Features

- EE Programmable 262,144 x 1-, 524,288 x 1-, 1,048,576 x 1-, 2,097,152 x 1-, and 4,194,304 x 1-bit Serial Memories Designed to Store Configuration Programs for Field Programmable Gate Arrays (FPGAs)
- Available as a 3.3V (±10%) Commercial and Industrial Version
- Simple Interface to SRAM FPGAs
- Pin Compatible with Xilinx[®] XC17SXXXA and XC17SXXXXL PROMs
- Compatible with Xilinx Spartan[®]-II, Spartan-IIE and Spartan XL FPGAs in Master Serial Mode
- Very Low-power CMOS EEPROM Process
- Available in 8-lead PDIP, 8-lead SOIC, 20-lead SOIC and 44-lead TQFP Packages for a Specific Density
- Low-power Standby Mode
- High-reliability
 - Endurance: Minimum 10 Write Cycles
 - Data Retention: 20 Years at 85°C

Description

The AT17N series FPGA Configuration EEPROM (Configurators) provide an easy-touse, cost-effective configuration memory for Field Programmable Gate Arrays. The AT17N series device is packaged in the 8-lead LAP, 8-lead PDIP, 8-lead SOIC, 20-lead SOIC and 44-lead TQFP, see Table 1. The AT17N series Configurators uses a simple serial-access procedure to configure one or more FPGA devices.

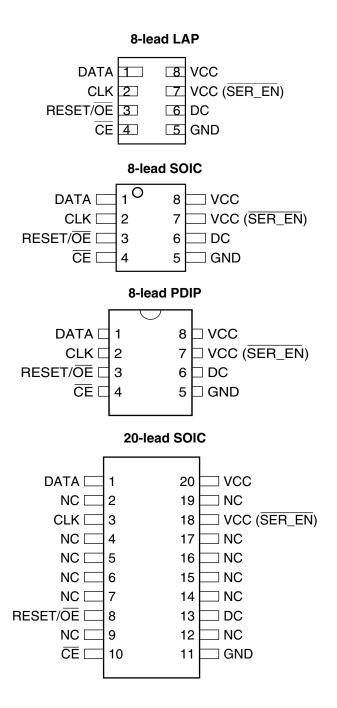
The AT17N series configurators can be programmed with industry-standard programmers, Atmel's ATDH2200E Programming Kit or Atmel's ATDH2225 ISP Cable and factory programming.

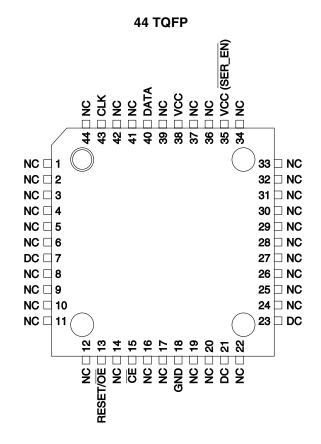
Package	AT17N256	AT17N512/ AT17N010	AT17N002	AT17N040		
8-lead PDIP	Yes	Yes	-	-		
8-lead SOIC	Yes	_	_	_		
20-lead SOIC	Yes	Yes	Yes	-		
44-lead TQFP	_	_	Yes	Yes		

