Features

- Fast Read Access Time - 150 ns
- Automatic Page Write Operation
- Internal Address and Data Latches for 64 Bytes
- Internal Control Timer
- Fast Write Cycle Times
- Page Write Cycle Time: $\mathbf{3}$ ms or 10 ms Maximum
- 1 to 64-byte Page Write Operation
- Low Power Dissipation
- 50 mA Active Current
- $200 \mu \mathrm{~A}$ CMOS Standby Current
- Hardware and Software Data Protection
- DATA Polling for End of Write Detection
- High Reliability CMOS Technology
- Endurance: 10^{4} or 10^{5} Cycles
- Data Retention: 10 Years
- Single 5V $\pm 10 \%$ Supply
- CMOS and TTL Compatible Inputs and Outputs
- JEDEC Approved Byte-wide Pinout
- Full Military and Industrial Temperature Ranges
- Green (Pb/Halide-free) Packaging Option

1. Description

The AT28C256 is a high-performance electrically erasable and programmable readonly memory. Its 256 K of memory is organized as 32,768 words by 8 bits. Manufactured with Atmel's advanced nonvolatile CMOS technology, the device offers access times to 150 ns with power dissipation of just 440 mW . When the device is deselected, the CMOS standby current is less than $200 \mu \mathrm{~A}$.
The AT28C256 is accessed like a Static RAM for the read or write cycle without the need for external components. The device contains a 64-byte page register to allow writing of up to 64 bytes simultaneously. During a write cycle, the addresses and 1 to 64 bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA Polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

Atmel's AT28C256 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 64 bytes of EEPROM for device identification or tracking.

AT28C256
2. Pin Configurations

Pin Name	Function
A0 - A14	Addresses
$\overline{\mathrm{CE}}$	Chip Enable
$\overline{\mathrm{OE}}$	Output Enable
$\overline{\mathrm{WE}}$	Write Enable
$\mathrm{I} / \mathrm{O}-\mathrm{I} / \mathrm{O7}$	Data Inputs/Outputs
NC	No Connect
DC	Don't Connect

$2.1 \quad$ 28-lead TSOP Top View

2.2 28-lead PGA Top View

4	3	1	27	26
A 6	A 7	A 14	$\overline{\mathrm{WE}}$	A 13
5	2	28	24	25
A 5	A 12	VCC	A 9	A 8
7	6		22	23
A 3	A 4		$\overline{\mathrm{OE}}$	A 11
9	8		20	21
A 1	A 2		CE	A 10
11	10	14	16	19
$\mathrm{I} / \mathrm{O} 0$	A 0	GND	$\mathrm{I} / \mathrm{O} 4$	$\mathrm{I} / \mathrm{O} 7$
12	13	15	17	18
$\mathrm{I} / \mathrm{O} 1$	$\mathrm{I} / \mathrm{O} 2$	$\mathrm{I} / \mathrm{O} 3$	$\mathrm{I} / \mathrm{O} 5$	$\mathrm{I} / \mathrm{O} 6$

2.3 32-pad LCC, 28-lead PLCC Top View

Note: PLCC package pins 1 and 17 are Don't Connect.

2.4 28-lead Cerdip/PDIP/Flatpack/SOIC Top View

3. Block Diagram

4. Device Operation

4.1 Read

The AT28C256 is accessed like a Static RAM. When CE and OE are low and $\overline{W E}$ is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state when either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ is high. This dual-line control gives designers flexibility in preventing bus contention in their system.

4.2 Byte Write

A low pulse on the $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$ input with $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ low (respectively) and $\overline{\mathrm{OE}}$ high initiates a write cycle. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$. Once a byte write has been started it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of t_{wc}, a read operation will effectively be a polling operation.

4.3 Page Write

The page write operation of the AT28C256 allows 1 to 64 bytes of data to be written into the device during a single internal programming period. A page write operation is initiated in the same manner as a byte write; the first byte written can then be followed by 1 to 63 additional bytes. Each successive byte must be written within $150 \mu \mathrm{~s}\left(\mathrm{t}_{\mathrm{BLC}}\right)$ of the previous byte. If the $\mathrm{t}_{\mathrm{BLC}}$ limit is exceeded the AT28C256 will cease accepting data and commence the internal programming operation. All bytes during a page write operation must reside on the same page as defined by the state of the A6-A14 inputs. For each $\overline{\text { WE }}$ high to low transition during the page write operation, A6-A14 must be the same.

