Features

- No External Components Except PIN Diode
- Supply-voltage Range: 4.5V to 5.5 V
- Automatic Sensitivity Adaptation (AGC)
- Automatic Strong Signal Adaptation (ATC)
- Enhanced Immunity Against Ambient Light Disturbances
- Available for Carrier Frequencies between 33 kHz to 40 kHz; Adjusted by Zener Diode Fusing
- TTL and CMOS Compatible
- Suitable Minimum Burst Length ≥ 10 Pulses/Burst

Applications

- Audio Video Applications
- Home Appliances
- Remote Control Equipment

1. Description

The IC ATA2525 is a complete IR receiver for data communication that was developed and optimized for use in carrier-frequency-modulated transmission applications. Its function can be described using the block diagram (see Figure 1-1 on page 2). The input stage meets two main functions. First, it provides a suitable bias voltage for the PIN diode. Secondly, the pulsed photo-current signals are transformed into a voltage by a special circuit which is optimized for low-noise applications. After amplification by a Controlled Gain Amplifier (CGA), the signals have to pass a tuned integrated narrow bandpass filter with a center frequency f_{0} which is equivalent to the chosen carrier frequency of the input signal. The demodulator is used to convert the input burst signal into a digital envelope output pulse and to evaluate the signal information quality, i.e., unwanted pulses will be suppressed at the output pin. All this is done by means of an integrated dynamic feedback circuit which varies the gain as a function of the present environmental condition (ambient light, modulated lamps etc.). Other special features are used to adapt to the current application to secure best transmission quality. The ATA2525 operates in a supply-voltage range of 4.5 V to 5.5 V .

ATA2525

Preliminary

Figure 1-1. Block Diagram

2. Pin Configuration

Figure 2-1. Pinning TSSOP8

Table 2-1. Pin Description

Pin	Symbol	Function
1	VS	Supply voltage
2	NC	Not connected
3	OUT	Data output
4	NC	Not connected
5	IN	Input PIN diode
6	GND	Ground
7	NC	Not connected
8	NC	Not connected

3. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	-0.3 to +6	V
Supply current	I_{S}	3	mA
Input voltage	V_{IN}	-0.3 to V_{S}	V
Input DC current at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	I_{N}	0.75	mA
Output voltage	V_{O}	-0.3 to V_{S}	V
Output current	I_{O}	10	mA
Operating temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{tot}}$	30	mW

4. Thermal Resistance

Parameter	Symbol	Value	Unit
Junction ambient TSSOP8	$\mathrm{R}_{\mathrm{thJA}}$	110	K/W

5. Electrical Characteristics

$\mathrm{T}_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 5.5 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
1	Supply								
1.1	Supply-voltage range		1	V_{S}	4.5	5	5.5	V	C
1.2	Supply current	$\mathrm{I}_{1 \times}=0$	1	$\mathrm{I}_{\text {S }}$	0.8	1.1	1.4	mA	B
2	Output								
2.1	Internal pull-up resistor	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see Figure 8-7 on page 8	1,3	R_{PU}		40		$\mathrm{k} \Omega$	A
2.2	Output voltage low	$\mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}$; see Figure 8-7 on page 8	3,6	V_{OL}			250	mV	B
2.3	Output voltage high		3,1	V_{OH}	$\mathrm{V}_{\mathrm{S}}-0.25$		V_{S}	V	B
2.4	Output current clamping	$R_{2}=0 ; \text { see }$ Figure 8-7 on page 8	3,6	$\mathrm{I}_{\mathrm{OCL}}$		8		mA	B
3	Input								
3.1	Input DC current	$\mathrm{V}_{\mathrm{IN}}=0 ; \text { see }$ Figure 8-7 on page 8	5	$\mathrm{I}_{\text {IN_DCMAX }}$	-85			$\mu \mathrm{A}$	C
3.2	Input DC current; Figure 8-1 on page 5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 ; \mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	5	$\mathrm{I}_{\text {IN_DCMAX }}$	-530	-960		$\mu \mathrm{A}$	B