Table 1. AT17N Series Packages

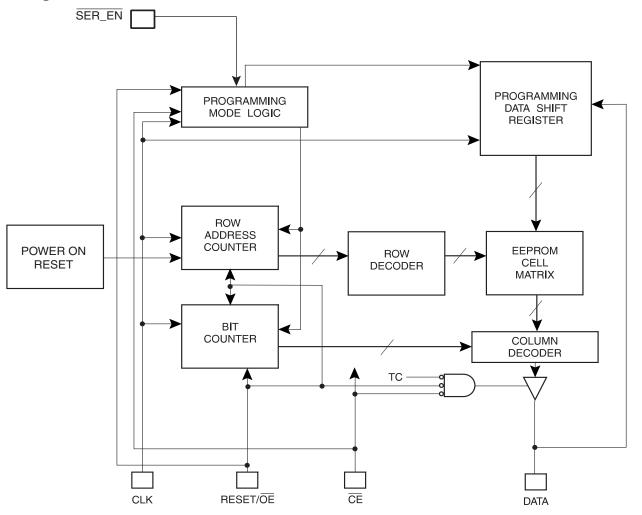
FPGA Configuration Memory

AT17N256 AT17N512 AT17N010 AT17N002 AT17N040


3.3V System Support



Pin Configuration


² AT17N256/512/010/002/040

Block Diagram

Device Description

The control signals for the configuration EEPROM (\overline{CE} , RESET/ \overline{OE} and CCLK) interface directly with the FPGA device control signals. All FPGA devices can control the entire configuration process and retrieve data from the configuration EEPROM without requiring an external intelligent controller.

The configuration EEPROM RESET/ \overline{OE} and \overline{CE} pins control the tri-state buffer on the DATA output pin and enable the address counter. When RESET/ \overline{OE} is driven High, the configuration EEPROM resets its address counter and tri-states its DATA pin. The \overline{CE} pin also controls the output of the AT17N series configurator. If \overline{CE} is held High after the RESET/ \overline{OE} reset pulse, the counter is disabled and the DATA output pin is tri-stated. When \overline{OE} is subsequently driven Low, the counter and the DATA output pin are enabled. When RESET/ \overline{OE} is driven High again, the address counter is reset and the DATA output pin is tri-stated, regardless of the state of \overline{CE} . Upon power-up, the address counter is automatically reset.

		AT17	'N256	AT17N512/ AT17N010			AT17N040		
Name	I/O	8 DIP/ SOIC	20 SOIC	8 DIP/ LAP	20 SOIC	8 LAP	20 SOIC	44 TQFP	44 TQFP
DATA	I/O	1	1	1	1	1	1	40	40
CLK	I	2	3	2	3	2	3	43	43
RESET/OE	I	3	8	3	8	3	8	13	13
CE	I	4	10	4	10	4	10	15	15
GND		5	11	5	11	5	11	18	18
DC	0	6	13	6	13	6	13	21	21
DC	0	_	_	_	-	_	_	23	23
VCC(SER_EN)	I	7	18	7	18	7	18	35	35
V _{cc}		8	20	8	20	8	20	38	38
DATA			oree-state l ogramming.	DATA outp	ut for confi	guration. C	pen-collec	tor bi-direc	tional pin for
CLK			ock input. l ogramming.		ement the i	nternal add	ress and bit	counter fo	r reading and

Pin Description

RESET/OE Output Enable (active High) and RESET (active Low) when SER_EN is High. A Low level on RESET/OE resets both the address and bit counters. A High level (with CE Low) enables the data output driver. The logic polarity of this input is programmable as either RESET/OE or RESET/OE. For most applications, RESET should be programmed active Low. This document describes the pin as RESET/OE.

- **CE** Chip Enable input (active Low). A Low level (with OE High) allows CLK to increment the address counter and enables the data output driver. A High level on \overline{CE} disables both the address and bit counters and forces the device into a low-power standby mode. Note that this pin will *not* enable/disable the device in the Two-Wire Serial Programming mode (SER_EN Low).
- **GND** Ground pin. A 0.2 µF decoupling capacitor between V_{CC} and GND is recommended.

VCC(SER_EN) Serial enable must be held High during FPGA loading operations. Bringing SER_EN Low enables the Two-Wire Serial Programming Mode. For non-ISP applications, SER_EN should be tied to V_{CC}.

- V_{CC} 3.3V (±10%) Commercial and Industrial power supply pin.
- NC pins are No Connect pins, which are not internally bonded out to the die.
- **DC** DC pins are No Connect pins internally connected to the die. It is not recommended to connect these pins to any external signal.

