

Adaptive RF Power Amplifier Linearizer and Dual RMS Power Measurement Unit

General Description

The SC1889 is part of Scintera's 2nd generation RF PA linearizer (RFPAL™) family providing increased ACLR correction over the previous generation as well as support for EVDO, TD-SCDMA, WiMAX®, HSDPA, LTE, and TD-LTE waveforms. The SC1889 is a fully-adaptive, RFin/RFout predistortion linearization solution that precisely compensates RF power amplifier (PA) non-linearities including AM/AM and AM/PM distortion, spectral regrowth, memory effects and other system level impairments. •

The SC1889 substantially increases the final stage PA efficiency by reducing out-of-band energy. The SC1889 is a complete system-on-chip (SoC) solution optimized for Class A/AB and Doherty RF power amplifiers operating at a power level of 5W to 60W (RMS). The SC1889 measures the feedback signal from the power amplifier output, and optimizes the correction function by minimizing distortion. SC1889 correction function is generated using RF-domain analog signal processing allowing the SC1889 to operate over a wide bandwidth at very low power consumption.

Applications

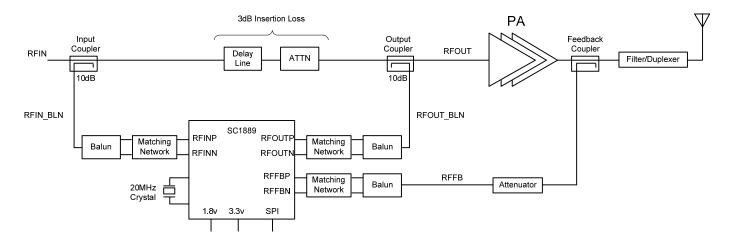
- Cellular Infrastructure
 - Single/Multicarrier, Multistandard:
 WCDMA/EVDO, TD-SCDMA, WiMAX,
 WCDMA/HSDPA, LTE, and TD-LTE
 - Traditional In-Cabinet BTS Amplifiers, RRU, Tower Mounted Power Amplifiers, Microwave Backhaul, Booster Amplifiers, Microcells, Picocells, DAS, AAS, and MIMO Systems
- Other Applications
 - Software Defined Radios (SDRs), Mobile Military Communications, and TV White Space
 - Any Application Requiring PA Linearization
- Wide Range of PAs and Output Power
 - Amplifier: Class A/AB and Doherty
 - o PA Output Power: Up to 60W (RMS)
 - PA Process: LDMOS, GaAs, and GaN
- *Performance dependent on amplifier, bias, and waveform.

 **Refer to the SC1889-PMU0011 data sheet for detailed specifications.

Features

SC1889 (PC = 00): RFPAL

- RFin/RFout PA Linearizer SoC in Standard CMOS
- Fully Adaptive Compensation
- Low Power Consumption:
 - Duty Cycled (9 %) Feedback: 420mW
 - o Full Adaptation: 1.06W
- Frequency Range: 698MHz to 2800MHz
- Input Signal Bandwidth: Up to 60MHz
- Up to 28dB ACLR and 38dB IMD Improvement*
- Packaged in 9mmx9mm QFN Package
- Operating Case Temperature: -40°C to +100°C
- Fully RoHS Compliant, Green Materials
- Pin Compatible with SC1887 and SC1869

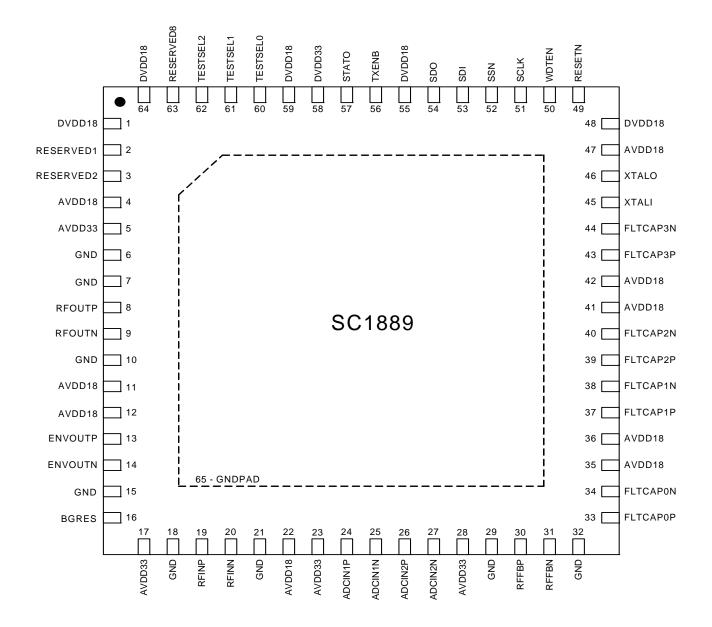

SC1889 (PC = 11): RFPAL + PMU (Optional)**

- Dual RMS Power Measurement Unit (RFIN and RFFB)
 - o 30dB of Dynamic Range
 - o ±0.10dB Typical Accuracy (Top 20dB)
 - o ±0.50dB Typical Accuracy (Bottom 10dB)
- Frequency Range: 698MHz to 2200MHz

Benefits

- Ease of Use
 - Integrated RFin/RFout Solution
 - Operates Over Wide Frequency Band
 - Reduced Software Development
 - No Algorithm Development or Control Required—Automatically Adjusts to the Signal and PA Environment
 - Supports Wide Range of Modulation Schemes
- Smaller Total System Form Factors
 - Reduced Heatsink Size and Weight
 - Small Implementation Size (< 9cm²)
- Reduces Operating Costs
 - Reduces Energy Consumption Supporting Green Initiatives
 - Reduces Amplifier Power Consumption and Thermal Dissipation
 - Increases Amplifier Reliability
- Reduces BOM Costs and Total Volume
 - Power Supply, Heatsink, and Enclosure
 - o Reduced Back-Off Reduces Transistor Costs

Application Block Diagram


Introduction to Predistortion Using the SC1889

Wideband signals in today's telecommunications systems have high peak-to-average ratios and stringent spectral regrowth specifications. These specifications place high linearity demands on power amplifiers. Linearity may be achieved by backing off output power at the price of reducing efficiency. However, this increases the component and operating costs of the power amplifier. Better linearity may be achieved through the use of digital predistortion and other linearization techniques, but many of these are time consuming and costly to implement.

Wireless service providers are deploying networks with wider coverage, greater subscriber density, and higher data rates. These networks require more efficient power amplifiers. Additionally, the emergence of distributed architectures and active antenna systems is driving the need for smaller and more efficient power amplifier implementations. Further, there continues to be a strong push toward reducing the total capital and operating costs of base stations.

With the SC1889, the complex signal processing is done in the RF domain resulting in a simple system-on-chip that offers wide signal bandwidth, broad frequency of operation, and very low power consumption. It is an elegant solution that reduces development costs and speeds time to market. Applicable across a broad range of signals — including 2G, 3G, 4G wireless, and other modulation types—the powerful analog signal processing engine is capable of linearizing the most efficient power amplifier topologies. The SC1889 is a true RFin and RFout solution, supporting modular power amplifier designs that are independent of the baseband and transceiver subsystems. The SC1889 delivers the required efficiency and performance demanded by today's wireless systems.

Pin Configuration (Top View)

Pin Description

PIN	NAME	TYPE	FUNCTION	
1	DVDD18	Supply	+1.8V DC Supply Voltage for digital circuits.	
2	RESERVED1	Analog Out Reserved	Do not connect. Reserved for internal use.	
3	RESERVED2	Analog Out Reserved	Do not connect. Reserved for internal use.	
4	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
5	AVDD33	Supply	+3.3V DC Supply Voltage for analog circuits.	
6	GND	Supply	Ground.	
7	GND	RF Shield	Ground for shield of RF signal.	
8	RFOUTP RFOUTN	Analog Out	RF Output Signal, differential output. See S-parameters for complex impedance values.	
10	GND	RF Shield	Ground for shield of RF signal.	
11	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
12	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
13	ENVOUTP	Analog Out		
14	ENVOUTN	Reserved	Envelope Out. Do not connect. Reserved for future use.	
15	GND	Supply	Ground.	
16	BGRES	Analog In	Bandgap Resistor.	
17	AVDD33	Supply	+3.3V DC Supply Voltage for analog circuits.	
18	GND	RF Shield	Ground for shield of RF signal.	
19	RFINP	Analog In	RF Input Signal, differential input. See S-parameters for complex	
20	RFINN	Analog In	impedance values.	
21	GND	RF Shield	Ground for shield of RF signal.	
22	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
23	AVDD33	Supply	+3.3V DC Supply Voltage for analog circuits.	
24	ADCIN1P	Analog In	Do not connect. Reserved for future use	
25	ADCIN1N	Reserved	Do not connect. Reserved for future use	
26	ADCIN2P	Analog In	Do not connect. Reserved for future use.	
27	ADCIN2N	Reserved	Do not connect. Reserved for future use.	
28	AVDD33	Supply	+3.3V DC Supply Voltage for analog circuits.	
29	GND	RF Shield	Ground for shield of RF signal.	
30	RFFBP	Analog In	RF Feedback Signal, differential input. See S-parameters for complex impedance values.	
31	RFFBN	Alialog III		
32	GND	RF Shield	Ground for shield of RF signal.	

Pin Description (continued)

PIN	NAME	TYPE	FUNCTION	
33	FLTCAP0P			
34	FLTCAP0N	Analog Out	Dedicated external filter capacitor #0.	
35	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
36	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
37	FLTCAP1P	Analog Out	Dedicated external filter conscitor #1	
38	FLTCAP1N	Analog Out	Dedicated external filter capacitor #1.	
39	FLTCAP2P	Analog Out	Dedicated external filter conscitor #2	
40	FLTCAP2N	Analog Out	Dedicated external filter capacitor #2.	
41	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
42	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
43	FLTCAP3P	A mala m Out	Dedicated automod filter conscitor #2	
44	FLTCAP3N	Analog Out	Dedicated external filter capacitor #3.	
45	XTALI	Analog In	20 MHz alask reference from existal or recentor	
46	XTALO	Analog Out	20 MHz clock reference from crystal or resonator.	
47	AVDD18	Supply	+1.8V DC Supply Voltage for analog circuits.	
48	DVDD18	Supply	+1.8V DC Supply Voltage for digital circuits.	
49	RESETN	Digital In	Reset when "Low". Has internal pullup to DVDD33.	
50	WDTEN	Digital In	Watch Dog Timer Enable. WDTEN enabled when high. Has internal pullup to DVDD33. See applications schematic for further details.	
51	SCLK	Digital In	SPI clock. Has internal pulldown to GND.	
52	SSN	Digital In	SPI slave select enabled "Low". Has internal pullup to DVDD33.	
53	SDI	Digital In	SPI slave data input to RFPAL. Has internal pulldown to GND.	
54	SDO	Digital Out	SPI slave data output from RFPAL. Three-state. DVDD33 logic.	
55	DVDD18	Supply	+1.8V DC Supply Voltage for digital circuits.	
56	TXENB	Digital In Reserved	Transmit Enable. Do not connect. Reserved for future use. Has internal pullup to DVDD33. See applications schematic for further details.	
57	STATO	Digital Out	General purpose Status Output as defined in Firmware Release Notes. Open-drain output with internal pullup to DVDD33.	
58	DVDD33	Supply	+3.3V DC Supply Voltage for digital circuits.	
59	DVDD18	Supply	+1.8V DC Supply Voltage for digital circuits.	
60	TESTSEL0	Digital In	Test Select 0. Required for FW upgrades. Has internal pulldown to GND. See applications schematic for further details.	
61	TESTSEL1	Digital In Reserved	Do not connect. Reserved for internal use. Has internal pulldown to GND.	
62	TESTSEL2	Digital In Reserved	Do not connect. Reserved for internal use. Has internal pulldown to GND.	
63	RESERVED8	Digital In Reserved	Do not connect. Reserved for internal use. Has internal pulldown to GND.	
64	DVDD18	Supply	+1.8V DC Supply Voltage for digital circuits.	
65	GNDPAD	Supply	Common Ground for entire integrated circuit. Also provides path for thermal dissipation.	

