Features

- High Performance, Low Power AVR ${ }^{\circledR}$ 8-Bit Microcontroller
- Advanced RISC Architecture
- 130 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 16 MIPS Throughput at 16 MHz
- On-Chip 2-cycle Multiplier
- Non-volatile Program and Data Memories
- 16K bytes of In-System Self-Programmable Flash

Endurance: 10,000 Write/Erase Cycles

- Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

- 512 bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

- 1K byte Internal SRAM
- Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 compliant) Interface
- Boundary-scan Capabilities According to the JTAG Standard
- Extensive On-chip Debug Support
- Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
- 4×25 Segment LCD Driver
- Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
- Real Time Counter with Separate Oscillator
- Four PWM Channels
- 8-channel, 10-bit ADC
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Universal Serial Interface with Start Condition Detector
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated Oscillator
- External and Internal Interrupt Sources
- Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
- 53 Programmable I/O Lines
- 64-lead TQFP and 64-pad MLF
- Speed Grade:
- ATmega169V: 0-4 MHz @ 1.8-5.5V, 0-8 MHz @ 2.7-5.5V
- ATmega169: 0-8 MHz @ 2.7-5.5V, 0-16 MHz @ 4.5-5.5V
- Temperature range:
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Industrial
- Ultra-Low Power Consumption
- Active Mode:
$1 \mathrm{MHz}, 1.8 \mathrm{~V}: 350 \mu \mathrm{~A}$
$32 \mathrm{kHz}, 1.8 \mathrm{~V}: 20 \mu \mathrm{~A}$ (including Oscillator)
$32 \mathrm{kHz}, 1.8 \mathrm{~V}: 40 \mu \mathrm{~A}$ (including Oscillator and LCD)
- Power-down Mode:
$0.1 \mu \mathrm{~A}$ at 1.8 V

Note: This is a summary document. A complete document is available on our Web site at www.atmel.com.

Pin Configurations

Disclaimer

Figure 1. Pinout ATmega169

Note: The large center pad underneath the MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Overview

The ATmega169 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega169 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega169 provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K byte SRAM, 53 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, a complete On-chip LCD controller with internal step-up voltage, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Powerdown mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer and the LCD controller continues to run, allowing the user to maintain a timer base and operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.
The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega169 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega169 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

Pin Descriptions

VCC

GND

Port A (PA7..PA0)

Port B (PB7..PB0)

Port C (PC7..PC0)

Port D (PD7..PD0)

Port F (PF7..PF0)

Ground.
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega169 as listed on page 60.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the ATmega169 as listed on page 61.

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega169 as listed on page 64.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega169 as listed on page 66.

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega169 as listed on page 68.

Port F serves as the analog inputs to the A / D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega169 as listed on page 68.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 16 on page 38. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2
Output from the inverting Oscillator amplifier.
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC}, even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

This is the analog reference pin for the A/D Converter.
An external capacitor (typical $>470 \mathrm{nF}$) must be connected to the LCDCAP pin as shown in Figure 97. This capacitor acts as a reservoir for LCD power ($\mathrm{V}_{\mathrm{LCD}}$). A large capacitance reduces ripple on $\mathrm{V}_{\text {LCD }}$ but increases the time until VLCD reaches its target value.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	LCDDR18	-	-	-	-	-	-	-	SEG324	227
(0xFD)	LCDDR17	SEG323	SEG322	SEG321	SEG320	SEG319	SEG318	SEG317	SEG316	227
(0xFC)	LCDDR16	SEG315	SEG314	SEG313	SEG312	SEG311	SEG310	SEG309	SEG308	227
(0xFB)	LCDDR15	SEG307	SEG306	SEG305	SEG304	SEG303	SEG302	SEG301	SEG300	227
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	LCDDR13	-	-	-	-	-	-	-	SEG224	227
(0xF8)	LCDDR12	SEG223	SEG222	SEG221	SEG220	SEG219	SEG218	SEG217	SEG216	227
(0xF7)	LCDDR11	SEG215	SEG214	SEG213	SEG212	SEG211	SEG210	SEG209	SEG208	227
(0xF6)	LCDDR10	SEG207	SEG206	SEG205	SEG204	SEG203	SEG202	SEG201	SEG200	227
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	LCDDR8	-	-	-	-	-	-	-	SEG124	227
(0xF3)	LCDDR7	SEG123	SEG122	SEG121	SEG120	SEG119	SEG118	SEG117	SEG116	227
(0xF2)	LCDDR6	SEG115	SEG114	SEG113	SEG112	SEG111	SEG110	SEG109	SEG108	227
(0xF1)	LCDDR5	SEG107	SEG106	SEG105	SEG104	SEG103	SEG102	SEG101	SEG100	227
(0xF0)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	LCDDR3	-	-	-	-	-	-	-	SEG024	227
(0xEE)	LCDDR2	SEG023	SEG022	SEG021	SEG020	SEG019	SEG018	SEG017	SEG016	227
(0xED)	LCDDR1	SEG015	SEG014	SEG013	SEG012	SEG011	SEG010	SEG09	SEG008	227
(0xEC)	LCDDR0	SEG007	SEG006	SEG005	SEG004	SEG003	SEG002	SEG001	SEG000	227
(0xEB)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	LCDCCR	LCDCD2	LCDCD1	LCDCC0	-	LCDCC3	LCDCC2	LCDCC1	LCDCC0	225
(0xE6)	LCDFRR	-	LCDPS2	LCDPS1	LCDPS0	-	LCDCD2	LCDCD1	LCDCD0	223
(0xE5)	LCDCRB	LCDCS	LCD2B	LCDMUX1	LCDMUX0	-	LCDPM2	LCDPM1	LCDPM0	222
(0xE4)	LCDCRA	LCDEN	LCDAB	-	LCDIF	LCDIE	-	-	LCDBL	221
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	-	-	-	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	UDR	USART I/O Data Register								171
(0xC5)	UBRRH					USART Baud Rate Register High				175
(0xC4)	UBRRL	USART Baud Rate Register Low								175
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	UCSRC	-	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZO	UCPOL	171
(0xC1)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	171
(0xC0)	UCSRA	RXC	TXC	UDRE	FE	DOR	UPE	U2X	MPCM	171

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	Reserved	-	-	-	-	-	-	-	-	
(0xBC)	Reserved	-	-	-	-	-	-	-	-	
(0xBB)	Reserved	-	-	-	-	-	-	-	-	
(0xBA)	USIDR	USI Data Register								186
(0xB9)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNTO	187
(0xB8)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICSO	USICLK	USITC	188
(0xB7)	Reserved	-		-	-	-	-	-	-	
(0xB6)	ASSR	-	-	-	EXCLK	AS2	TCN2UB	OCR2UB	TCR2UB	139
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	-	-	-	-	-	-	
(0xB3)	OCR2A	Timer/Counter2 Output Compare Register A								138
(0xB2)	TCNT2	Timer/Counter2 (8-bit)								138
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xBO)	TCCR2A	FOC2A	WGM20	COM2A1	COM2AO	WGM21	CS22	CS21	CS20	136
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	OCR1BH			Timer/C	r1-Output	pare Regist	High Byte			122
(0x8A)	OCR1BL			Timer/	er1-Output	pare Regis	Low Byte			122
(0x89)	OCR1AH			Timer/C	r1-Output	pare Regist	High Byte			122
(0x88)	OCR1AL			Timer/	er1 - Output	pare Regist	Low Byte			122
(0x87)	ICR1H			Time	nter1 - Inpu	ture Register	h Byte			123
(0x86)	ICR1L			Tim	nter1- Inpu	ture Regist	Byte			123
(0x85)	TCNT1H				ounter1-C	r Register	Byte			122
(0x84)	TCNT1L				ounter1-C	er Register				122
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	121
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	120
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	118
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AINOD	193
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	211