The A0 to A5 inputs are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

4.4 $\overline{\text { DATA }}$ Polling

The AT28C256 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data to be presented on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next write cycle may begin. DATA Polling may begin at anytime during the write cycle.

4.5 Toggle Bit

In addition to DATA Polling the AT28C256 provides another method for determining the end of a write cycle. During the write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Reading the toggle bit may begin at any time during the write cycle.

4.6 Data Protection

If precautions are not taken, inadvertent writes may occur during transitions of the host system power supply. Atmel has incorporated both hardware and software features that will protect the memory against inadvertent writes.

4.6.1 Hardware Protection

Hardware features protect against inadvertent writes to the AT28C256 in the following ways: (a) V_{CC} sense - if V_{CC} is below 3.8 V (typical) the write function is inhibited; (b) V_{CC} power-on delay once V_{cc} has reached 3.8 V the device will automatically time out 5 ms (typical) before allowing a write; (c) write inhibit - holding any one of $\overline{\mathrm{OE}}$ low, $\overline{\mathrm{CE}}$ high or WE high inhibits write cycles; and (d) noise filter - pulses of less than 15 ns (typical) on the $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CE}}$ inputs will not initiate a write cycle.

4.6.2 Software Data Protection

A software controlled data protection feature has been implemented on the AT28C256. When enabled, the software data protection (SDP), will prevent inadvertent writes. The SDP feature may be enabled or disabled by the user; the AT28C256 is shipped from Atmel with SDP disabled.

SDP is enabled by the host system issuing a series of three write commands; three specific bytes of data are written to three specific addresses (refer to "Software Data Protection" algorithm). After writing the 3-byte command sequence and after t_{wc} the entire AT28C256 will be protected against inadvertent write operations. It should be noted, that once protected the host may still perform a byte or page write to the AT28C256. This is done by preceding the data to be written by the same 3 -byte command sequence used to enable SDP.

Once set, SDP will remain active unless the disable command sequence is issued. Power transitions do not disable SDP and SDP will protect the AT28C256 during power-up and power-down conditions. All command sequences must conform to the page write timing specifications. The data in the enable and disable command sequences is not written to the device and the memory addresses used in the sequence may be written with data in either a byte or page write operation.

After setting SDP, any attempt to write to the device without the 3-byte command sequence will start the internal write timers. No data will be written to the device; however, for the duration of t_{wc}, read operations will effectively be polling operations.

4.7 Device Identification

An extra 64 bytes of EEPROM memory are available to the user for device identification. By raising A9 to $12 \mathrm{~V} \pm 0.5 \mathrm{~V}$ and using address locations 7 FCOH to 7 FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

4.8 Optional Chip Erase Mode

The entire device can be erased using a 6-byte software code. Please see "Software Chip Erase" application note for details.

5. DC and AC Operating Range

		AT28C256-15	AT28C256-20	AT28C256-25	AT28C256-35
Operating Temperature (Case)	Ind.	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$			
	Mil.	$-55^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}$
V_{CC} Power Supply	$5 \mathrm{~V} \pm 10 \%$				

6. Operating Modes

Mode	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\overline{\mathrm{WE}}$	$\mathbf{I / O}$
Read	V_{IL}	V_{IL}	V_{IH}	$\mathrm{D}_{\mathrm{OUT}}$
Write ${ }^{(2)}$	V_{IL}	V_{IH}	V_{IL}	D_{IN}
Standby/Write Inhibit	V_{IH}	$\mathrm{X}^{(1)}$	X	High Z
Write Inhibit	X	X	V_{IH}	
Write Inhibit	X	V_{IL}	X	
Output Disable	X	V_{IH}	X	
Chip Erase	V_{IL}	$\mathrm{V}_{\mathrm{H}}{ }^{(3)}$	V_{IL}	High Z

