

600V, 12A, 0.62Ω MAX,<180nS

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
	Continuous Drain Current @ T _C = 25°C	12	
D 'D	Continuous Drain Current @ T _C = 100°C	7	А
I _{DM}	Pulsed Drain Current ^①	41	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	305	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	6	Α

Thermal and Mechanical Characteristics

Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			225	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.56	°C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.11			
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
T _L	Soldering Temperature for 10 Seconds (1.6mm from case)			300		
W _T	Package Weight		0.07		OZ	
			1.2		g	
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw			10	in·lbf	
				1.1	N·m	

Static Characteristics

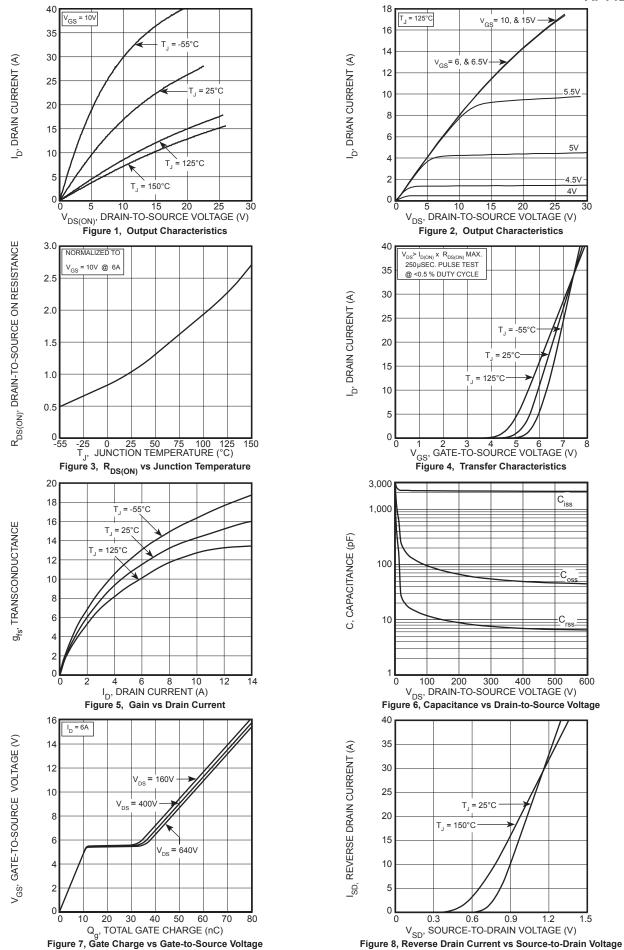
T_J = 25°C unless otherwise specified

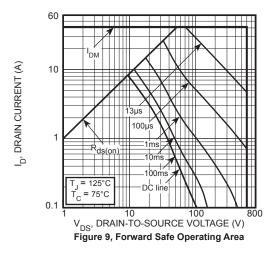
APT1	2F	60	K
------	----	----	---

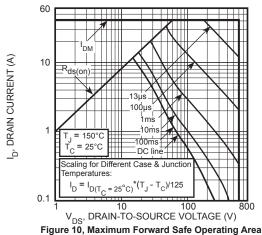
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		600			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, $I_D = 250\mu A$			0.57		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	$V_{GS} = 10V, I_D = 6A$			0.51	0.62	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 0.5 \text{mA}$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
	Zero Gate Voltage Drain Current	V _{DS} = 600V	T _J = 25°C			250	μA
DSS	Zero Gate voltage Drain Guirent	V _{GS} = 0V	T _J = 125°C			1000] [[[
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V				±100	nA

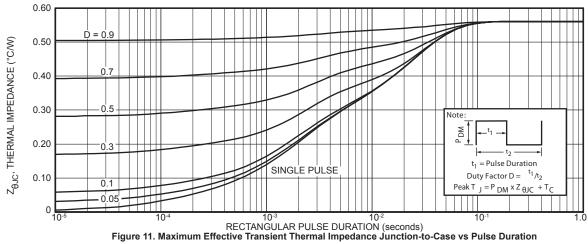
Dynamic Characteristics

T_J = 25°C unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
g _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 6A		11		S
C _{iss}	Input Capacitance)/ 0)/)/ 05\/		2200		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		22		
C _{oss}	Output Capacitance	1 11112		200		pF
$C_{o(cr)} \textcircled{4}$	Effective Output Capacitance, Charge Related	V = 0V V = 0V+5 400V		105		
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 400V		55		
Q _g	Total Gate Charge	V 04.40V 1 4A		55		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 4A,$		12		nC
Q_{gd}	Gate-Drain Charge	V _{DS} = 300V		23		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		12		
t _r	Current Rise Time	V _{DD} = 400V, I _D = 6A		14		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 10\Omega^{\textcircled{6}}, V_{GG} = 15V$		37		115
t _f	Current Fall Time			11		


Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the			12	A
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)			41	
V _{SD}	Diode Forward Voltage	$I_{SD} = 6A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.0	V
t _{rr}	Reverse Recovery Time	$T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$			180 330	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 6A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$ $T_{DD} = 100V$ $T_{J} = 125^{\circ}C$		0.52 1.21		μC
I _{rrm}	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		5.6 7.5		А
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 6A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 400V$, $T_{J} = 125$ °C			20	V/ns


- ① Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at T_J = 25°C, L = 16.94mH, R_G = 25 Ω , I_{AS} = 6A.
- \bigcirc Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- 4 $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$.
- (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with V_{DS} = 67% of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -2.12E-8/ V_{DS} ^2 + 8.92E-9/ V_{DS} + 3.33E-11.
- (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

TO-220 (K) Package Outline e3 100% Sn Plated 0.404 [10.26] 0.393 [9.98] Drai n - 0.186 [4.72] 0.114 [2.59] 0.058 [1.47] ø0.153 [ø3.89] 0 0.508 [12.50] 0.362 [9.19] 0.354 [8.99] 0.154 [3.91] 0.110 0.099 [2.79] -0.057 [1.45] 0.531 [13.49] 0.515 [13.08] Gate Drai n Source -|- 0.018 [0.46] 0.034 [0.86] 0.100 [2.54]TYP 0.204 [5.18] -

Dimensions in Inches and (Millimeters)