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	ADMUX	REFS1	REFSO	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	207
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	191, 211
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	209
(0x79)	ADCH	ADC Data Register High byte								210
(0x78)	ADCL	ADC Data Register Low byte								210
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	TIMSK2	-	-	-	-	-	-	OCIE2A	TOIE2	141
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	123
(0x6E)	TIMSK0	-	-	-	-	-	-	OCIEOA	TOIE0	93
(0x6D)	Reserved	-	-	-	-	-	-	-	-	
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	79
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINTO	79
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	-	-	-	-	-	-	ISC01	ISC00	77
(0x68)	Reserved	-	-	-	-	-	-	-	-	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL	Oscillator Calibration Register								28
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRR	-	-	-	PRLCD	PRTIM1	PRSPI	PRUSARTO	PRADC	34
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPSO	29
(0x60)	WDTCR	-	-	-	WDCE	WDE	WDP2	WDP1	WDP0	43
0x3F (0x5F)	SREG	1	T	H	S	V	N	Z	C	9
0x3E (0x5E)	SPH	-	-	-	-	-	SP10	SP9	SP8	11
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SPO	11
$0 \times 3 \mathrm{C}$ (0x5C)	Reserved									
0x3B (0x5B)	Reserved									
0x3A (0x5A)	Reserved									
0x39 (0x59)	Reserved									
0x38 (0x58)	Reserved									
0×37 (0x57)	SPMCSR	SPMIE	RWWSB	-	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	259
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0×35 (0x55)	MCUCR	JTD	-	-	PUD	-	-	IVSEL	IVCE	237
0x34 (0x54)	MCUSR	-	-	-	JTRF	WDRF	BORF	EXTRF	PORF	238
0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	32
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0×31 (0x51)	OCDR	IDRD/OCD	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDRO	233
0×30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	191
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR	SPI Data Register								151
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	151
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	149
0x2B (0x4B)	GPIOR2	General Purpose I/O Register 2								22
0x2A (0x4A)	GPIOR1	General Purpose I/O Register 1								22
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	Reserved	-	-	-	-	-	-	-	-	
0x27 (0x47)	OCROA	Timer/Counter0 Output Compare Register A								93
0x26 (0x46)	TCNTO	Timer/Counter0 (8 Bit)								92
0x25 (0x45)	Reserved	-	-	-	-	-	-	-	-	
0x24 (0x44)	TCCROA	FOCOA	WGM00	COM0A1	COMOAO	WGM01	CSO2	CS01	CSOO	90
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSR2	PSR10	95
0x22 (0x42)	EEARH	-	-	-	-	-	-	-	EEAR8	18
0x21 (0x41)	EEARL	EEPROM Address Register Low Byte								18
0x20 (0x40)	EEDR	EEPROM Data Register								18
0x1F (0x3F)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	18
0x1E (0x3E)	GPIORO	General Purpose I/O Register 0								22
0x1D (0x3D)	EIMSK	PCIE1	PCIEO	-	-	-	-	-	INTO	78
$0 \times 1 \mathrm{C}$ (0x3C)	EIFR	PCIF1	PCIFO	-	-	-	-	-	INTF0	78

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	Reserved	-	-	-	-	-	-	-	-	
$0 \times 1 \mathrm{~A}(0 \times 3 \mathrm{~A})$	Reserved	-	-	-	-	-	-	-	-	
0×19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0×18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0×17 (0x37)	TIFR2	-	-	-	-	-	-	OCF2A	TOV2	142
0×16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	124
0×15 (0x35)	TIFR0	-	-	-	-	-	-	OCFOA	TOV0	93
0×14 (0x34)	PORTG	-	-	-	PORTG4	PORTG3	PORTG2	PORTG1	PORTG0	76
0×13 (0x33)	DDRG	-	-	-	DDG4	DDG3	DDG2	DDG1	DDG0	76
0×12 (0x32)	PING	-	-	PING5	PING4	PING3	PING2	PING1	PING0	76
0×11 (0x31)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	75
0×10 (0x30)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	75
0x0F (0x2F)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	76
0x0E (0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	75
0x0D (0x2D)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	75
0x0C (0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	75
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	75
$0 \times 0 \mathrm{~A}(0 \times 2 \mathrm{~A})$	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	75
0×09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	75
0×08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	74
$0 \times 07(0 \times 27)$	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	74
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINCO	75
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	74
0×04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	74
0×03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	74
0×02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	74
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	74
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINAO	74

