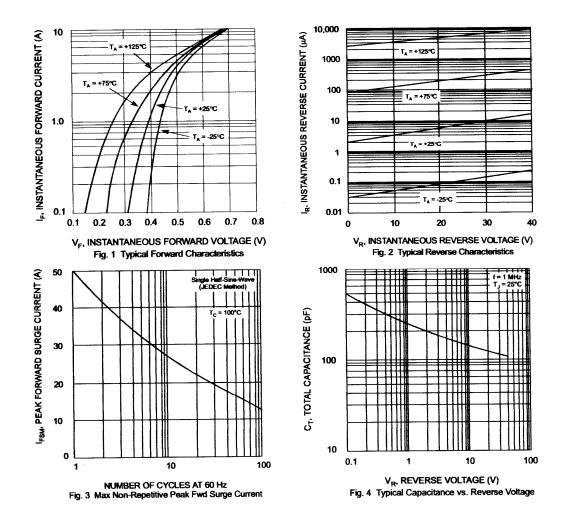
(1) When mounted on FR-4 PC board using 2 oz copper with recommended minimum foot print

Powermite 3™

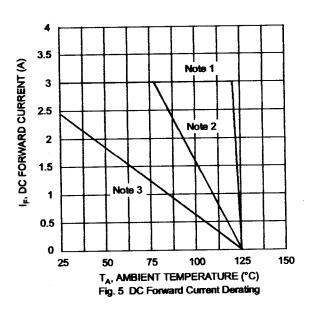
APPLICATIONS/BENEFITS

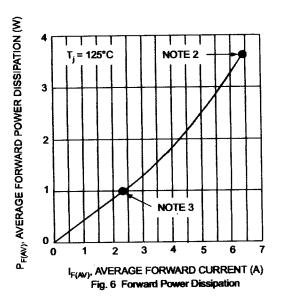
- Switching and Regulating Power Supplies.
- Silicon Schottky (hot carrier) rectifier for minimal reverse voltage recovery
- Elimination of reverse-recovery oscillations to reduce need for EMI filtering
- Charge Pump Circuits
- Reduces reverse recovery loss with low I_{RM}
- Small foot print
 190 X 270 mils (1:1 Actual size)
 See mounting pad details on pg 3

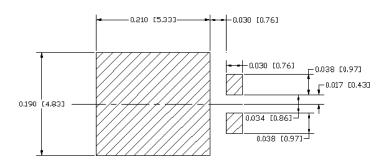
MECHANICAL & PACKAGING


- CASE: Void-free transfer molded thermosetting epoxy compound meeting UL94V-0
- FINISH: Annealed matte-Tin plating over copper and readily solderable per MIL-STD-750 method 2026 (consult factory for Tin-Lead plating)
- POLARITY: See figure (left)
- MARKING: S340•
- WEIGHT: 0.072 gram (approx.)
- Package dimension on last page
- Tape & Reel option: 16 mm tape per Standard EIA-481-B, 5000 on 13" reel

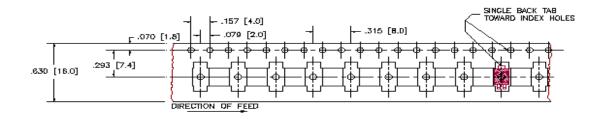
3 A LOW Vf Schottky Barrier Rectifier

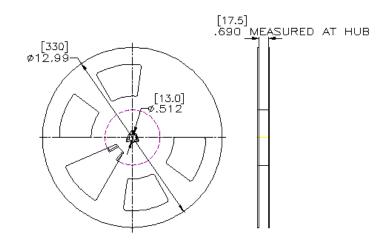

ELECTRIC	AL PARAM	ETERS @ 25°C (unless otherwise s	specified			
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Forward Voltage (Note 1)		I _F = 3 A , T _i =25 °C		0.46	0.50	
• , ,	V _F	$I_F = 3 \text{ A}$, $T_j = 125 ^{\circ}\text{C}$ $I_F = 6 \text{ A}$, $T_j = 25 ^{\circ}\text{C}$		0.40	0.44	V
		$I_F = 6 \text{ A}, I_j = 25 ^{\circ}\text{C}$ $I_F = 6 \text{ A}, T_j = 125 ^{\circ}\text{C}$		0.57 0.54	0.61 0.58	
Reverse Break Down Voltage (Note 1)	V_{BR}	I _R = 0.5 mA	40			V
Reverse Current (Note1)	I _R	V _R = 40V, T _j = 25 °C V _R = 40V, T _j =100 °C		15 10	500 20	uA mA
Capacitance	Ст	$V_R = 4 \text{ V}; f = 1 \text{ MH}_Z$		180		pF


Note: 1 Short duration test pulse used to minimize self – heating effect.


3 A LOW Vf Schottky Barrier Rectifier

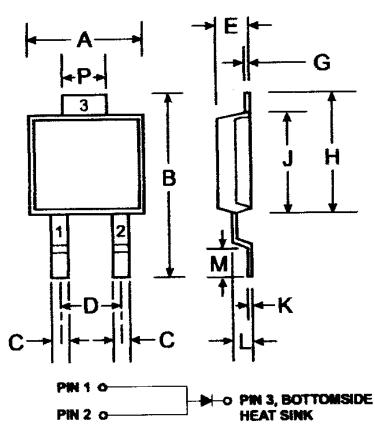
- $\begin{array}{lll} \mbox{Notes:} & 1. \ T_A = T_{SOLDERING\ POINT,} \ R_{\Theta JS} = 3.2^{o}\ C/W & R_{\Theta SA} = 0^{o}\ C/W. \\ & 2. \ \mbox{Device mounted on GETEK substrate, 2" x 2", 2 oz. copper , double-sided , cathode } \end{array}$ pad dimensions 0.75" x 1.0", anode pad dimensions 0.25" x 1.0". R_{OJA} in range of 20-40° C/W.
 - 3. Device mounted on FRA-4 substrate, 2" x 2", 2 oz. copper, single-sided, pad layout $R_{\Theta JA}$ in range of 65° C/W. See mounting pad below.


MOUNTING PAD DIMENSIONS (inches)



3 A LOW Vf Schottky Barrier Rectifier

TAPE & REEL


13 INCH REEL

3 A LOW Vf Schottky Barrier Rectifier

PACKAGE DIMENSIONS

POV	VERMITE	® 3
Dim	Min	Max
A	4.03	4.09
В	6.40	6.61
С	.889	NOM
D	1.83	NOM
E	1.10	1.14
G	.178 NOM	
Н	5.01	5.17
J	4.37	4.43
K	.178 NOM	
L	.71	.77
M	.36	.46
P	1.73	1.83
Ali Din	nensions	in mm

Note: Pins 1 & 2 must be electrically connected at the printed circuit board.

3 A LOW Vf Schottky Barrier Rectifier

NOTES:
