### Features

- Compatible with MCS-51<sup>™</sup> Products
- 1K Bytes of Reprogrammable Flash Memory – Endurance: 1,000 Write/Erase Cycles
- 2.7V to 6V Operating Range
- Fully Static Operation: 0 Hz to 24 MHz
- Two-level Program Memory Lock
- 64 x 8-bit Internal RAM
- 15 Programmable I/O Lines
- Two 16-bit Timer/Counters
- Six Interrupt Sources
- Programmable Serial UART Channel
- Direct LED Drive Outputs
- On-chip Analog Comparator
- Low-power Idle and Power-down Modes

### Description

The AT89C1051U is a low-voltage, high-performance CMOS 8-bit microcomputer with 1K byte of Flash programmable and erasable read only memory. It has the same functionality and operation as the AT89C1051 with the addition of a UART programmable serial port. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C1051U is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.

The AT89C1051U provides the following standard features: 1K byte of Flash, 64 bytes of RAM, 15 I/O lines, two 16-bit timer/counters, a five-vector, two-level interrupt architecture, a full duplex serial port, a precision analog comparator, on-chip oscillator and clock circuitry. In addition, the AT89C1051U is designed with static logic for operation down to zero frequency and supports two software-selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The power-down mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.

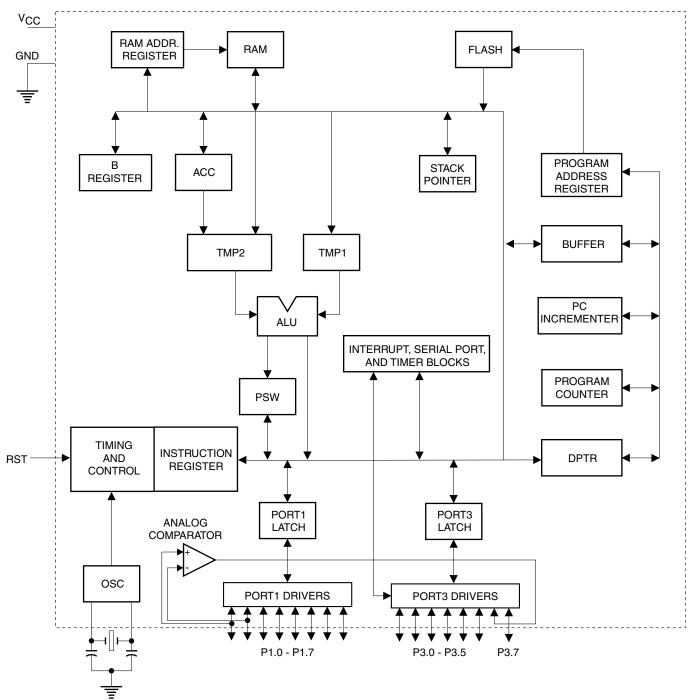
## **Pin Configuration**

#### PDIP/SOIC

|               |    | ,  | 1             |
|---------------|----|----|---------------|
| RST/VPP       | 1  | 20 | ⊐ vcc         |
| (RXD) P3.0 🗆  | 2  | 19 | 🗆 P1.7        |
| (TXD) P3.1 🗆  | 3  | 18 | 🗆 P1.6        |
| XTAL2 🗆       | 4  | 17 | 🗆 P1.5        |
| XTAL1 🗆       | 5  | 16 | 🗆 P1.4        |
| (INT0) P3.2 🗆 | 6  | 15 | 🗆 P1.3        |
| (INT1) P3.3 🗆 | 7  | 14 | 🗆 P1.2        |
| (TO) P3.4 🗆   | 8  | 13 | DP1.1 (AIN1)  |
| (T1) P3.5 🗆   | 9  | 12 | D P1.0 (AIN0) |
| GND 🗆         | 10 | 11 | 🗆 P3.7        |
|               |    |    |               |



8-bit Microcontroller with 1K Byte Flash


## AT89C1051U

Rev. 1045C-02/00





### **Block Diagram**



AT89C1051U

### **Pin Description**

#### vcc

Supply voltage.

#### GND

Ground.

#### Port 1

Port 1 is an 8-bit bidirectional I/O port. Port pins P1.2 to P1.7 provide internal pullups. P1.0 and P1.1 require external pullups. P1.0 and P1.1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip precision analog comparator. The Port 1 output buffers can sink 20 mA and can drive LED displays directly. When 1s are written to Port 1 pins, they can be used as inputs. When pins P1.2 to P1.7 are used as inputs and are externally pulled low, they will source current ( $I_{IL}$ ) because of the internal pullups.

Port 1 also receives code data during Flash programming and verification.