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O Registers within the address range $0 \times 00-0 \times 1 \mathrm{~F}$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00-0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega169 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60-0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N, V, H	1
ADIW	Rdi, K	Add Immediate to Word	Rdh:Rdl \leftarrow Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
SBIW	Rdi, K	Subtract Immediate from Word	Rdh:Rdl \leftarrow Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{Rr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	Rd $\leftarrow 0 \times \mathrm{FFF}-\mathrm{Rd}$	Z,C,N, V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$R d \leftarrow R d v K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 x F F-K)$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}$	None	1
MUL	Rd, Rr	Multiply Unsigned	$\mathrm{R} 1: \mathrm{R0} 0 \leftarrow \mathrm{Rdx} \times \mathrm{Rr}$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$\mathrm{R} 1: \mathrm{R0} 0 \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} 5 \mathrm{Rdx} \times \mathrm{Rr}$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$\mathrm{R1}: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
JMP	k	Direct Jump	$\mathrm{PC} \leftarrow \mathrm{k}$	None	3
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
CALL	k	Direct Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{k}$	None	4
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	$\mathrm{Rd}-\mathrm{Rr}$	Z, N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z, N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(\mathrm{P}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(\mathrm{~b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if $(\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if ($\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(\mathrm{N} \oplus \mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if ($\mathrm{H}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if $(\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if $(\mathrm{T}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if ($\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
BRIE	k	Branch if Interrupt Enabled	if ($\mathrm{I}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I=0) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N, V	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N, V	1
ROL	Rd	Rotate Left Through Carry	$\operatorname{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N, V	1
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N, V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N, V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$C \leftarrow 1$	C	1
CLC		Clear Carry	$C \leftarrow 0$	C	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{X}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1,(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	Y + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	Z + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Z}) \leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Z}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(Z+q) \leftarrow R \mathrm{r}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z^{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	(Z) ↔R1:R0	None	-
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package ${ }^{(1)}$	Operation Range
$8^{(2)}$	1.8-5.5V	ATmega169V-8AI ATmega169V-8AJ ${ }^{(3)}$ ATmega169V-8MI ATmega169V-8MJ ${ }^{(3)}$	64A 64A 64M1 64M1	Industrial $\left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)$
$16^{(2)}$	4.5-5.5V	ATmega169-16AI ATmega169-16AJ ${ }^{(3)}$ ATmega169-16MI ATmega169-16MJ ${ }^{(3)}$	64A 64A 64M1 64M1	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. See Figure 135 and Figure 136.
3. Pb -free alternative.

Package Type	
64A	64-Lead, Thin $(1.0 \mathrm{~mm})$ Plastic Gull Wing Quad Flat Package (TQFP)
64M1	64-pad, $9 \times 9 \times 1.0 \mathrm{~mm}$ body, lead pitch 0.50 mm , Micro Lead Frame Package (MLF)

Packaging Information

64A

64M1

TOP VIEW

SIDE VIEW

COMMON DIMENSIONS
(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
A	0.80	0.90	1.00	
A1	-	0.02	0.05	
b	0.23	0.25	0.28	
D	9.00 BSC			
D2	5.20	5.40	5.60	
E	9.00 BSC			
E2	5.20	5.40	5.60	
e	0.50 BSC			
L	0.35	0.40	0.45	

Notes: 1. JEDEC Standard MO-220, Fig. 1, VMMD.

01/15/03
2325 Orchard Parkway
San Jose, CA 95131
TITLE
64M1, 64-pad, $9 \times 9 \times 1.0 \mathrm{~mm}$ Body, Lead Pitch 0.50 mm Micro Lead Frame Package (MLF)

DRAWING NO. REV.

Errata

ATmega169 Rev E

ATmega169 Rev D

ATmega169 Rev C

No known errata.

- High serial resistance in the glass can result in dim segments on the LCD
- IDCODE masks data from TDI input

2. High serial resistance in the glass can result in dim segments on the LCD

Some display types with high serial resistance ($>20 \mathrm{k} \Omega$) inside the glass can result in dim segments on the LCD
Problem Fix/Workaround
Add a 1 nF (0.47 - 1.5 nF) capacitor between each common pin and ground.

1. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones during Update-DR.