Notes: 1. X can be V_{IL} or V_{IH}.
2. Refer to AC programming waveforms.
3. $\mathrm{V}_{\mathrm{H}}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

7. Absolute Maximum Ratings*

Temperature under Bias $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature.................................... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
All Input Voltages
(including NC Pins)
with Respect to Ground 0.6 V to +6.25 V
All Output Voltages
with Respect to Ground 0.6 V to V CC +0.6 V
Voltage on OE and A9
with Respect to Ground 0.6 V to +13.5 V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

8. DC Characteristics

Symbol	Parameter	Condition	Min	Max	Units
I_{LI}	Input Load Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$		10	$\mu \mathrm{~A}$
I_{LO}	Output Leakage Current	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0 \mathrm{~V}$ to V_{CC}		10	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{SB} 1}$	$\mathrm{~V}_{\mathrm{CC}}$ Standby Current CMOS	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$	Ind.		200
	Mil.		$\mu \mathrm{A}$		
$\mathrm{I}_{\mathrm{SB} 2}$	$\mathrm{~V}_{\mathrm{CC}}$ Standby Current TTL	$\overline{\mathrm{CE}}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+1 \mathrm{~V}$		300	$\mu \mathrm{~A}$
I_{CC}	V_{CC} Active Current	$\mathrm{f}=5 \mathrm{MHz} ; \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$		3	mA
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage			50	mA
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage		2.0	0.8	V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$		V	
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	0.45	V

9. AC Read Characteristics

Symbol	Parameter	AT28C256-15		AT28C256-20		AT28C256-25		AT28C256-35		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\text {ACC }}$	Address to Output Delay		150		200		250		350	ns
$\mathrm{t}_{\mathrm{CE}}{ }^{(1)}$	$\overline{\mathrm{CE}}$ to Output Delay		150		200		250		350	ns
$\mathrm{t}_{\mathrm{OE}}{ }^{(2)}$	$\overline{\text { OE to Output Delay }}$	0	70	0	80	0	100	0	100	ns
$\mathrm{t}_{\mathrm{DF}}{ }^{(3)(4)}$	$\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ to Output Float	0	50	0	55	0	60	0	70	ns
t_{OH}	Output Hold from $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}$ or Address, whichever occurred first	0		0		0		0		ns

10. AC Read Waveforms ${ }^{(1)(2)(3)(4)}$

ADDRESS

Notes: 1. $\overline{\mathrm{CE}}$ may be delayed up to $\mathrm{t}_{\mathrm{ACC}}-\mathrm{t}_{\mathrm{CE}}$ after the address transition without impact on $\mathrm{t}_{\mathrm{ACC}}$.
2. $\overline{\mathrm{OE}}$ may be delayed up to $\mathrm{t}_{\mathrm{CE}}-\mathrm{t}_{\mathrm{OE}}$ after the falling edge of $\overline{\mathrm{CE}}$ without impact on t_{CE} or by $\mathrm{t}_{\mathrm{ACC}}-\mathrm{t}_{\mathrm{OE}}$ after an address change without impact on $t_{\text {Acc }}$.
3. $t_{D F}$ is specified from $\overline{O E}$ or $\overline{C E}$ whichever occurs first $\left(C_{L}=5 p F\right)$.
4. This parameter is characterized and is not 100% tested.

11. Input Test Waveforms and Measurement Level

$$
\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}<5 \mathrm{~ns}
$$

12. Output Test Load

13. Pin Capacitance

$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}^{(1)}$

Symbol	Typ	Max	Units	Conditions
$\mathrm{C}_{\text {IN }}$	4	6	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	8	12	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

Note: 1. This parameter is characterized and is not 100% tested.

