
DS1816 3.3V EconoReset with **Open Drain Output**

www.maxim-ic.com

FEATURES

- Automatically restarts a microprocessor after power failure
- Maintains reset for 150ms after V_{CC} returns to . an in-tolerance condition
- Reduces need for discrete components
- Precision temperature-compensated voltage reference and voltage sensor
- Accurate 5%, 10% or 20% power monitoring
- 20% tolerance for use with 3V systems
- Low-cost TO-92 or space saving SOT-23 packages available
- Efficient open-drain output with internal $5k\Omega$ pull-up resistor
- Operating temperature -40°C to +85°C

PIN ASSIGNMENT

Н 2 1 TOP VIEW See Mech.

3

PIN DESCRIPTION

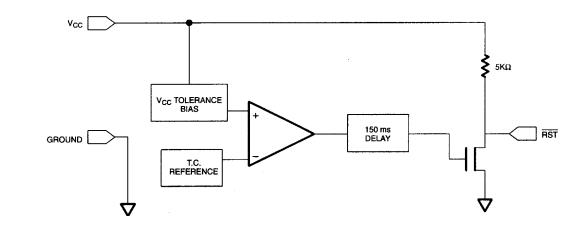
TO-92

3

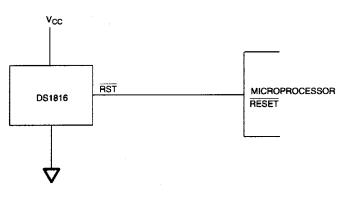
- 1 RST Active Low Reset Output 2
 - Power Supply V_{CC} Ground
 - **GND**

SOT-23

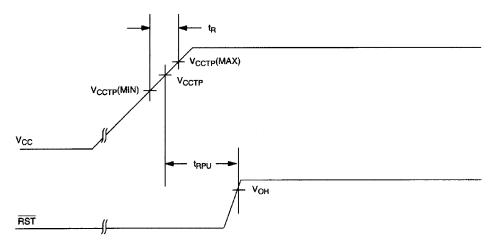
1 RST Active Low Reset Output 2 V_{CC} Power Supply 3 GND Ground

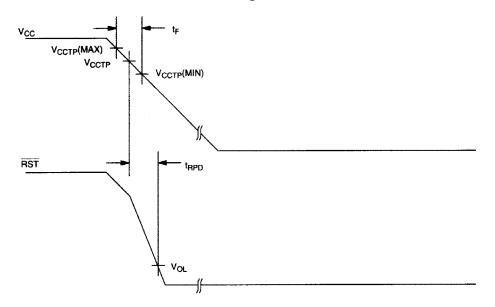

DESCRIPTION

The DS1816 EconoReset uses a precision temperature reference and comparator circuit to monitor the status of the power supply (V_{CC}) . When an out-of-tolerance condition is detected, an internal power-fail signal is generated which forces reset to the active state. When V_{CC} returns to an in-tolerance condition, the reset signal is kept in the active state for approximately 150ms to allow the power supply and processor to stabilize.


OPERATION — POWER MONITOR

The DS1816 provides the function of detecting out-of-tolerance power supply conditions and warning a processor-based system of impending power failure. When V_{CC} is detected as out-of-tolerance, the \overline{RST} signal is asserted. On power-up, \overline{RST} is kept active for approximately 150ms after the power supply has reached the selected tolerance. This allows the power supply and microprocessor to stabilize before \overline{RST} is released.


BLOCK DIAGRAM (OPEN-DRAIN OUTPUT) Figure 1


APPLICATION EXAMPLE Figure 2

TIMING DIAGRAM: POWER-UP Figure 3

TIMING DIAGRAM: POWER-DOWN Figure 4

ABSOLUTE MAXIMUM RATINGS*

Voltage on V_{CC} Pin Relative to Ground	
Voltage on \overline{RST} Relative to Ground	
Operating Temperature Range	
Storage Temperature Range	
Soldering Temperature	

 $\begin{array}{l} -0.5V \ to \ +7.0V \\ -0.5V \ to \ V_{CC} \ + \ 0.5V \\ -40^{\circ}C \ to \ +85^{\circ}C \\ -55^{\circ}C \ to \ +125^{\circ}C \\ 260^{\circ}C \ for \ 10 \ seconds \end{array}$

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

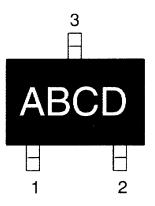
RECOMMENDED DC OPERATING CONDITIONS				(-40°C to +85°C)		
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Supply Voltage	V _{CC}	0.0		5.5	V	1

DC ELECTRICAL CHARACTERISTICS

 $(-40^{\circ}C \text{ to } +85^{\circ}C; V_{CC} = 1.2V \text{ to } 5.5V)$

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Output Current @ 0.4V	I _{OL}	+10			mA	2, 3
Operating Current $V_{CC} < 5.5V$	I _{CC}		28	35	μA	4
V _{CC} Trip Point (DS1816-5)	V _{CCTP}	2.98	3.06	3.15	V	1
V _{CC} Trip Point (DS1816-10)	V _{CCTP}	2.80	2.88	2.97	V	1
V _{CC} Trip Point (DS1816-20)	V _{CCTP}	2.47	2.55	2.64	V	1
Internal Pull-Up Resistor	R _P	3.5	5.5	7.5	kΩ	7
Output Capacitance	C _{OUT}			10	pF	

AC ELECTRICAL CHARACTERISTICS


 $(-40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{CC} = 1.2\text{V to } 5.5\text{V})$

		· ·		, -00		/
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
RESET Active Time	t _{RST}	100	150	250	ms	5
V_{CC} Detect to \overline{RST}	t _{RPD}		2	5	μs	
V _{CC} Slew Rate	t _F	300			μs	8
$(V_{CCTP} (MAX) \text{ to } V_{CCTP} (MIN))$						
V _{CC} Slew Rate	t _R	0			ns	
$(V_{CCTP} (MIN) \text{ to } V_{CCTP} (MAX))$						
V _{CC} Detect to RST	t _{RPU}	100	150	250	ms	5, 6

NOTES:

- 1. All voltages are referenced to ground.
- 2. Measured with $V_{CC} \ge 2.7 V$.
- 3. A $1k\Omega$ external pull-up resistor may be required in some applications for proper operation of the microprocessor reset control circuit.
- 4. Measured with \overline{RST} output open.
- 5. Measured with $2.7V \le V_{CC} \le 3.3V$.
- 6. $t_R = 5\mu s$
- 7. V_{OH} and I_{OH} are a function of the value of R_P and the associated output load conditions.
- 8. The t_F value is for reference in defining values for t_{RPD} and should not be considered a requirement for proper operation or use of the device.

PART MARKING CODES

"A", "B", &"C" represent the device type.

,	1
810	DS1810
811	DS1811
812	DS1812
813	DS1813
815	DS1815
816	DS1816
817	DS1817
818	DS1818

"D" represents the device tolerance.