MT47R256M4CF-3:H

MT47R256M4CF-3:H Datasheet


MT47R256M4 32 Meg x 4 x 8 banks MT47R128M8 16 Meg x 8 x 8 banks MT47R64M16 8 Meg x 16 x 8 banks

Part Datasheet
MT47R256M4CF-3:H MT47R256M4CF-3:H MT47R256M4CF-3:H (pdf)
Related Parts Information
MT47R64M16HR-25E:H MT47R64M16HR-25E:H MT47R64M16HR-25E:H
MT47R256M4CF-25E:H MT47R256M4CF-25E:H MT47R256M4CF-25E:H
MT47R64M16HR-3:H MT47R64M16HR-3:H MT47R64M16HR-3:H
MT47R64M16HR-25:H MT47R64M16HR-25:H MT47R64M16HR-25:H
MT47R128M8CF-3:H MT47R128M8CF-3:H MT47R128M8CF-3:H
MT47R128M8CF-25:H MT47R128M8CF-25:H MT47R128M8CF-25:H
PDF Datasheet Preview
1Gb x4, x8, x16 1.55V DDR2 SDRAM Features

DDR2 SDRAM

MT47R256M4 32 Meg x 4 x 8 banks MT47R128M8 16 Meg x 8 x 8 banks MT47R64M16 8 Meg x 16 x 8 banks
• VDD/VDDQ = +1.55V, range
• Backward compatible with 1.8V DDR2
• JEDEC-standard 1.8V I/O SSTL_18-compatible
• Differential data strobe DQS, DQS# option
• 4n-bit prefetch architecture
• Duplicate output strobe RDQS option for x8
• DLL to align DQ and DQS transitions with CK
• 8 internal banks for concurrent operation
• Programmable CAS latency CL
• Posted CAS additive latency AL
• WRITE latency = READ latency - 1 tCK
• Selectable burst lengths BL 4 or 8
• Adjustable data-output drive strength
• 64ms, 8192-cycle refresh
• On-die termination ODT
• Industrial temperature IT option
• RoHS compliant
• Supports JEDEC clock jitter specification
• Very low power operation

Options1
• Configuration 256 Meg x 4 32 Meg x 4 x 8 banks 128 Meg x 8 16 Meg x 8 x 8 banks 64 Meg x 16 8 Meg x 16 x 8 banks
• Timing cycle time 2.5ns CL = 5 DDR2-800 2.5ns CL = 6 DDR2-800 3.0ns CL = 4 DDR2-667 3.0ns CL = 5 DDR2-667 3.75ns CL = 4 DDR2-533
• Operating temperature

Commercial 0°C TC 85°C Industrial TC 95°C;

Marking
256M4 128M8 64M16
-25E -25 -3E -3 -37E

None IT

AT :G/:H

Note:

Not all options listed can be combined to define an offered product. Use the Part Catalog Search on for product offerings and availability.

Table 1 Key Timing Parameters

Speed Grade -25E -25 -3E -3 -37E

CL = 3 400

CL = 4 533 667 533

Data Rate MT/s CL = 5 800 667 n/a

CL = 6 800 n/a n/a n/a

CL = 7 n/a n/a n/a n/a n/a
tRC ns 55 54 55

Micron Technology, Inc. reserves the right to change products or specifications without notice. 2009 Micron Technology, Inc. All rights reserved.

Products and specifications discussed herein are subject to change by Micron without notice.

Table 2 Addressing

Parameter Configuration Refresh count Row address Bank address Column address
256 Meg x 4 32 Meg x 4 x 8 banks
8K A[13:0] 16K

BA[2:0] 8 A[11, 9:0] 2K

Figure 1 1Gb DDR2 Part Numbers
1Gb x4, x8, x16 1.55V DDR2 SDRAM Features
128 Meg x 8 16 Meg x 8 x 8 banks
8K A[13:0] 16K

BA[2:0] 8 A[9:0] 1K
64 Meg x 16 8 Meg x 16 x 8 banks
8K A[12:0] 8K BA[2:0] 8 A[9:0] 1K

MT47H

Example Part Number MT47H128M8HQ-37E

Configuration
Accesses within a given burst may be programmed to be either sequential or interleaved. The burst type is selected via bit M3, as shown in Figure The ordering of accesses within a burst is determined by the burst length, the burst type, and the starting column address, as shown in Table DDR2 SDRAM supports 4-bit burst mode and 8-bit burst mode only. For 8-bit burst mode, full interleaved address ordering is supported however, sequential address ordering is nibble-based.