FPGA Master Serial Mode Summary	The I/O and logic functions of any SRAM-based FPGA are established by a configura- tion program. The program is loaded either automatically upon power-up, or on command, depending on the state of the FPGA mode pins. In Master mode, the FPGA automatically loads the configuration program from an external memory. The AT17N Serial Configuration EEPROM has been designed for compatibility with the Master Serial mode.
	This document discusses the master serial mode configuration of Atmel AT17N series configuration memories, pin compatible with Spartan-II, Spartan-IIE and Spartan XL OTP PROMs.
Control of Configuration	 Most connections between the FPGA device and the AT17N Serial EEPROM are simple and self-explanatory. The DATA output of the AT17N series configurator drives DIN of the FPGA devices. The master FPGA CCLK output drives the CLK input of the AT17N series configurator. SER_EN must be connected to V_{CC} (except during ISP). The CE and OE/Reset are driven by the FPGA to enable output data buffer of the EEPROM.
Programming Mode	The programming mode is entered by bringing $\overline{\text{SER}_{EN}}$ Low. In this mode the chip can be programmed by the Two-Wire serial bus. The programming is done at V _{CC} supply only. Programming super voltages are generated inside the chip.
Standby Mode	The AT17N series configurators enter a low-power standby mode whenever \overline{CE} is asserted High. In this mode, the AT17N256 configurator consumes less than 50 µA of current at 3.3V (100 µA for the AT17N512/010 and 200 µA for the AT17N002/040).

Absolute Maximum Ratings*

Operating Temperature40°C to +85°C
Storage Temperature65 °C to +150°C
Voltage on Any Pin with Respect to Ground0.1V to V _{CC} +0.5V
Supply Voltage (V $_{\rm CC}$)
Maximum Soldering Temp. (10 sec. @ 1/16 in.)260°C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF)

*NOTICE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Operating Conditions

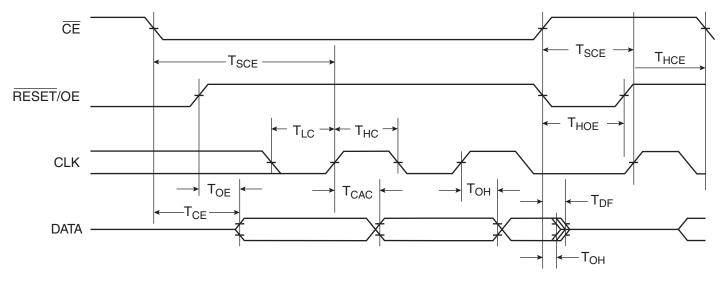
			3.		
Symbol	Description		Min	Max	Units
	Commercial	Supply voltage relative to GND -0°C to +70°C	3.0	3.6	V
V _{cc}	Industrial	Supply voltage relative to GND -40°C to +85°C	3.0	3.6	V

DC Characteristics

 $V_{CC}=3.3V\pm10\%$

			AT17N256		AT17N512/ AT17N010		AT17N002/ AT17N040		
Symbol	Description		Min	Max	Min	Max	Min	Max	Units
V _{IH}	High-level Input Voltage		2.0	V _{CC}	2.0	V _{CC}	2.0	V _{CC}	V
V _{IL}	Low-level Input Voltage		0	0.8	0	0.8	0	0.8	V
V _{OH}	High-level Output Voltage (I _{OH} = -2.5 mA)		2.4		2.4		2.4		v
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Commercial		0.4		0.4		0.4	v
V _{OH}	High-level Output Voltage (I _{OH} = -2 mA)		2.4		2.4		2.4		v
V _{OL}	Low-level Output Voltage (I _{OL} = +3 mA)	Industrial		0.4		0.4		0.4	v
I _{CCA}	Supply Current, Active Mode			5		5		5	mA
I _L	Input or Output Leakage Current $(V_{IN} = V_{CC} \text{ or GND})$		-10	10	-10	10	-10	10	μA
		Commercial		50		100		150	μA
I _{CCS}	Supply Current, Standby Mode	Industrial		100		100		150	μA

AC Characteristics


 $V_{CC} = 3.3V \pm 10\%$

		AT17N256			AT17N512/010/002/040					
		Commercial Industrial		Commercial		Industrial				
Symbol	Description	Min	Max	Min	Max	Min	Max	Min	Max	Units
T _{OE} ⁽¹⁾	OE to Data Delay		50		55		50		55	ns
T _{CE} ⁽¹⁾	CE to Data Delay		60		60		55		60	ns
T _{CAC} ⁽¹⁾	CLK to Data Delay		75		80		55		60	ns
Т _{ОН}	Data Hold from \overline{CE} , OE, or CLK	0		0		0		0		ns
T _{DF} ⁽²⁾	CE or OE to Data Float Delay		55		55		50		50	ns
T _{LC}	CLK Low Time	25		25		25		25		ns
Т _{НС}	CLK High Time	25		25		25		25		ns
T _{SCE}	CE Setup Time to CLK (to guarantee proper counting)	35		60		30		35		ns
T _{HCE}	CE Hold Time from CLK (to guarantee proper counting)	0		0		0		0		ns
T _{HOE}	OE High Time (guarantees counter is reset)	25		25		25		25		ns
F _{MAX}	Maximum Clock Frequency		10		10		15		10	MHz

Notes: 1. AC test lead = 50 pF.

2. Float delays are measured with 5 pF AC loads. Transition is measured \pm 200 mV from steady-state active levels.

AC Characteristics

Thermal Resistance Coefficients⁽¹⁾

Package Type			AT17N256	AT17N512/ AT17N010	AT17N002	AT17N040
8CN4	Leadless Array Package (LAP)	θ_{JC} [°C/W]	_	45	45	_
		θ _{JA} [°C/W] ⁽²⁾	_	135.71	159.60	_
8P3	Plastic Dual Inline Package	θ _{JC} [°C/W]	37	37	_	_
(PDIP)	θ _{JA} [°C/W] ⁽²⁾	107	107	-	_	
8S1	Plastic Gull Wing Small Outline	θ _{JC} [°C/W]	45	_	_	_
	(SOIC)	θ _{JA} [°C/W] ⁽²⁾	150	-	-	_
20S2	Plastic Gull Wing Small Outline	θ_{JC} [°C/W]				_
(SOIC)	(SOIC)	θ _{JA} [°C/W] ⁽²⁾				_
44A	Thin Plastic Quad Flat	θ _{JC} [°C/W]	_	_	17	17
	Package (TQFP)	θ_{JA} [°C/W] ⁽²⁾	-	-	62	62

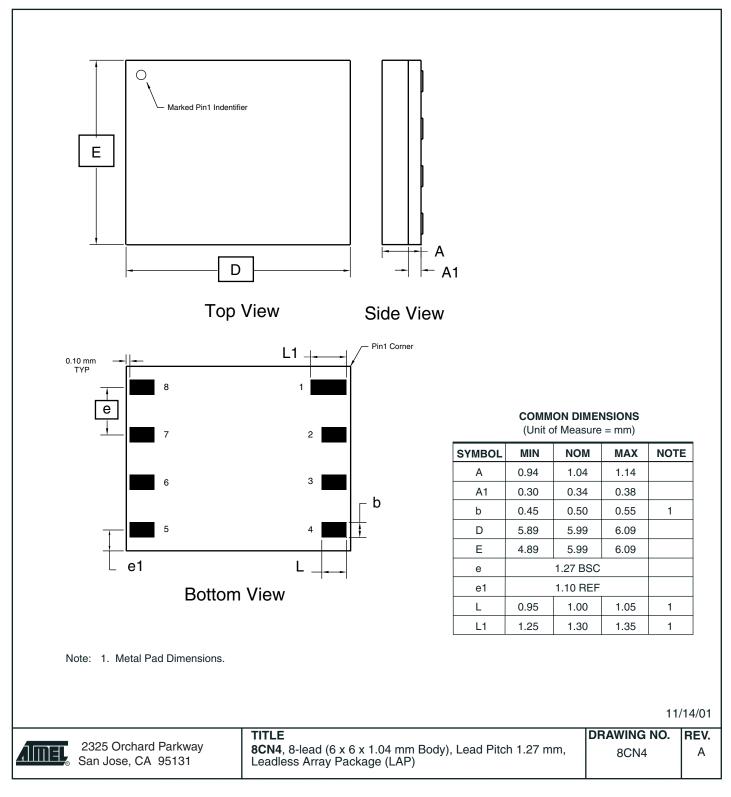
Notes: 1. For more information refer to the "Thermal Characteristics of Atmel's Packages", available on the Atmel web site. 2. Airflow = 0 ft/min.

Figure 1. Ordering Code

AT17N256-10PC					
Voltage	Size (Bits)	Package	Temperature		
3.3V ±10%	256 = 256K	C = 8CN4	C = Commercial		
	512 = 512K	P = 8P3	I = Industrial		
	010 = 1M	N = 8S1			
	002 = 2M	S = 20S2			
	040 = 4M	TQ = 44A			

	Package Type					
8CN4	8-lead, 6 mm x 6 mm x 1 mm, Leadless Array Package (LAP) – Pin-compatible with 8-lead SOIC/VOID Packages					
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)					
8S1	8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)					
2052	20-lead, 0.300" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)					
44 A	44-lead, Thin (1.0 mm) Plastic Quad Flat Package Carrier (TQFP)					

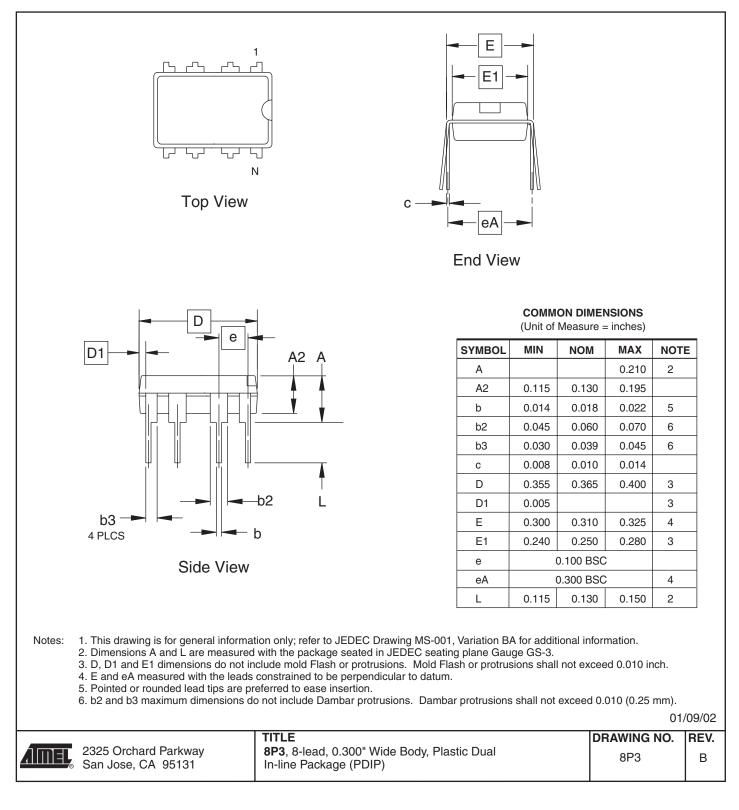
Ordering Information

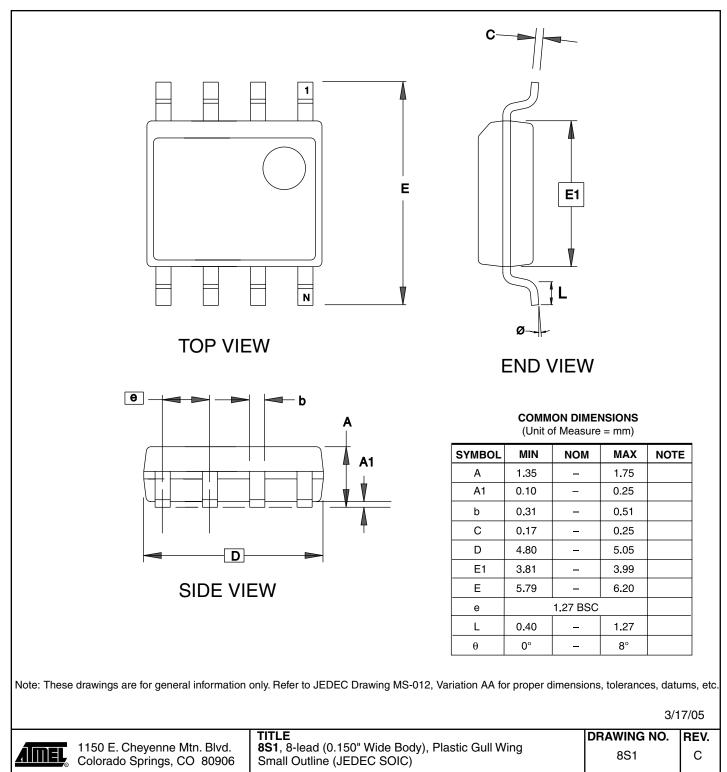

Memory Size	Ordering Code	Package	Operation Range	
	AT17N256-10PC	8P3		
	AT17N256-10NC	8S1	Commercial (0°C to 70°C)	
256-Kbit	AT17N256-10SC	20S2	(0°C to 70°C)	
250-RUI	AT17N256-10PI	8P3	la du dui d	
	AT17N256-10NI	8S1	Industrial (-40°C to 85°C)	
	AT17N256-10SI	20S2	(-40 0 10 05 0)	
	AT17N512-10CC	8CN4	Osmansial	
	AT17N512-10PC	8P3	Commercial (0°C to 70°C)	
512-Kbit	AT17N512-10SC	20S2		
512-KDIL	AT17N512-10CI	8CN4	la du state	
	AT17N512-10PI	8P3	Industrial (-40°C to 85°C)	
	AT17N512-10SI	20S2		
	AT17N010-10CC	8CN4	Commercial (0°C to 70°C)	
	AT17N010-10PC	8P3		
1-Mbit	AT17N010-10SC	20S2		
	AT17N010-10CI	8CN4	la ductorial	
	AT17N010-10PI	8P3	Industrial (-40°C to 85°C)	
	AT17N010-10SI	20S2		
	AT17N002-10CC	8CN4	O a marci a l	
	AT17N002-10SC	20S2	Commercial (0°C to 70°C)	
2-Mbit	AT17N002-10TQC	44A	(0 0 10 70 0)	
	AT17N002-10CI	8CN4		
	AT17N002-10SI	20S2	Industrial (-40°C to 85°C)	
	AT17N002-10TQI	44A	(-40 0 10 05 0)	
	AT17N040-10TQC	44A	Commercial	
4-Mbit			(0°C to 70°C)	
	AT17N040-10TQI	44A	Industrial	
			(-40°C to 85°C)	

Notes: 1. The last-time buy is April 11, 2006 for the shaded parts.