ABSOLUTE MAXIMUM RATINGS

OPERATING RATING

Operating Case Temperature.....-40°C to +100°C

Warning: Any stress beyond the ranges indicated may damage the device permanently. The specified stress ratings do not imply functional performance in these ranges. Exposure of the device to the absolute maximum ratings for extended periods of time is likely to degrade the reliability of this product.

DC CHARACTERISTICS

PARAMETER	MIN	TYP	MAX	UNITS
Supply Voltage (VDD33 to GND)	3.1	3.3	3.5	V
Supply Voltage (VDD18 to GND)	1.7	1.8	1.9	V
Supply Peak Current (VDD33 to GND) ^{1,2,3,5}		59		mA
Supply Peak Current (VDD18 to GND) ^{1,2,3,5}		592		mΑ
Average Power Dissipation: Full-Scale Adaptation, Track, and PMU ^{3, 5}		1060		mW
Average Power Dissipation: Duty-Cycled Feedback ^{2,4,5}		420		mW

- Note 1: Peak current includes supply decoupling network. Refer to Hardware Design Guide for proper sizing of the on-board regulators.
- Note 2: Characterized at typical voltages, +25°C operating case temperature and 20MHz input signal BW.
- Note 3: Continuous adaptation, tracking (100% duty-cycled feedback) and Power Measurement Unit active or inactive.
- Note 4: Duty-cycled feedback power dissipations averaged over ON time of 100ms (9%) and OFF time of 1.024s (91%).
- Note 5: Power dissipation may be FW dependent. Refer to the FW release notes for any changes to values listed above.

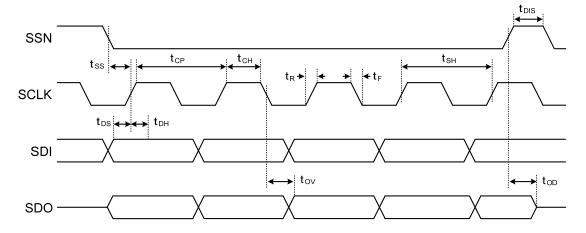
RADIO FREQUENCY SIGNALS

PARAMETER	SYMBOL	CONDITIONS	MIN	RECOMMENDED	MAX	UNITS
Operating Frequency ¹	f		698		2800	MHz
RFIN_BLN Range for Maximum Correction	P _{RFIN_BLN_P}	Peak power	-4	4	6	dBm
RFIN_BLN Range for Maximum Correction	P _{RFIN_BLN}	RMS power ²	9	-6	-4	dBm
RFFB_BLN Range for Maximum Correction	P _{RFFB_BLN_P}	Peak power	-14	-4	-2	dBm
RFFB_BLN Range for Maximum Correction	P _{RFFB_BLN}	RMS power ²	-19	-14	-12	dBm
RFIN_BLN Operating Range	P _{RFIN_BLN}	RMS power ²	-40		-4	dBm
RFFB_BLN Operating Range	P _{RFFB_BLN}	RMS power ²	-45		-12	dBm
RF Input Signal Peak-to Avg. Ratio ³	PAR _{IN}	CCDF ⁴ probability=10 ⁻⁴		5 to 10		dB
Input Signal Bandwidth	BW _{signal}		1.2		40 or 60 ⁵	MHz
Noise Power ⁶		Referred to 0dBm at PA input		-138	-135	dBm/Hz

- Note 1: See Operating Frequency Ranges table for frequency limits of each defined band.
- Note 2: A peak to average ratio (PAR) of 5dB to 10dB is used for this table.
- Note 3: Higher PAR values can be supported but at a reduction to a combination of the input signal range and IM correction limits.
- **Note 4:** CCDF = Complementary cumulative distribution function; a measurement of peak to average ratio or crest factor.
- Note 5: > 40MHz operation requires a fully occupied signal bandwidth.
- Note 6: Worst case over PVT guaranteed by bench characterization.

OPERATING FREQUENCY RANGES

FREQUENCY RANGE ¹	RECOMMENDED APPLICATIONS	DESIGNATION
698MHz to 960MHz	Lowband cellular (698MHz to 960MHz)	-04
800MHz to 1450MHz	IF for SATCOMM (1000MHz to 1400MHz)	-05
1350MHz to 2450MHz	LTE for Japan (1400MHz to 1510MHz)	-06
1600MHz to 2800MHz	Highband cellular (1600MHz to 2800MHz)	-07


Note 1: Default is -07. May be reprogrammed by user for other ranges listed above. Refer to Design Guide for programming information.

DIGITAL I/O—DC CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CMOS Input Logic-Low	V_{IL}		-0.3		0.8	V
CMOS Input Logic-High	V_{IH}	VDD = 3.3V	2.0			V
CMOS Output Logic-Low	V _{OL}				0.4	V
CMOS Output Logic-High	V _{OH}	VDD = 3.3V	2.4			V
SDO CMOS Output Current	I _{OL} /I _{OH}	Three-State	-4.0		+4.0	mA
STATO CMOS Output Current	I _{OL} /I _{OH}	Open Drain	-4.0		0.0	mA

SERIAL PERIPHERAL INTERFACE (SPI) BUS SPECIFICATIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Select Setup Time	t _{SS}		100			ns
Select Hold Time	t _{SH}		250			ns
Select Disable Time	t _{DIS}		100			ns
Data Setup Time	t _{DS}		25			ns
Data Hold Time	t _{DH}		45			ns
Rise Time	t _R				25	ns
Fall Time	t _F				25	ns
Clock Period	t _{CP}		250			ns
Clock High Time	t _{CH}		100			ns
Time to Output Valid	t _{OV}				100	ns
Output Data Disable	t _{OD}				0	ns

Use of the SPI interface offers the user access to certain monitoring and diagnostic functions as well as other planned advanced features. The SPI bus interface is also used to program the internal EEPROM, allowing changes to the operating frequency range, field upgrades and firmware updates.

CRYSTAL REQUIREMENTS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ESR					50	Ω
Capacitive Load to Ground				10	12	рF
Frequency Accuracy					250	ppm
Frequency Drift		Including aging and temperature			100	ppm

Top Mark

SCINTERA SC1889A XXXXXXXXX WWYYRRRR SCINTERA SC1889A-11 XXXXXXXXXX WWYYRRRR

LINE	TOP MARK	DESCRIPTION	
1	SCINTERA	Company Name	
2	SC1889	Product Part Number	
2	Α	Product Revision	
		Product Configuration (PC):	
2		BLANK = RFPAL Base Configuration	
	-11	-11 = RFPAL + PMU configuration	
3	xxxxxxxxxx	Foundry Lot Number	
3		(up to 10 characters)	
4	WW	Date Code - Work Week	
4	YY	Date Code - Year	
4	RRRR	Reserved	

ESD

ESD (Electrostatic Discharge) sensitive device. Although this product incorporates ESD protection circuitry, permanent damage may occur on devices subjected to electrostatic discharges. Proper ESD precautions are recommended to avoid performance degradation or device failure.

ELECTROSTATIC DISCHARGE (ESD) PROTECTION CHARACTERISTICS

TEST METHODOLOGY	CLASS	VOLTAGE	UNIT
Human Body Model (per JESD22-A114)	1C	1000	V
Charge Device Model (per JESD22-C101)	II	250	V

Ordering Information

PART	DESCRIPTION
SC1889A-00B00	IC, RFPAL, 698MHz to 2800MHz, FW3.0.17.62
SC1889A-00B11	IC, RFPAL+PMU, 698MHz to 2800MHz, FW3.0.17.62

Note: Parts are lead(Pb)-free and RoHS-compliant.

Shipping designator:

E = 7" tape and reel.

Append shipping designator (E) at end of part number. If left blank, designates bulk shipping option.

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
64 QFN	K6499MK+1	<u>21-0765</u>	<u>90-0605</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0.1	8/14		_

Scintera and RFPAL are trademarks of Maxim Integrated Products, Inc. WiMAX is a registered certification mark and registered service mark of WiMAX Forum.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.