#### Port 3

Port 3 pins P3.0 to P3.5, P3.7 are seven bidirectional I/O pins with internal pullups. P3.6 is hard-wired as an input to the output of the on-chip comparator and is not accessible as a general purpose I/O pin. The Port 3 output buffers can sink 20 mA. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current ( $I_{\rm IL}$ ) because of the pullups.

Port 3 also serves the functions of various special features of the AT89C1051U as listed below:

| Port Pin | Alternate Functions         |
|----------|-----------------------------|
| P3.0     | RXD (serial input port)     |
| P3.1     | TXD (serial output port)    |
| P3.2     | INTO (external interrupt 0) |
| P3.3     | INT1 (external interrupt 1) |
| P3.4     | T0 (timer 0 external input) |
| P3.5     | T1 (timer 1 external input) |

Port 3 also receives some control signals for Flash programming and verification.

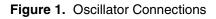
#### RST

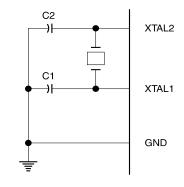
Reset input. All I/O pins are reset to 1s as soon as RST goes high. Holding the RST pin high for two machine cycles while the oscillator is running resets the device.



Each machine cycle takes 12 oscillator or clock cycles.

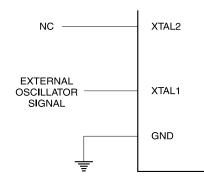
#### XTAL1


Input to the inverting oscillator amplifier and input to the internal clock operating circuit.


#### XTAL2

Output from the inverting oscillator amplifier.

### **Oscillator Characteristics**


XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.





Note: C1, C2= 30 pF  $\pm$  10 pF for Crystals = 40 pF  $\pm$  10 pF for Ceramic Resonators

#### Figure 2. External Clock Drive Configuration





| 80H  |                  | SP<br>00000111   | DPL<br>00000000 | DPH<br>00000000 |                 |                 | PCON<br>0XXX0000 |
|------|------------------|------------------|-----------------|-----------------|-----------------|-----------------|------------------|
| 88H  | TCON<br>00000000 | TMOD<br>00000000 | TL0<br>00000000 | TL1<br>00000000 | TH0<br>00000000 | TH1<br>00000000 |                  |
| 90H  | P1<br>11111111   |                  |                 |                 |                 |                 |                  |
| 98H  | SCON<br>00000000 | SBUF<br>XXXXXXXX |                 |                 |                 |                 |                  |
| 0A0H |                  |                  |                 |                 |                 |                 |                  |
| 0A8H | IE<br>0XX00000   |                  |                 |                 |                 |                 |                  |
| 0B0H | P3<br>11111111   |                  |                 |                 |                 |                 |                  |
| 0B8H | IP<br>XXX00000   |                  |                 |                 |                 |                 |                  |
| 0C0H |                  |                  |                 |                 |                 |                 |                  |
| 0C8H |                  |                  |                 |                 |                 |                 |                  |
| 0D0H | PSW<br>00000000  |                  |                 |                 |                 |                 |                  |
| 0D8H |                  |                  |                 |                 |                 |                 |                  |
|      | 00000000         |                  |                 |                 |                 |                 |                  |

#### Table 1. AT89C1051U SFR Map and Reset Values

0F8H

0F0H

0E8H

0E0H

В

0000000

ACC

**Special Function Registers** A map of the on-chip memory area called the Special Function Register (SFR) space is shown in the table below. Note that not all of the addresses are occupied, and unoc-

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect. User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

0FFH

0F7H

0EFH

0E7H

0DFH

0D7H

0CFH

0C7H

0BFH

0B7H

0AFH

0A7H

9FH

97H

8FH

87H



### **Restrictions on Certain Instructions**

The AT89C1051U and is an economical and cost-effective member of Atmel's growing family of microcontrollers. It contains 1K byte of flash program memory. It is fully compatible with the MCS-51 architecture, and can be programmed using the MCS-51 instruction set. However, there are a few considerations one must keep in mind when utilizing certain instructions to program this device.

All the instructions related to jumping or branching should be restricted such that the destination address falls within the physical program memory space of the device, which is 1K for the AT89C1051U. This should be the responsibility of the software programmer. For example, LJMP 3FEH would be a valid instruction for the AT89C1051U (with 1K of memory), whereas LJMP 410H would not.

#### 1. Branching instructions:

LCALL, LJMP, ACALL, AJMP, SJMP, JMP @A+DPTR.

These unconditional branching instructions will execute correctly as long as the programmer keeps in mind that the destination branching address must fall within the physical boundaries of the program memory size (locations 00H to 3FFH for the 89C1051U). Violating the physical space limits may cause unknown program behavior.

CJNE [...], DJNZ [...], JB, JNB, JC, JNC, JBC, JZ, JNZ With these conditional branching instructions the same rule above applies. Again, violating the memory boundaries may cause erratic execution.

For applications involving interrupts the normal interrupt service routine address locations of the 80C51 family architecture have been preserved.

#### 2. MOVX-related instructions, Data Memory:

The AT89C1051U contains 64 bytes of internal data memory. Thus, in the AT89C1051U the stack depth is limited to 64 bytes, the amount of available RAM. External DATA memory access is not supported in this device, nor is external PROGRAM memory execution. Therefore, no MOVX [...] instructions should be included in the program.

A typical 80C51 assembler will still assemble instructions, even if they are written in violation of the restrictions mentioned above. It is the responsibility of the controller user to know the physical features and limitations of the device being used and adjust the instructions used correspondingly.

### Programmable Serial UART Channel<sup>(1)</sup>

The AT89C1051U offers a programmable serial port which is compatible with the serial ports on other AT89 series flash MCU products. A detailed description of the serial port operation can be found in the Hardware Description section of the Atmel AT89 series flash MCU data book.

Note: 1. This feature is not available on the AT89C1051.

### **Program Memory Lock Bits**

On the chip are two lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below:

#### Lock Bit Protection Modes<sup>(1)</sup>

| Prog | Program Lock Bits |     |                                               |
|------|-------------------|-----|-----------------------------------------------|
|      | LB1               | LB2 | Protection Type                               |
| 1    | U                 | U   | No program lock features.                     |
| 2    | Р                 | U   | Further programming of the Flash is disabled. |
| 3    | Р                 | Р   | Same as mode 2, also verify is disabled.      |

Note: 1. The Lock Bits can only be erased with the Chip Erase operation.

#### Idle Mode

In idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.

P1.0 and P1.1 should be set to "0" if no external pullups are used, or set to "1" if external pullups are used.

It should be noted that when idle is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

#### **Power-down Mode**

In the power-down mode the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before  $V_{CC}$ 





is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

P1.0 and P1.1 should be set to "0" if no external pullups are used, or set to "1" if external pullups are used.

### **Programming The Flash**

The AT89C1051U is shipped with the 1K byte of on-chip PEROM code memory array in the erased state (i.e., contents = FFH) and ready to be programmed. The code memory array is programmed one byte at a time. Once the array is programmed, to re-program any non-blank byte, the entire memory array needs to be erased electrically.

**Internal Address Counter:** The AT89C1051U contains an internal PEROM address counter which is always reset to 000H on the rising edge of RST and is advanced by applying a positive going pulse to pin XTAL1.

**Programming Algorithm:** To program the AT89C1051U, the following sequence is recommended.

- Power-up sequence: Apply power between V<sub>CC</sub> and GND pins Set RST and XTAL1 to GND
- 2. Set pin RST to "H" Set pin P3.2 to "H"
- 3. Apply the appropriate combination of "H" or "L" logic levels to pins P3.3, P3.4, P3.5, P3.7 to select one of the programming operations shown in the PEROM Programming Modes table.

To Program and Verify the Array:

- 4. Apply data for Code byte at location 000H to P1.0 to P1.7.
- 5. Raise RST to 12V to enable programming.
- 6. Pulse P3.2 once to program a byte in the PEROM array or the lock bits. The byte-write cycle is self-timed and typically takes 1.2 ms.
- To verify the programmed data, lower RST from 12V to logic "H" level and set pins P3.3 to P3.7 to the appropriate levels. Output data can be read at the port P1 pins.
- 8. To program a byte at the next address location, pulse XTAL1 pin once to advance the internal address counter. Apply new data to the port P1 pins.
- 9. Repeat steps 5 through 8, changing data and advancing the address counter for the entire 1K byte array or until the end of the object file is reached.
- 10. Power-off sequence: set XTAL1 to "L" set RST to "L" Turn V<sub>CC</sub> power off

**Data Polling:** The AT89C1051U features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written data on P1.7. Once the write cycle has been completed, true data is valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

**Ready/Busy:** The Progress of byte programming can also be monitored by the RDY/BSY output signal. Pin P3.1 is pulled low after P3.2 goes High during programming to indicate BUSY. P3.1 is pulled High again when programming is done to indicate READY.

**Program Verify:** If lock bits LB1 and LB2 have not been programmed code data can be read back via the data lines for verification:

- 1. Reset the internal address counter to 000H by bringing RST from "L" to "H".
- 2. Apply the appropriate control signals for Read Code data and read the output data at the port P1 pins.
- 3. Pulse pin XTAL1 once to advance the internal address counter.
- 4. Read the next code data byte at the port P1 pins.
- 5. Repeat steps 3 and 4 until the entire array is read.

The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.

**Chip Erase:** The entire PEROM array (1K byte) and the two Lock Bits are erased electrically by using the proper combination of control signals and by holding P3.2 low for 10 ms. The code array is written with all "1"s in the Chip Erase operation and must be executed before any nonblank memory byte can be re-programmed.

**Reading the Signature Bytes:** The signature bytes are read by the same procedure as a normal verification of locations 000H, 001H, and 002H, except that P3.5 and P3.7 must be pulled to a logic low. The values returned are as follows.

(000H) = 1EH indicates manufactured by Atmel (001H) = 12H indicates 89C1051U

### **Programming Interface**

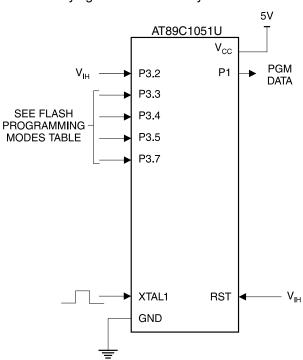
Every code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion.

All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.

### **Flash Programming Modes**

| Mode                              |         | RST/VPP | P3.2/PROG | P3.3 | P3.4 | P3.5 | P3.7 |
|-----------------------------------|---------|---------|-----------|------|------|------|------|
| Write Code Data <sup>(1)(3)</sup> |         | 12V     | ~         | L    | Н    | Н    | Н    |
| Read Code Data <sup>(1)</sup>     |         | н       | Н         | L    | L    | н    | Н    |
| Write Lock                        | Bit - 1 | 12V     | ~         | Н    | Н    | Н    | Н    |
|                                   | Bit - 2 | 12V     | ~         | Н    | Н    | L    | L    |
| Chip Erase                        | 1       | 12V     | (2)       | Н    | L    | L    | L    |
| Read Signature Byte               |         | Н       | Н         | L    | L    | L    | L    |

Notes: 1. The internal PEROM address counter is reset to 000H on the rising edge of RST and is advanced by a positive pulse at XTAL1 pin.


2. Chip Erase requires a 10-ms  $\overline{\text{PROG}}$  pulse.

3. P3.1 is pulled Low during programming to indicate RDY/BSY.

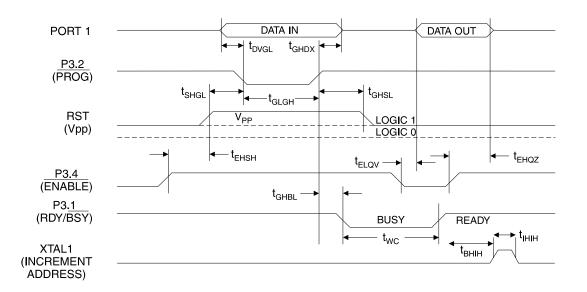
#### Figure 3. Programming the Flash Memory

5V AT89C1051U V<sub>CC</sub> RDY/BSY P3.1 PGM PROG P1 P3.2 DATA P3.3 SEE FLASH P3.4 PROGRAMMING P3.5 MODES TABLE P3.7  $V_{\rm H}/V_{\rm PP}$ XTAL1 RST TO INCREMENT GND ADDRESS COUNTER Ī

Figure 4. Verifying the Flash Memory








### **Flash Programming and Verification Characteristics**

 $T_A = 0^\circ C$  to 70°C,  $V_{CC} = 5.0 \pm 10\%$ 

| Symbol            | Parameter                             | Min  | Max  | Units |
|-------------------|---------------------------------------|------|------|-------|
| V <sub>PP</sub>   | Programming Enable Voltage            | 11.5 | 12.5 | V     |
| I <sub>PP</sub>   | Programming Enable Current            |      | 250  | μA    |
| t <sub>DVGL</sub> | Data Setup to PROG Low                | 1.0  |      | μs    |
| t <sub>GHDX</sub> | Data Hold after PROG                  | 1.0  |      | μs    |
| t <sub>EHSH</sub> | P3.4 (ENABLE) High to V <sub>PP</sub> | 1.0  |      | μs    |
| t <sub>SHGL</sub> | V <sub>PP</sub> Setup to PROG Low     | 10   |      | μs    |
| t <sub>GHSL</sub> | V <sub>PP</sub> Hold after PROG       | 10   |      | μs    |
| t <sub>GLGH</sub> | PROG Width                            | 1    | 110  | μs    |
| t <sub>ELQV</sub> | ENABLE Low to Data Valid              |      | 1.0  | μs    |
| t <sub>EHQZ</sub> | Data Float after ENABLE               | 0    | 1.0  | μs    |
| t <sub>GHBL</sub> | PROG High to BUSY Low                 |      | 50   | ns    |
| t <sub>wc</sub>   | Byte Write Cycle Time                 |      | 2.0  | ms    |
| t <sub>BHIH</sub> | RDY/BSY to Increment Clock Delay      | 1.0  |      | μs    |
| t <sub>IHIL</sub> | Increment Clock High                  | 200  |      | ns    |

#### **Flash Programming and Verification Waveforms**



### Absolute Maximum Ratings\*

| °℃ |
|----|
| °C |
| 0V |
| 6V |
| mΑ |
|    |

\*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

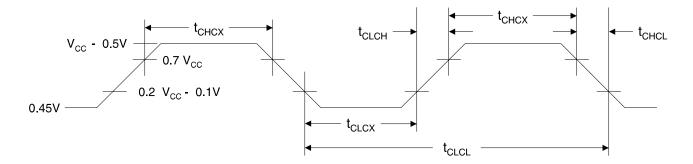
### **DC Characteristics**

 $T_A = -40^{\circ}C$  to 85°C,  $V_{CC} = 2.7V$  to 6.0V (unless otherwise noted)

| Parameter                                         | Condition                                                                                                                                                                                                                                                                                                                                                                                               | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Low-voltage                                 |                                                                                                                                                                                                                                                                                                                                                                                                         | -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2 V <sub>CC</sub> - 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input High-voltage                                | (Except XTAL1, RST)                                                                                                                                                                                                                                                                                                                                                                                     | 0.2 V <sub>CC</sub> + 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>CC</sub> + 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Input High-voltage                                | (XTAL1, RST)                                                                                                                                                                                                                                                                                                                                                                                            | 0.7 V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>CC</sub> + 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Output Low-voltage <sup>(1)</sup><br>(Ports 1, 3) | $I_{OL} = 20 \text{ mA}, V_{CC} = 5V$<br>$I_{OL} = 10 \text{ mA}, V_{CC} = 2.7V$                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Output High-voltage                               | $I_{OH} = -80 \ \mu A, \ V_{CC} = 5V \pm 10\%$                                                                                                                                                                                                                                                                                                                                                          | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (Ports 1, 3)                                      | I <sub>OH</sub> = -30 μA                                                                                                                                                                                                                                                                                                                                                                                | 0.75 V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                   | I <sub>OH</sub> = -12 μA                                                                                                                                                                                                                                                                                                                                                                                | 0.9 V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logical 0 Input Current<br>(Ports 1, 3)           | V <sub>IN</sub> = 0.45V                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Logical 1 to 0 Transition Current<br>(Ports 1, 3) | $V_{IN} = 2V, V_{CC} = 5V \pm 10\%$                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Input Leakage Current<br>(Port P1.0, P1.1)        | $0 < V_{IN} < V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ±10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Comparator Input Offset Voltage                   | $V_{\rm CC} = 5V$                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Comparator Input Common<br>Mode Voltage           |                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Reset Pulldown Resistor                           |                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pin Capacitance                                   | Test Freq. = 1 MHz, $T_A = 25^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Power Supply Current                              | Active Mode, 12 MHz, V <sub>CC</sub> = 6V/3V                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15/5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   | Idle Mode, 12 MHz, V <sub>CC</sub> = 6V/3V<br>P1.0 & P1.1 = 0V or V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Power-down Mode <sup>(2)</sup>                    | $V_{CC} = 6V P1.0 \& P1.1 = 0V \text{ or } V_{CC}$                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   | V <sub>CC</sub> = 3V P1.0 & P1.1 = 0V or V <sub>CC</sub>                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                   | Input Low-voltageInput High-voltageInput High-voltageOutput Low-voltage(1)<br>(Ports 1, 3)Output High-voltage<br>(Ports 1, 3)Logical 0 Input Current<br>(Ports 1, 3)Logical 1 to 0 Transition Current<br>(Ports 1, 3)Input Leakage Current<br>(Port P1.0, P1.1)Comparator Input Offset Voltage<br>Comparator Input Common<br>Mode VoltageReset Pulldown ResistorPin Capacitance<br>Power Supply Current | $\begin{tabular}{ c c c c } \hline $Input Low-voltage & $Input High-voltage & $(Except XTAL1, RST)$ \\ \hline $Input High-voltage & $(XTAL1, RST)$ \\ \hline $Output Low-voltage^{(1)}$ & $I_{OL} = 20 \mbox{ mA}, V_{CC} = 5V$ \\ $I_{OL} = 10 \mbox{ mA}, V_{CC} = 2.7V$ \\ \hline $Output High-voltage $(Ports 1, 3)$ & $I_{OH} = -30 \mbox{ $\mu$A}$ , $V_{CC} = 5V \pm 10\%$ \\ \hline $I_{OH} = -30 \mbox{ $\mu$A}$ & $I_{OH} = -30 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -30 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = -12 \mbox{ $\mu$A}$ & $I_{OH} = -12 \mbox{ $\mu$A}$ \\ \hline $I_{OH} = 10, \mbox{ $\mu$A}$ & $I_{OH} = 0V_{CC}$ \\ \hline $Comparator Input Offset Voltage & $V_{CC} = 5V$ \\ \hline $Comparator Input Common$ \\ $Mode Voltage $ & $I_{OH} = 10 \mbox{ $Mode$ $\mu$A}$ \\ \hline $Power Supply Current $ & $Active Mode, 12 \mbox{ $MHz$, $V_{CC} = 6V/3V$ \\ \hline $Idle Mode, 12 \mbox{ $MHz$, $V_{CC} = 6V/3V$ \\ \hline $Power-down Mode^{(2)}$ & $V_{CC} = 6V \mbox{ $P1.0 \mbox{ $P1.1 = 0V \ $or $V_{CC}$ \\ \hline $Power-down Mode^{(2)}$ & $V_{CC} = 6V \mbox{ $P1.0 \mbox{ $P1.1 = 0V \ $or $V_{CC}$ \\ \hline $V_{CC} = 6V \mbox{ $P1.0 \mbox{ $P1.1 = 0V \ $or $V_{CC}$ \\ \hline $V_{CC} = 6V \mbox{ $P1.0 \mbox{ $P1.1 = 0V \ $or $V_{CC}$ \\ \hline $V_{CC} = 00 \ $V_{CC}$ $ | $\begin{tabular}{ c c c c } \hline $$ Input Low-voltage & $$ -0.5$ \\ \hline $$ Input High-voltage & (Except XTAL1, RST) & $$ 0.2 V_{CC} + 0.9$ \\ \hline $$ Input High-voltage & (XTAL1, RST) & $$ 0.7 V_{CC}$ \\ \hline $$ Output Low-voltage^{(1)}$ & $$ I_{OL} = 20 mA, V_{CC} = 5V$ \\ $$ I_{OL} = 10 mA, V_{CC} = 2.7V$ \\ \hline $$ Output High-voltage & $$ I_{OH} = -80 \ \mu A, V_{CC} = 5V \pm 10\% & $$ 2.4$ \\ \hline $$ I_{OH} = -30 \ \mu A & $$ 0.75 \ V_{CC}$ \\ \hline $$ I_{OH} = -12 \ \mu A & $$ 0.9 \ V_{CC}$ \\ \hline $$ I_{OH} = -12 \ \mu A & $$ 0.9 \ V_{CC}$ \\ \hline $$ Logical 0 Input Current & $$ V_{IN} = 0.45V$ \\ \hline $$ Ports 1, 3$ & $$ V_{IN} = 2V, V_{CC} = 5V \pm 10\% & $$ 0.9 \ V_{CC}$ \\ \hline $$ Logical 1 to 0 Transition Current & $$ V_{IN} = 2V, V_{CC} = 5V \pm 10\% & $$ 0.75 \ V_{CC}$ \\ \hline $$ Comparator Input Offset Voltage & $$ V_{IN} = 2V, V_{CC} = 5V \pm 10\% & $$ 0$ \\ \hline $$ Comparator Input Offset Voltage & $$ V_{CC} = 5V$ \\ \hline $$ Comparator Input Common & $$ Mode Voltage & $$ V_{CC} = 5V$ \\ \hline $$ Power Supply Current & $$ Active Mode, 12 \ MHz, V_{CC} = 6V/3V$ \\ \hline $$ Idle Mode, 12 \ MHz, V_{CC} = 6V/3V$ \\ \hline $$ Idle Mode, 12 \ MHz, V_{CC} = 6V/3V$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 6V \ Pl.0 \ & Pl.1 = 0V \ or V_{CC}$ \\ \hline $$ Power-down \ Mode^{(2)} & $$ V_{CC} = 0V \ Pl.0 \ & Pl.1 = 0V \ o$ | $\begin{tabular}{ c c c c c } \hline $$ Input Low-voltage & $$ -0.5 & $0.2 \ V_{CC} \cdot 0.1$ \\ \hline $$ Input High-voltage & (Except XTAL1, RST) & $$ 0.2 \ V_{CC} + 0.5$ \\ \hline $$ Input High-voltage & (XTAL1, RST) & $$ 0.7 \ V_{CC} & $$ V_{CC} + 0.5$ \\ \hline $$ Output Low-voltage^{(1)}$ & $$ I_{0L} = 20 \ mA, \ V_{CC} = 5V$ & $$ 0.5$ \\ \hline $$ Output High-voltage & $$ I_{0L} = 10 \ mA, \ V_{CC} = 2.7V$ & $$ 0.5$ \\ \hline $$ Output High-voltage & $$ I_{0H} = -80 \ \muA, \ V_{CC} = 5V \pm 10\% & $$ 2.4$ \\ \hline $$ I_{0H} = -30 \ \muA & $$ 0.75 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $$ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $ I_{0-H} = -12 \ \muA & $$ 0.9 \ V_{CC}$ & $ I_{0-H} = -12 \ $ |