[^0]
5. Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{amb}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 5.5 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
3.3	Minimum detection threshold current; Figure 8-2 on page 5	Test signal: see Figure 8-6 on page 7 $V_{S}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{IN} \mathrm{DC}}=1 \mu \mathrm{~A} ;$ square pp, burst $\mathrm{N}=16$, $\mathrm{f}=\mathrm{f}_{0} ; \mathrm{t}_{\text {PER }}=10 \mathrm{~ms}$, Figure 8-6 on page 7; BER $=50^{(1)}$	3	$I_{\text {Eemin }}$		-520		pA	B
3.4	Minimum detection threshold current with AC current disturbance IIN_AC100 $=3 \mu \mathrm{~A}$ at 100 Hz	Test signal: see Figure 8-6 on page 7 $V_{S}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{IN} \text { _d }}=1 \mu \mathrm{~A}$, square pp, burst $\mathrm{N}=16$, $\mathrm{f}=\mathrm{f}_{0} ; \mathrm{t}_{\text {PER }}=10 \mathrm{~ms}$, Figure 8-6 on page 7; BER $=50 \%{ }^{(1)}$	3	$I_{\text {Eemin }}$		-800		pA	C
3.5	Maximum detection threshold current with $\mathrm{V}_{\mathrm{IN}}>0 \mathrm{~V}$	Test signal: see Figure 8-6 on page 7 $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, $\mathrm{I}_{\mathrm{IN} \text { _dC }}=1 \mu \mathrm{~A}$; square pp, burst $\mathrm{N}=16$, $\mathrm{f}=\mathrm{f}_{0}$; $\mathrm{t}_{\text {PER }}=10 \mathrm{~ms}$, Figure 8-6 on page 7; BER $=5 \%^{(1)}$	3	$I_{\text {Eemax }}$	-400			$\mu \mathrm{A}$	D
4	Controlled Amplifier and Filter								
4.1	Maximum value of variable gain (CGA)			$\mathrm{G}_{\text {VARMAX }}$		51		dB	D
4.2	Minimum value of variable gain (CGA)			$\mathrm{G}_{\text {VARMIN }}$		-5		dB	D
4.3	Total internal amplification ${ }^{(2)}$			$\mathrm{G}_{\text {MAX }}$		71		dB	D
4.4	Center frequency fusing accuracy of bandpass	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{f}_{\text {O_FUSE }}$	-3	f_{0}	+3	\%	A
4.5	Overall accuracy center frequency of bandpass			f_{0}	-6.7	f_{0}	+4.1	\%	C
4.6	BPF bandwidth	$-3 \mathrm{~dB} ; \mathrm{f}_{0}=38 \mathrm{kHz}$; see Figure 8-4 on page 6		B		3.5		kHz	B

${ }^{*}$) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
Notes: 1. $B E R=$ Bit Error Rate; e.g., $B E R=5 \%$ means that with $P=20$ at the input pin $19 \ldots 21$ pulses can appear at the pin OUT
2. After transformation of input current into voltage
6. ESD

All pins $\Rightarrow 4000 \mathrm{~V}$ HBM; 400V MM, MIL-STD-883C, Method 3015.7
LU 100 mA; Jedec 17/78

7. Reliability

Electrical qualification (1000 h at $150^{\circ} \mathrm{C}$) in molded SO8 plastic package
8. Typical Electrical Curves at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Figure 8-1. $\quad \mathrm{V}_{\mathrm{IN}}$ versus $\mathrm{I}_{\mathrm{IN}_{\mathrm{N}} \mathrm{DC}}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Figure 8-2. $\quad I_{\text {Eemin }}$ versus $\mathrm{I}_{\mathrm{IN}_{\mathrm{ND}} \mathrm{DC}}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Figure 8-3. Data Transmission Rate, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Figure 8-4. Typical Bandpass Curve

$Q=f_{0} / \Delta f ; \Delta f=-3 d B$ values. Example: $Q=1 /(1.047-0.954)=11$

Figure 8-5. Illustration of Used Terms

Example: $\mathrm{f}=30 \mathrm{kHz}$, burst with 16 pulses, 16 periods
Figure 8-6. Test Circuit

Figure 8－7．Application Circuit

9. Chip Dimensions

Figure 9-1. Chip Size in $\mu \mathrm{m}$

Note: Pad coordinates are for lower left corner of the pad in $\mu \mathrm{m}$ from the origin 0,0

Dimensions	Length inclusive scribe	1.04 mm
	Width inclusive scribe	1.11 mm
	Thickness	$290 \mu \pm 5 \%$
	Pads	$80 \mu \times 80 \mu$
Pad metallurgy	Fusing pads	$60 \mu \times 60 \mu$
	Material	$\mathrm{AlCu} / \mathrm{AlSiTi}^{(1)}$
	Thickness	$0.8 \mu \mathrm{~m}$
Finish	Material	$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}{ }^{(1)}$
	Thickness	$0.7 / 0.3 \mu \mathrm{~m}$

Note: 1. Value depends on manufacture location.

10. Ordering Information

Extended Type Number	$\mathbf{D}^{(3)}$	Type
ATA2525P1. $\mathrm{xx}^{(1)}$-yyy ${ }^{(2)}$	1493	Standard type: high data rate
ATA2525P3.xx ${ }^{(1)}$-yyy ${ }^{(2)}$	980	Lamp type: enhanced suppression of disturbances, secure data transmission
ATA2525P5.xx ${ }^{(1)}$-yyy ${ }^{(2)}$	730	Noise type: best suppression of disturbances, low data rate

Notes: 1. xx means the used carrier frequency value ($33,36,38$ or 40 kHz)
2. yyy means kind of packaging:

DDW --> unsawn wafers in box
6AQ --> (only on request, TSSOP8 taped and reeled)
3. Maximum data transmission rate up to bits/s with $f_{0}=40 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ (see Figure $8-2$ on page 5)

11. Pad Layout

Figure 11-1. Pad Layout (DDW or TSSOP8)

Table 11-1. Pin Description

Symbol	Function
OUT	Data output
VS	Supply voltage
GND	GND
IN	Input pin diode
Zapping	f_{0} adjust
Versioning	type adjust

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
$\mathrm{CH}-1705$ Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© Atmel Corporation 2005. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$ and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

[^0]: *) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
 Notes: 1. BER = Bit Error Rate; e.g., BER $=5 \%$ means that with $P=20$ at the input pin 19... 21 pulses can appear at the pin OUT
 2. After transformation of input current into voltage