Problem Fix / Workaround

- If ATmega169 is the only device in the scan chain, the problem is not visible.
- Select the Device ID Register of the ATmega169 by issuing the IDCODE instruction or by entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the ATmega169 while reading the Device ID Registers of preceding devices of the boundary scan chain.
- If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the ATmega169 must be the fist device in the chain.
- High Current Consumption In Power Down when JTAGEN is Programmed
- LCD Contrast Control
- Some Data Combinations Can Result in Dim Segments on the LCD
- LCD Current Consumption
- IDCODE masks data from TDI input

5. High Current Consumption In Power Down when JTAGEN is Programmed The input buffer on TDO (PF6) is always enabled and the pull-up is always disabled when JTAG is programmed. This can leave the output floating.
Problem Fix/Workaround
Add external pull-up to PF6.
Unprogram the JTAGEN Fuse before shipping out the end product.
6. LCD Contrast Control

The contrast control is not working properly when using synchronous clock (chip clock) to obtain an LCD clock, and the chip clock is 125 kHz or faster.

Problem Fix/Workaround

Use a low chip clock frequency (32 kHz) or apply an external voltage to the LCDCAP pin.
3. Some Data Combinations Can Result in Dim Segments on the LCD

All segments connected to a common plane might be dimmed (lower contrast) when a certain combination of data is displayed.
Problem Fix/Workaround
Default waveform: If there are any unused segment pins, loading one of these with a 1 nF capacitor and always write ' 0 ' to this segment eliminates the problem.
Low power waveform: Add a 1 nF capacitor to each common pin.

2. LCD Current Consumption

In an interval where V_{CC} is within the range VLCD -0.2 V to $\mathrm{VLCD}+0.4 \mathrm{~V}$, the LCD current consumption is up to three times higher than expected. This will only be an issue in Power-save mode with the LCD running as the LCD current is negligible compared to the overall power consumption in all other modes of operation.

Problem Fix/Workaround

No known workaround.

1. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones during Update-DR.

Problem Fix / Workaround

- If ATmega169 is the only device in the scan chain, the problem is not visible.
- Select the Device ID Register of the ATmega169 by issuing the IDCODE instruction or by entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the ATmega169 while reading the Device ID Registers of preceding devices of the boundary scan chain.
- If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the ATmega169 must be the fist device in the chain.

ATmega169 Rev B

- Internal Oscillator Runs at 4 MHz
- LCD Contrast Voltage is not Correct
- External Oscillator is Non-functional
- USART
- ADC Measures with Lower Accuracy than Specified
- Serial Downloading
- IDCODE masks data from TDI input

7. Internal Oscillator Runs at $4 \mathbf{M H z}$

The Internal Oscillator runs at 4 MHz instead of the specified 8 MHz . Therefore, all Flash/EEPROM programming times are twice as long as specified. This includes Chip Erase, Byte programming, Page programming, Fuse programming, Lock bit programming, EEPROM write from the CPU, and Flash Self-Programming.
For this reason, rev-B samples are shipped with the CKDIV8 Fuse unprogrammed.

Problem Fix/Workaround

If 8 MHz operation is required, apply an external clock (this will be fixed in rev. C).

6. LCD Contrast Voltage is not Correct

The LCD contrast voltage between 1.8 V and 3.1 V is incorrect. When the V_{cc} is between 1.8 V and 3.1 V , the LCD contrast voltage drops approx. 0.5 V . The current consumption in this interval is higher than expected.

Problem Fix/Workaround

Contrast will be wrong, but display will still be readable, can be partly compensated for using the contrast control register (this will be fixed in rev. C).

5. External Oscillator is Non-functional

The external oscillator does not run with the setup described in the datasheet.
Problem Fix/Workaround
Use other clock source (this will be fixed in rev. C).

Alternative Problem Fix/Workaround

Adding a pull-down on XTAL1 will start the Oscillator.
4. USART

Writing TXEN to zero during transmission causes the transmission to suddenly stop. The datasheet description tells that the transmission should complete before stopping the USART when TXEN is written to zero.

Problem Fix/Workaround

Ensure that the transmission is complete before writing TXEN to zero (this will be fixed in rev. C).
3. ADC Measures with Lower Accuracy than Specified

The ADC does not work as intended. There is a positive offset in the result.

Problem Fix/Workaround

This will be fixed in rev. C.
2. Serial downloading

When entering Serial Programming mode the second byte will not echo back as described in the Serial Programming algorithm.

Problem Fix/Workaround

Check if the third byte echoes back to ensure that the device is in Programming mode (this will be fixed in rev. C).

1. IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by all-ones during Update-DR.

Problem Fix / Workaround

- If ATmega169 is the only device in the scan chain, the problem is not visible.
- Select the Device ID Register of the ATmega169 by issuing the IDCODE instruction or by entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS instruction to the ATmega169 while reading the Device ID Registers of preceding devices of the boundary scan chain.
- If the Device IDs of all devices in the boundary scan chain must be captured simultaneously, the ATmega169 must be the fist device in the chain.

Datasheet Change Log for ATmega169

Changes from Rev. 2514J-12/03 to Rev. 2514K-04/04

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

1. Changed size from 0×60 to $0 x F F$ in "Stack Pointer" on page 11.
2. Updated Table 17 on page 40, Table 21 on page 44 and Table 115 on page 267.
3. Updated "Calibrated Internal RC Oscillator" on page 27.
4. Added new "Power Reduction Register" on page 34. Examples found in "Using the Power Reduction Register" on page 312.
5. Fixed typo in port description for the "Analog to Digital Converter" on page 194.
6. Removed old and added new "LCD Controller" on page 212.
7. Updated "Electrical Characteristics" on page 300.
8. Updated "ATmega169 Typical Characteristics" on page 307.
9. Updated "Ordering Information" on page 14.

ATmega169L replaced by ATmega169V and ATmega169.

1. Updated "Calibrated Internal RC Oscillator" on page 27
2. Removed "Advance Information" from the datasheet.
3. Removed AGND from Figure 2 on page 3 and added "System Clock Prescaler" to Figure 11 on page 23.
4. Updated Table 16 on page 38, Table 17 on page 40, Table 19 on page 42 and Table 40 on page 70.
5. Renamed and updated "On-chip Debug System" to "JTAG Interface and On-chip Debug System" on page 36.
6. Updated COM01:0 to COM0A1:0 in "Timer/Counter Control Register A TCCR0A" on page 90 and COM21:0 to COM2A1:0 in "Timer/Counter Control Register A- TCCR2A" on page 136.
7. Updated "Test Access Port - TAP" on page 228 regarding JTAGEN.
8. Updated description for the JTD bit on page 237.
9. Added a note regarding JTAGEN fuse to Table 119 on page 270.
10. Updated Absolute Maximum Ratings* and DC Characteristics in "Electrical Characteristics" on page 300.
11. Updated "Errata" on page 17 and added a proposal for solving problems regarding the JTAG instruction IDCODE.

Changes from Rev. 2514G-04/03 to Rev. 2514H-05/03

Changes from Rev. 2514F-04/03 to Rev. 2514G-04/03

Changes from Rev. 2514E-02/03 to Rev. 2514F-04/03

Changes from Rev. 2514D-01/03 to Rev. 2514E-02/03

1. Updated typo in Figure 147, Figure 167, and Figure 194.
2. Updated "ATmega169 Typical Characteristics" on page 307.
3. Updated typo in "Ordering Information" on page 14.
4. Updated Figure 45 on page 110, Table 18 on page 40, and "Version" on page 235.
5. Renamed ICP to ICP1 in whole document.
6. Removed note on "Crystal Oscillator Operating Modes" on page 25.
7. XTAL1/XTAL2 can be used as timer oscillator pins, described in chapter "Calibrated Internal RC Oscillator" on page 27.
8. Switching between prescaler settings in "Switching Time" on page 31.
9. Updated DC and ACD Characteristics in chapter "Electrical Characteristics" on page 300 are updated. Removed TBD's from Table 16 on page 38, Table 19 on page 42, Table 134 on page 303.
10. Updated Figure 22 on page 53, Figure 25 on page 58 and Figure 109 on page 240 regarding WRITE PINx REGISTER.
11. Updated "Alternate Functions of Port F" on page $\mathbf{7 0}$ regarding JTAG.
12. Replaced Timer0 Overflow with Timer/CounterO Compare Match in "Universal Serial Interface - USI" on page 180. Also updated "Start Condition Detector" on page 186 and "USI Control Register - USICR" on page 188.
13. Updated Features for "Analog to Digital Converter" on page 194 and Table 88 on page 207.
14. Added notes on Figure 117 on page 261 and Table 118 on page 269.
15. Updated the section "Features" on page 1 with information regarding ATmega169 and ATmega169L.
16. Removed all references to the PG5 pin in Figure 1 on page 2, Figure 2 on page 3, "Port G (PG4..PGO)" on page 6, "Alternate Functions of Port G" on page 72, and "Register Description for I/O-Ports" on page 74.
17. Updated Table 118, "Extended Fuse Byte," on page 269.
18. Added Errata for "Datasheet Change Log for ATmega169" on page 20, including "Significant Data Sheet Changes".
19. Updated the "Ordering Information" on page 14 to include the new speed grade for ATmega169L and the new 16 MHz ATmega169.