Notes: 1. Under steady state (non-transient) conditions, I<sub>OL</sub> must be externally limited as follows:

Maximum I<sub>OL</sub> per port pin: 20 mA


Maximum total  $I_{OL}$  for all output pins: 80 mA If  $I_{OL}$  exceeds the test condition,  $V_{OL}$  may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

2. Minimum  $V_{CC}$  for Power-down is 2V.



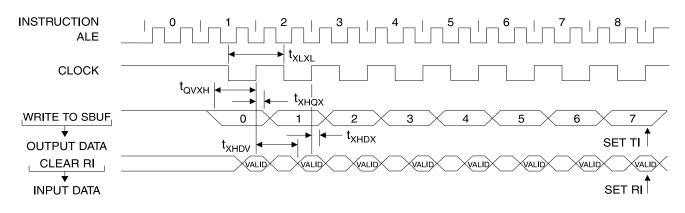


### **External Clock Drive Waveforms**



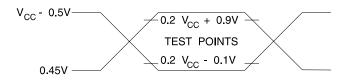
#### **External Clock Drive**

|                     |                      | V <sub>CC</sub> = 2. | 7V to 6.0V | V <sub>CC</sub> = 4.0 | )V to 6.0V |       |
|---------------------|----------------------|----------------------|------------|-----------------------|------------|-------|
| Symbol              | Parameter            | Min                  | Max        | Min                   | Max        | Units |
| 1/t <sub>CLCL</sub> | Oscillator Frequency | 0                    | 12         | 0                     | 24         | MHz   |
| t <sub>CLCL</sub>   | Clock Period         | 83.3                 |            | 41.6                  |            | ns    |
| t <sub>CHCX</sub>   | High Time            | 30                   |            | 15                    |            | ns    |
| t <sub>CLCX</sub>   | Low Time             | 30                   |            | 15                    |            | ns    |
| t <sub>CLCH</sub>   | Rise Time            |                      | 20         |                       | 20         | ns    |
| t <sub>CHCL</sub>   | Fall Time            |                      | 20         |                       | 20         | ns    |

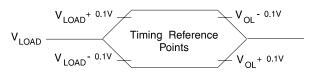

# AT89C1051U

### Serial Port Timing: Shift Register Mode Test Conditions

|                   |                                          |     | 12 MHz Osc |                          | Variable Oscillator      |       |
|-------------------|------------------------------------------|-----|------------|--------------------------|--------------------------|-------|
| Symbol            | Parameter                                | Min | Мах        | Min                      | Max                      | Units |
| t <sub>XLXL</sub> | Serial Port Clock Cycle Time             | 1.0 |            | 12t <sub>CLCL</sub>      |                          | μs    |
| t <sub>QVXH</sub> | Output Data Setup to Clock Rising Edge   | 700 |            | 10t <sub>CLCL</sub> -133 |                          | ns    |
| t <sub>XHQX</sub> | Output Data Hold after Clock Rising Edge | 50  |            | 2t <sub>CLCL</sub> -117  |                          | ns    |
| t <sub>XHDX</sub> | Input Data Hold after Clock Rising Edge  | 0   |            | 0                        |                          | ns    |
| t <sub>XHDV</sub> | Clock Rising Edge to Input Data Valid    |     | 700        |                          | 10t <sub>CLCL</sub> -133 | ns    |


 $V_{CC} = 5.0V \pm 20\%$ ; Load Capacitance = 80 pF

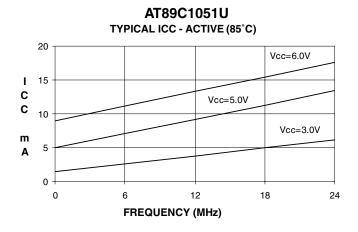
### Shift Register Mode Timing Waveforms



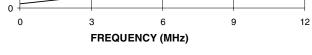

### AC Testing Input/Output Waveforms<sup>(1)</sup>

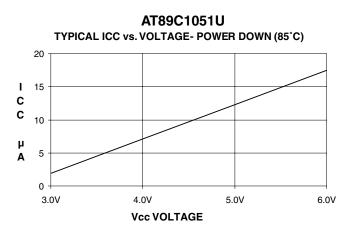
#### Float Waveforms<sup>(1)</sup>




Note: 1. AC Inputs during testing are driven at  $V_{CC}$  - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at  $V_{IH}$  min. for a logic 1 and  $V_{IL}$  max. for a logic 0.