Table 40 Burst Definition

Burst Length 4

Starting Column Address A2, A1, A0
00 01 10 11 000 001 010 011 100 101 110 111

Order of Accesses Within a Burst

Burst Type = Sequential

Burst Type = Interleaved
0, 1, 2, 3
0, 1, 2, 3
1, 2, 3, 0
1, 0, 3, 2
2, 3, 0, 1
2, 3, 0, 1
3, 0, 1, 2
3, 2, 1, 0
0, 1, 2, 3, 4, 5, 6, 7
0, 1, 2, 3, 4, 5, 6, 7
1, 2, 3, 0, 5, 6, 7, 4
1, 0, 3, 2, 5, 4, 7, 6
2, 3, 0, 1, 6, 7, 4, 5
2, 3, 0, 1, 6, 7, 4, 5
3, 0, 1, 2, 7, 4, 5, 6
3, 2, 1, 0, 7, 6, 5, 4
4, 5, 6, 7, 0, 1, 2, 3
4, 5, 6, 7, 0, 1, 2, 3
5, 6, 7, 4, 1, 2, 3, 0
5, 4, 7, 6, 1, 0, 3, 2
6, 7, 4, 5, 2, 3, 0, 1
6, 7, 4, 5, 2, 3, 0, 1
7, 4, 5, 6, 3, 0, 1, 2
7, 6, 5, 4, 3, 2, 1, 0

Operating Mode

The normal operating mode is selected by issuing a command with bit M7 set to “0,” and all other bits set to the desired values, as shown in Figure 35 page When bit M7 is “1,” no other bits of the mode register are programmed. Programming bit M7 to “1” places the DDR2 SDRAM into a test mode that is only used by the manufacturer and should not be used. No operation or functionality is guaranteed if M7 bit is

DLL RESET

DLL RESET is defined by bit M8, as shown in Figure Programming bit M8 to “1” will activate the DLL RESET function. Bit M8 is self-clearing, meaning it returns back to a value of “0” after the DLL RESET function has been issued.

Anytime the DLL RESET function is used, 200 clock cycles must occur before a READ command can be issued to allow time for the internal clock to be synchronized with the external clock. Failing to wait for synchronization to occur may result in a violation of the tAC or tDQSCK parameters.

Micron Technology, Inc. reserves the right to change products or specifications without notice. 2009 Micron Technology, Inc. All rights reserved.
1Gb x4, x8, x16 1.55V DDR2 SDRAM Mode Register MR

Write Recovery

Write recovery WR time is defined by bits as shown in Figure 35 page The WR register is used by the DDR2 SDRAM during WRITE with auto precharge operation. During WRITE with auto precharge operation, the DDR2 SDRAM delays the internal auto precharge operation by WR clocks programmed in bits from the last data burst. An example of WRITE with auto precharge is shown in Figure 64 page
More datasheets: 366330021 | MIKROE-2847 | APTM10DUM05TG | SOMAM3703-30-1780AKIR | SOMDM3730-30-2780AKCR | SOMDM3730-30-1780AKIR | SOMDM3730-30-1880AKIR | 76650-0210 | WAN09RSP | WAN10RSP


Notice: we do not provide any warranties that information, datasheets, application notes, circuit diagrams, or software stored on this website are up-to-date or error free. The archived MT47R256M4CF-3:H Datasheet file may be downloaded here without warranties.

Datasheet ID: MT47R256M4CF-3:H 648457