Changes from Rev. 2514C-11/02 to Rev. 2514D-01/03

1. Added TCK frequency limit in "Programming via the JTAG Interface" on page 287.
2. Added Chip Erase as a first step in "Programming the Flash" on page 297 and "Programming the EEPROM" on page 298.
3. Added the section "Unconnected Pins" on page 57.
4. Added tips on how to disable the OCD system in "On-chip Debug System" on page 35.
5. Corrected interrupt addresses. ADC and ANA_COMP had swapped places.
6. Improved the table in "SPI Timing Characteristics" on page 303 and removed the table in "SPI Serial Programming Characteristics" on page 287.
7. Changed "will be ignored" to "must be written to zero" for unused Z-pointer bits in "Performing a Page Write" on page 262.
8. Corrected "LCD Frame Complete" to "LCD Start of Frame" in the LCDCRA Register description.
9. Changed OUT to STS and IN to LDS in USI code examples, and corrected $\mathrm{f}_{\text {ScKmax }}$. The USI I/O Registers are in the extended I/O space, so IN and OUT cannot be used. LDS and STS take one more cycle when executed, so $f_{\text {SCKmax }}$ had to be changed accordingly.
10. Removed TOSKON and TOSCK from Table 103 on page 241, and g10 and g20 from Figure 114 on page 243 and Table 105 on page 244, because these signals do not exist in boundary scan.
11. Changed from 4 to 16 MIPS and MHz in the device Features list.
12. Corrected Port A to Port F in "AVCC" on page 6 under "Pin Descriptions" on page 5.
13. Corrected 230.4 Mbps to 230.4 kbps in "Examples of Baud Rate Setting" on page 176.
14. Corrected placing of falling and rising XCK edges in Table 78, "UCPOL Bit Settings," on page 175.
15. Removed reference to Multipurpose Oscillator Application Note, which does not exist.
16. Corrected Number of Calibrated RC Oscillator Cycles in Table 1 on page 19 from 8,448 to 67,584.
17. Various minor Timer1 corrections.
18. Added information about PWM symmetry for Timer0 and Timer2.
19. Corrected the contents of DIDR0 and DIDR1.
20. Made all bit names in the LCDDR Registers unique by adding the COM number digit in front of the two digits already there, e.g. SEG304.
21. Changed Extended Standby to ADC Noise Reduction mode under "Asynchronous Operation of Timer/Counter2" on page 140.
22. Added note about Port B having better driving capabilities than the other ports. As a consequence the table, "DC Characteristics" on page 300 was corrected as well.
23. Added note under "Filling the Temporary Buffer (Page Loading)" on page 262 about writing to the EEPROM during an SPM page load.
24. Removed ADHSM completely.
25. Updated "Packaging Information" on page 15.

Changes from Rev. 2514B-09/02 to Rev. 2514C-11/02

Changes from Rev. 2514A-08/02 to Rev. 2514B-09/02

1. Added "Errata" on page 17.
2. Added Information for the $64-$ pad MLF Package in "Ordering Information" on page 14 and "Packaging Information" on page 15.
3. Changed Temperature Range and Removed Industrial Ordering Codes in "Packaging Information" on page 15.
4. Changed the Endurance on the Flash to $\mathbf{1 0 , 0 0 0}$ Write/Erase Cycles.

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2004. All rights reserved.

Atmel ${ }^{\circledR}$ and combinations thereof, AVR ${ }^{\circledR}$, and AVR Studio ${ }^{\circledR}$ are the registered trademarks of Atmel Corporation or its subsidiaries. Microsoft ${ }^{\circledR}$, Windows ${ }^{\circledR}$, Windows NT^{\circledR}, and Windows XP^{\circledR} are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others