Note: 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when 100 mV change from the loaded V<sub>OH</sub>/V<sub>OL</sub> level occurs.








AT89C1051U TYPICAL ICC - IDLE (85°C) 3 Vcc=6.0V 2 Vcc=5.0V 1 Vcc=3.0V





L

С

С

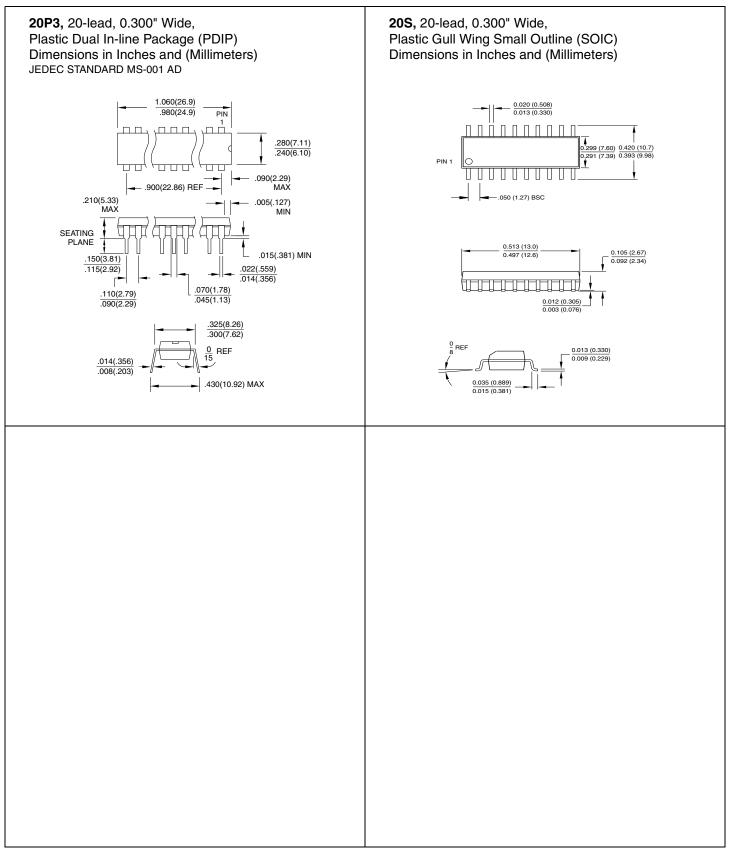
m

Α

- Notes: 1. XTAL1 tied to GND for  $I_{CC}$  (power-down) 2. P.1.0 and P1.1 =  $V_{CC}$  or GND 3. Lock bits programmed
- AT89C1051U



| Speed<br>(MHz) | Power<br>Supply | Ordering Code                      | Package     | Operation Range               |
|----------------|-----------------|------------------------------------|-------------|-------------------------------|
| 12             | 2.7V to 6.0V    | AT89C1051U-12PC<br>AT89C1051U-12SC | 20P3<br>20S | Commercial<br>(0°C to 70°C)   |
|                |                 | AT89C1051U-12PI<br>AT89C1051U-12SI | 20P3<br>20S | Industrial<br>(-40°C to 85°C) |
| 24             | 4.0V to 6.0V    | AT89C1051U-24PC<br>AT89C1051U-24SC | 20P3<br>20S | Commercial<br>(0°C to 70°C)   |
|                |                 | AT89C1051U-24PI<br>AT89C1051U-24SI | 20P3<br>20S | Industrial<br>(-40°C to 85°C) |


## **Ordering Information**

|      | Package Type                                                 |
|------|--------------------------------------------------------------|
| 20P3 | 20-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP)    |
| 20S  | 20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC) |





### **Packaging Information**





#### **Atmel Headquarters**

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697

#### Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

#### Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

#### **Atmel Operations**

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

#### *Fax-on-Demand* North America: 1-(800) 292-8635

International: 1-(408) 441-0732

*e-mail* literature@atmel.com

Web Site http://www.atmel.com

*BBS* 1-(408) 436-4309

#### © Atmel Corporation 1999.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing <sup>®</sup> and/or <sup>™</sup> are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