14. AC Write Characteristics

Symbol	Parameter	Min	Max
$\mathrm{t}_{\mathrm{AS}}, \mathrm{t}_{\mathrm{OES}}$	Address, $\overline{\text { OE Setup Time }}$	0	
t_{AH}	Address Hold Time	50	
t_{CS}	Chip Select Setup Time	0	ns
t_{CH}	Chip Select Hold Time	0	ns
t_{WP}	Write Pulse Width (产 or $\overline{\mathrm{CE}})$	ns	
t_{DS}	Data Setup Time	100	ns
$\mathrm{t}_{\mathrm{DH}}, \mathrm{t}_{\mathrm{OEH}}$	Data, $\overline{\text { OE Hold Time }}$	50	ns
t_{DV}	Time to Data Valid	0	ns

Note: 1. NR = No Restriction

15. AC Write Waveforms

15.1 WE Controlled

15.2 CE Controlled

16. Page Mode Characteristics

Symbol	Parameter		Min	Max	Units
$t_{\text {wc }}$	Write Cycle Time (option available)	AT28C256		10	ms
		AT28C256F		3	ms
t_{AS}	Address Setup Time		0		ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time		50		ns
t_{DS}	Data Setup Time		50		ns
t_{DH}	Data Hold Time		0		ns
t_{WP}	Write Pulse Width		100		ns
$\mathrm{t}_{\text {BLC }}$	Byte Load Cycle Time			150	$\mu \mathrm{s}$
$\mathrm{t}_{\text {WPH }}$	Write Pulse Width High		50		ns

17. Page Mode Write Waveforms ${ }^{(1)(2)}$

Notes: 1. A6 through A14 must specify the same page address during each high to low transition of $\overline{\mathrm{WE}}$ (or $\overline{\mathrm{CE}}$).
2. $\overline{\mathrm{OE}}$ must be high only when $\overline{\mathrm{WE}}$ and $\overline{\mathrm{CE}}$ are both low.

18. Chip Erase Waveforms

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{S}}=\mathrm{t}_{\mathrm{H}}=5 \mu \mathrm{sec}(\mathrm{~min} .) \\
& \mathrm{t}_{\mathrm{W}}=10 \mathrm{msec}(\mathrm{~min} .) \\
& \mathrm{V}_{\mathrm{H}}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}
\end{aligned}
$$

19. Software Data Protection Enable Algorithm ${ }^{(1)}$

Notes:

1. Data Format: $\mathrm{I} / \mathrm{O} 7-\mathrm{I} / \mathrm{O} 0(\mathrm{Hex})$;

Address Format: A14-A0 (Hex)
2. Write Protect state will be activated at end of write even if no other data is loaded.
3. Write Protect state will be deactivated at end of write period even if no other data is loaded.
4. 1 to 64 bytes of data are loaded.
20. Software Data Protection

Disable Algorithm ${ }^{(1)}$

21. Software Protected Write Cycle Waveforms ${ }^{(1)(2)}$

Notes: 1. A6 through A14 must specify the same page address during each high to low transition of $\overline{\mathrm{WE}}$ (or $\overline{\mathrm{CE}}$) after the software code has been entered.
2. $\overline{\mathrm{OE}}$ must be high only when $\overline{\mathrm{WE}}$ and $\overline{\mathrm{CE}}$ are both low.

22. $\overline{\text { Data }}$ Polling Characteristics ${ }^{(1)}$

Symbol	Parameter	Min	Typ	Max
t_{DH}	Data Hold Time	0		
$\mathrm{t}_{\mathrm{OEH}}$	$\overline{\text { OE Hold Time }}$	0		ns
t_{OE}	$\overline{\text { OE to Output Delay }}{ }^{(2)}$			ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	0		ns

Notes: 1. These parameters are characterized and not 100% tested.
2. See"AC Read Characteristics" on page 6.

23. Data Polling Waveforms

24. Toggle Bit Characteristics ${ }^{(1)}$

Symbol	Parameter	Min	Typ	Max
$\mathrm{t}_{\text {DH }}$	Data Hold Time	10		
$\mathrm{t}_{\text {OEH }}$	OE Hold Time	10		ns
$\mathrm{t}_{\text {OE }}$	$\overline{\text { OE to Output Delay }}{ }^{(2)}$			ns
$\mathrm{t}_{\text {OEHP }}$	OE High Pulse	150		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	0		ns

Notes: 1. These parameters are characterized and not 100% tested.
2. See "AC Read Characteristics" on page 6.

25. Toggle Bit Waveforms ${ }^{(1)(2)(3)}$

Notes: 1. Toggling either $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$ or both $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ will operate toggle bit.
2. Beginning and ending state of $\mathrm{l} / \mathrm{O} 6$ will vary.
3. Any address location may be used but the address should not vary.
26. Normalized I Cc Graphs

NORMALIZED SUPPLY CURRENT vs. ADDRESS FREQUENCY

NORMALIZED SUPPLY CURRENT vs.
SUPPLY VOLTAGE

27. Ordering Information

27.1 27.1 Military Dual Marked Package

27.1.1 AT28C256

$t_{\text {ACC }}$ (ns)	$\mathrm{I}_{\mathrm{cc}}(\mathrm{mA})$		Ordering Code	Package	Operation Range
	Active	Standby			
150	50	0.3	$\begin{gathered} \text { AT28C256-15DM/883 } \\ 5962-8852514 \mathrm{XX}^{(1)} \\ 5962-8852506 \mathrm{XX} \end{gathered}$	28D6	Military/883C Class B, Fully Compliant $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
			AT28C256-15FM/883 5962-88525 14 ZX $^{(1)}$ 5962-88525 06 ZX	28F	
			$\begin{gathered} \text { AT28C256-15LM/883 } \\ 5962-8852514 \mathrm{YX}^{(1)} \\ 5962-8852506 \mathrm{YX} \end{gathered}$	32L	
			AT28C256-15UM/883 5962-88525 14 UX $^{(1)}$ 5962-88525 06 UX	28 U	
200	50	0.3	$\begin{gathered} \text { AT28C256-20DM/883 } \\ 5962-8852512 \mathrm{XX}^{(1)} \\ 5962-8852504 \mathrm{XX} \end{gathered}$	28D6	Military/883C Class B, Fully Compliant $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
			$\begin{gathered} \text { AT28C256-20FM/883 } \\ 5962-8852512 \mathrm{ZX} \\ 5962-8852504 \mathrm{ZX} \end{gathered}$	28F	
			$\begin{gathered} \text { AT28C256-20LM/883 } \\ 5962-8852512 \mathrm{YX}^{(1)} \\ 5962-8852504 \mathrm{YX} \end{gathered}$	32L	
			$\begin{gathered} \text { AT28C256-20UM/883 } \\ 5962-8852512 \text { UX }{ }^{(1)} \\ 5962-8852504 \text { UX } \end{gathered}$	28 U	
250	50	0.3	$\begin{gathered} \text { AT28C256-25DM/883 } \\ 5962-8852511 \mathrm{XX}^{(1)} \\ 5962-8852503 \mathrm{XX} \end{gathered}$	28 D 6	Military/883C Class B, Fully Compliant $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
			$\begin{gathered} \text { AT28C256-25FM/883 } \\ 5962-8852511 \mathrm{ZX} \\ 5962-8852503 \mathrm{ZX} \end{gathered}$	28F	
			$\begin{gathered} \text { AT28C256-25LM/883 } \\ 5962-8852511 \mathrm{YX}{ }^{(1)} \\ 5962-8852503 \mathrm{YX} \end{gathered}$	32L	
			$\begin{gathered} \text { AT28C256-25UM/883 } \\ 5962-8852511 \text { UX }{ }^{(1)} \\ 5962-8852503 \text { UX } \end{gathered}$	28 U	

Note: 1. Where two DESC numbers apply to the Atmel ordering code apply SL815 to receive parts with the noted DESC number dual marked along with Atmel part number.
27.1.2 AT28C256E

$\mathrm{t}_{\mathrm{ACC}}$ (ns)	$\mathrm{I}_{\mathrm{cc}}(\mathrm{mA})$		Ordering Code	Package	Operation Range
	Active	Standby			
150	50	0.3	AT28C256E-15DM/883 5962-88525 16 XX $^{(1)}$ 5962-88525 08 XX	28 D 6	Military/883C Class B, Fully Compliant $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
			$\begin{gathered} \text { AT28C256E-15FM/883 } \\ 5962-8852516 \mathrm{ZX}^{(1)} \\ 5962-8852508 \mathrm{ZX} \end{gathered}$	28F	
			$\begin{gathered} \text { AT28C256E-15LM/883 } \\ 5962-8852516 \mathrm{YX}^{(1)} \\ 5962-8852508 \mathrm{YX} \end{gathered}$	32L	
			$\begin{gathered} \text { AT28C256E-15UM/883 } \\ 5962-8852516 \text { UX } \\ 5962-8852508 \text { UX } \end{gathered}$	28 U	
200	50	0.3	AT28C256E-20DM/883	28D6	Military/883C Class B, Fully Compliant $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
			AT28C256E-20FM/883	28F	
			AT28C256E-20LM/883	32L	
			AT28C256E-20UM/883	28 U	
250	50	0.3	$\begin{gathered} \text { AT28C256E-25DM/883 } \\ 5962-8852513 \mathrm{XX}^{(1)} \\ 5962-8852505 \mathrm{XX} \end{gathered}$	28D6	Military/883C Class B, Fully Compliant $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
			$\begin{gathered} \text { 5962-88525 } 05 \text { XX } \\ \text { 5962-88525 } 13 \text { ZX }{ }^{(1)} \\ 5962-8852505 \text { ZX } \end{gathered}$	28F	
			$\begin{gathered} \text { AT28C256E-25LM/883 } \\ 5962-8852513 \mathrm{YX}^{(1)} \\ 5962-8852505 \mathrm{YX} \end{gathered}$	32L	
			$\begin{gathered} \text { AT28C256E-25UM/883 } \\ 5962-8852513 \text { UX } \\ \text { 5962-88525 } 05 \text { UX } \end{gathered}$	28 U	

Note: 1. Where two DESC numbers apply to the Atmel ordering code apply SL815 to receive parts with the noted DESC number dual marked along with Atmel part number.

27.1.3 AT28C256F

$t_{\text {ACC }}$ (ns)	$\mathrm{I}_{\mathrm{cc}}(\mathrm{mA})$		Ordering Code	Package	Operation Range
	Active	Standby			
150	50	0.3	$\begin{gathered} \text { AT28C256F-15DM/883 } \\ \text { 5962-88525 } 15 \mathrm{XX}^{(3)} \\ 5962-8852507 \mathrm{XX} \end{gathered}$	28 D 6	Military/883C Class B, Fully Compliant $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
			$\begin{gathered} \text { AT28C256F-15FM/883 } \\ 5962-8852515 \mathrm{ZX}^{(3)} \\ 5962-8852507 \mathrm{ZX} \end{gathered}$	28F	
			$\begin{gathered} \text { AT28C256F-15LM/883 } \\ 5962-8852515 \mathrm{YX}^{(3)} \\ 5962-8852507 \mathrm{YX} \end{gathered}$	32L	
			$\begin{gathered} \text { AT28C256F-15UM/883 } \\ \text { 5962-88525 } 15 \mathrm{UX}^{(3)} \\ 5962-8852507 \mathrm{UX} \end{gathered}$	28U	

Notes: 1. Electrical specifications for these speeds are defined by Standard Microcircuit Drawing 5962-88525.
2. SMD specifies Software Data Protection feature for device type, although Atmel product supplied to every device type in the SMD is 100% tested for this feature.
3. Where two DESC numbers apply to the Atmel ordering code apply SL815 to receive parts with the noted DESC number dual marked along with Atmel part number.

Package Type		
$\mathbf{2 8 D 6}$	28-lead, 0.600" Wide, Non-windowed, Ceramic Dual Inline Package (Cerdip)	
$\mathbf{2 8 F}$	28-lead, Non-windowed, Ceramic Bottom-brazed Flat Package (Flatpack)	
$\mathbf{3 2 L}$	32-pad, Non-windowed, Ceramic Leadless Chip Carrier (LCC)	
$\mathbf{2 8 U}$	28-pin, Ceramic Pin Grid Array (PGA)	
\mathbf{W}	Die	
Blank	Standard Device: Endurance $=10 \mathrm{~K}$ Write Cycles; Write Time $=10 \mathrm{~ms}$	
E	High Endurance Option: Endurance $=100 \mathrm{~K}$ Write Cycles	
F	Fast Write Option: Write Time $=3 \mathrm{~ms}$	