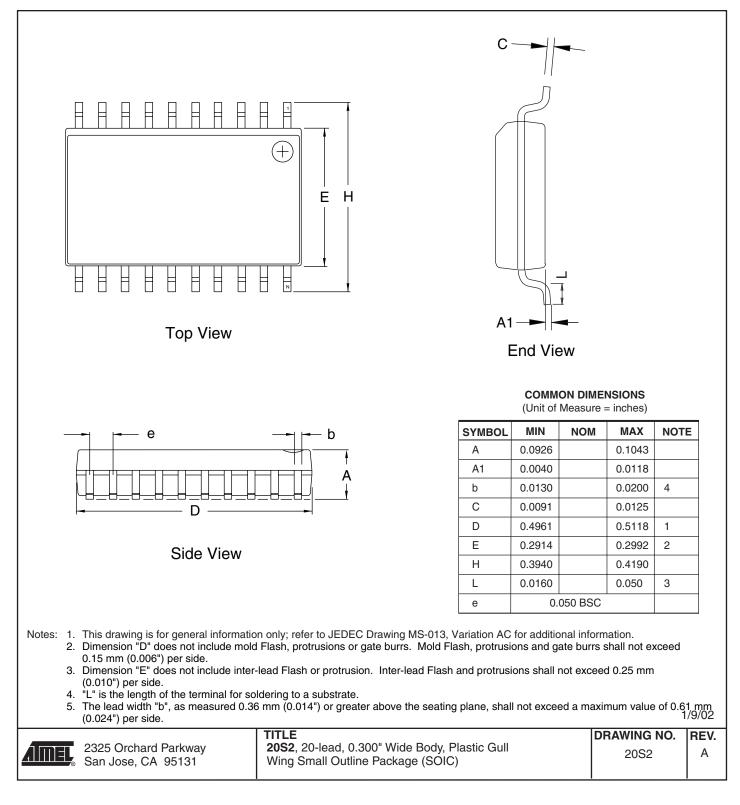
2. For the -10CC and -10CI packages, customers may migrate to AT17LVXXX-10CU.

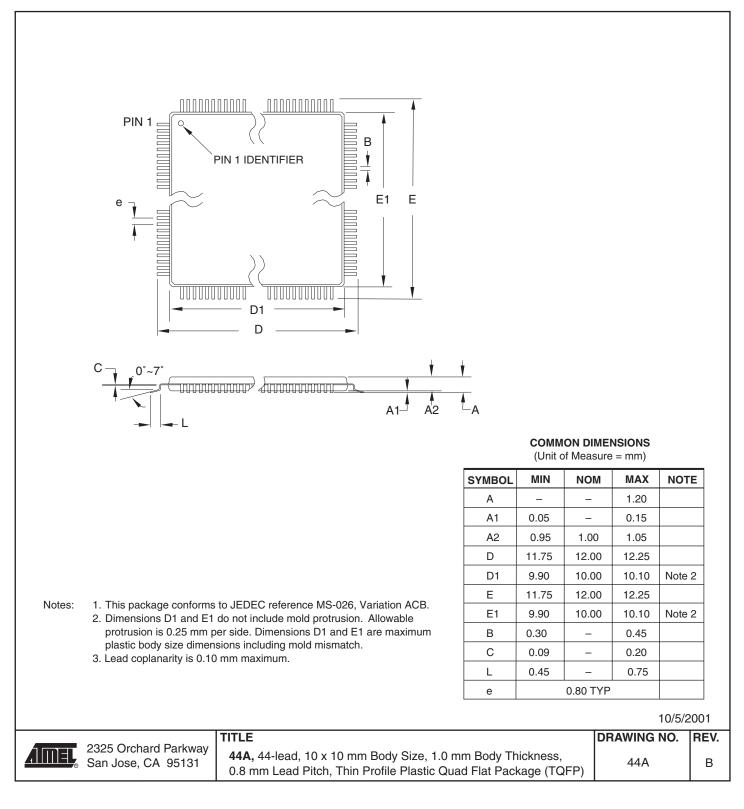
Packaging Information


8CN4 – LAP



8P3 – PDIP


8S1 - SOIC



20S2 - SOIC

44A – TQFP

Revision History

Revision Level – Release Date	History
B – March 2006	Added last-time buy for AT17NXXX-10CC and AT17NXXX-10CI.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life

© Atmel Corporation 2006. All rights reserved. Atmel[®], logo and combinations thereof, Everywhere You Are[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. FLEX[™] is the trademark of Altera Corporation; ORCA[™] is the trademark of Lattice Semiconductors; SPARTAN[®] and Virtex[®] are the registered trademarks of Xilinx, Inc.; XC3000[™], XC4000[™] and XC5200[™] are the trademarks of Xilinx, Inc.; APEX[™] is the trademark of MIPS Technologies; Other terms and product names may be the trademarks of others.