27.2 Industrial Green Package Option (Pb/Halide-free)

27.2.1 AT28C256

$\mathbf{t}_{\text {ACc }}$ $(\mathbf{n s})$	$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$				
	Active	Standby	Ordering Code	Package	Operation Range
150	50	0.2	AT28C256-15JU	32 J	
			AT28C256-15PU	28 P 6	Industrial
			AT28C256-15SU	28 S	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
			AT28C256-15TU	28 T	

27.2.2 AT28C256E

$\mathbf{t}_{\mathrm{ACC}}$ $(\mathbf{n s})$	$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$				
	Active	Standby	Ordering Code	Package	Operation Range
150	50	0.2	AT28C256E-15JU	32 J	Industrial
			AT28C256E-15SU	28 S	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
			AT28C256E-15TU	28 T	

27.2.3 AT28C256F

$t_{\text {ACC }}$ (ns)	$\mathrm{I}_{\mathrm{cc}}(\mathrm{mA})$		Ordering Code	Package	Operation Range
	Active	Standby			
150	50	0.2	AT28C256F-15JU AT28C256F-15SU AT28C256F-15TU	$\begin{aligned} & 32 \mathrm{~J} \\ & 28 \mathrm{~S} \\ & 28 \mathrm{~T} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Package Type	
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)
28P6	28-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)
$\mathbf{2 8 S}$	28-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
$\mathbf{2 8 T}$	28-lead, Plastic Thin Small Outline Package (TSOP)
\quad Options	
Blank	Standard Device: Endurance $=10 \mathrm{~K}$ Write Cycles; Write Time $=10 \mathrm{~ms}$
E	High Endurance Option: Endurance $=$ 100K Write Cycles
F	Fast Write Option: Write Time $=3 \mathrm{~ms}$

28. Die Products

Reference Section: Contact Atmel sales for die sales options.

29. Packaging Information

29.1 28D6 - Cerdip

Dimensions in Millimeters and (Inches).
Controlling dimension: Inches.
MIL-STD 1835 D-10 Config A (Glass Sealed)

10/23/03

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	28D6, 28-lead, 0.600" Wide, Non-windowed, Ceramic Dual Inline Package (Cerdip)	28D6	B

29.2 28F - Flatpack

Dimensions in Millimeters and (Inches).
Controlling dimension: Inches.
MIL-STD 1835 F-12 Config B

29.3 32J - PLCC

Notes: 1. This package conforms to JEDEC reference MS-016, Variation AE.
2. Dimensions D1 and E1 do not include mold protrusion.

Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
3. Lead coplanarity is $0.004^{\prime \prime}(0.102 \mathrm{~mm})$ maximum.

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A	3.175	-	3.556	
A1	1.524	-	2.413	
A2	0.381	-	-	
D	12.319	-	12.573	
D1	11.354	-	11.506	Note 2
D2	9.906	-	10.922	
E	14.859	-	15.113	
E1	13.894	-	14.046	Note 2
E2	12.471	-	13.487	
B	0.660	-	0.813	
B1	0.330	-	0.533	
e	1.270 TYP			

10/04/01

DRAWING NO. REV.
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC)

29.4 32L - LCC

Dimensions in Millimeters and (Inches).
Controlling dimension: Inches.
MIL-STD 1835 C-12

2325 Orchard Parkway	TITLE	32L, 32-pad, Non-windowed, Ceramic Lid, Leadless Chip Carrier (LCC)	DRAWING NO.

29.5 28P6 - PDIP

29.6 28S - SOIC

Dimensions in Millimeters and (Inches).
Controlling dimension: Millimeters.

8/4/03

29.7 28T - TSOP

29.8 28U - PGA

Dimensions in Millimeters and (Inches).
Controlling dimension: Inches.

		10/21/03	
2325 Orchard Parkway San Jose, CA 95131	TITLE 28U, 28-pin, Ceramic Pin Grid Array (PGA)	DRAWING NO. 28 U	$\begin{gathered} \mathrm{REV} . \\ \mathrm{B} \end{gathered}$

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International
Atmel Asia
Unit 1-5 \& 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support
p_eeprom@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2009 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

