

GaN on SiC HEMT Power Transistor 25 W, DC-2.5 GHz, CW Power

Rev. V1

Features

- GaN on SiC Depletion Mode Transistor
- Common-Source Configuration
- Broadband Class AB Operation
- Thermally Enhanced Cu/Mo/Cu Package
- RoHS* Compliant
- +28V Typical Operation
- MTTF = 600 years (T_J < 200°C)

Primary Applications

- RF Lighting
- RF Plasma Generation
- RF Heating
- RF Drying
- Material Processing
- Power Industrial Equipment
- ISM
- Broadcast
- MILCOM
- Datalinks
- Air Traffic Control Radar Commercial
- Weather Radar Commercial
- Military Radar Military

Description

The MAGX-000245-025000 is a gold metalized unmatched Gallium Nitride (GaN) on Silicon Carbide (SiC) RF power transistor suitable for CW applications centered at 2.45GHz for ISM/Broadcast/Plasma application in applications. This product differentiates itself from other GaN power transistors in that it runs well in CW. The matching network is compact and small. The frequency of operation covers DC - 2.5 GHz which captures commercial as well as military applications. This product is designed as a high power driver amplifier or final stage depending on the application. Using state of the art wafer fabrication processes, these high performance transistors provide high gain. efficiency, bandwidth and ruggedness over a wide bandwidth for today's demanding application needs. The MAGX-000245-025000 is constructed using a thermally enhanced Cu/Mo/ Cu flanged ceramic package which provides excellent thermal performance.

MAGX-000245-025000

Ordering Information

Part Number	Description
MAGX-000245-025000	Bulk Packaging
MAGX-S00245-025000	Sample Board (2.45 GHz)

* Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[•] North America Tel: 800.366.2266 / Fax: 978.366.2266

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Power Transistor 25 W, DC-2.5 GHz, CW Power

Rev. V1

Electrical Specifications¹: Freq. = 2450 MHz, T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
RF Functional Tests: V _{DD} = +28 V, I _{DQ} = 100 mA, CW Operation						
Input Power	P _{out} = 25 W	Pin	-	1.6	2.4	W
Power Gain	P _{out} = 25 W	G _P	10.2	12	-	dB
Drain Efficiency	P _{out} = 25 W	η_{D}	57	62	-	%
Load Mismatch Stability	P _{out} = 25 W	VSWR-S	-	5:1	-	-
Load Mismatch Tolerance	P _{out} = 25 W	VSWR-T	-	10:1	-	-

Electrical Characteristics: $T_A = 25$ °C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
DC Characteristics						
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 175 V	I _{DS}	-	-	3.0	mA
Gate Threshold Voltage	$V_{DS} = 5 \text{ V}, I_{D} = 6 \text{ mA}$	V _{GS (TH)}	-5	-3	-2	V
Forward Transconductance	V _{DS} = 5 V, I _D = 1500 mA	G _M	1.1	-	-	S
Dynamic Characteristics						
Input Capacitance	$V_{DS} = 0 \text{ V}, \ V_{GS} = -8 \text{ V}, F = 1 \text{ MHz}$	C _{ISS}	-	13.2	-	pF
Output Capacitance	$V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V}, \ F = 1 \text{ MHz}$	Coss	-	5.6	-	pF
Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, \ V_{GS} = -8 \text{ V}, \ F = 1 \text{ MHz}$	C _{RSS}	-	0.5	-	pF

Correct Device Sequencing

Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (+28V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to $V_{P.}$
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

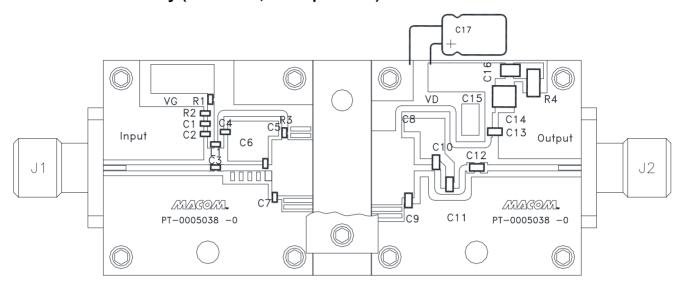
^{1.} Electrical Specifications measured in MACOM RF evaluation board.

GaN on SiC HEMT Power Transistor 25 W, DC-2.5 GHz, CW Power

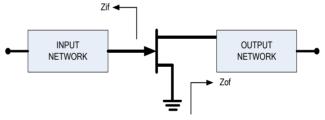
Rev. V1

Absolute Maximum Ratings^{2,3,4}

Parameter	Limit
Supply Voltage (V _{DD})	+32 V
Supply Voltage (V _{Gg})	-8 to 0 V
Supply Current (I_{DMAX}) for CW Operation at V_{DD} = +32 V	3 A
Input Power (P _{IN}) for CW Operation at V _{DD} = +28 V	P _{IN} (nominal) + 3 dB
Absolute Max. Junction/Channel Temperature	200°C
Power Dissipation at 85 °C for CW Operation at V _{DD} = +28 V	13 W
MTTF (T _J <200°C)	600 years
Thermal Resistance, (T _J = 200 °C) V _{DD} = 28 V, I _{DQ} = 100 mA, CW Operation	9.0 °C/W
Operating Temperature	-40 to +95°C
Storage Temperature	-65 to +150°C
Mounting Temperature	See solder reflow profile
ESD Min Charged Device Model (CDM)	200 V
SD Min Human Body Model (HBM) 550 V	


- Operation of this device above any one of these parameters may cause permanent damage.
 Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime.
- 4. For saturated performance it is recommended that the sum of (3*V_{DD} + abs(V_{GG})) <175 V.

GaN on SiC HEMT Power Transistor 25 W, DC-2.5 GHz, CW Power


Rev. V1

Test Fixture Assembly (2450 MHz, CW Operation)

Test Fixture Impedances

F (MHz)	Z _{IF} (Ω)	Z _{OF} (Ω)
2450	1.6 - j4.5	5.6 + j3.9

Parts List

Reference Designator	Part Description	Manufacturer Part Number
C1	0.1 μF, 0402, X7R, 10%, 16 V, Murata	GRM155R71C104K
C2	10 nF, 0402, X7R, 10%, 50 V, Murata	GRM155R71H103K
C16	0.1 μF, 0805, X7R, 10%, 100 V, TDK	C2012X7R2A104K125AA
C15	5000 pF, 100B, 5%, 250 V, ATC	-
C3, C4	12 pF, 0402, ± 1%, 200 V, ATC	ATC600L120FT
C12, C13	12 pF, 0603, ± 2%, 250 V, ATC	ATC600S120GT
C10	2.4 pF, 0603, ± 0.05 pF, 250 V, ATC	ATC600S2R4BT
C7	2.4 pF, 0402, ± 1 %, 200 V, ATC	ATC600L2R4FT
C11	1.3 pF, 0603, ± 0.1 pF, 250 V, ATC	ATC600S1R3BT
C9	1.6 pF, 0603, ± 0.1 pF, 250 V, ATC	ATC600S1R6BT
C6	1.5 pF, 0402, ± 0.1 pF, 200 V, ATC	ATC600L1R5FT
C17	100 μF, 160 V, Electrolytic Capacitor	-
C5, C8, C14	Not Populated	-
L1	10 nH, 0402, 2%, Coilcraft	0402HP-10NXGLW
R1	200 Ω, 0402, 5%, Panasonic	ERJ-2GEJ201X
R2	3K Ω, 0402, 5%, Panasonic	ERJ-2GEJY302X
R3	11 Ω, 0402, 1%, Panasonic	ERJ-2RKF11R0X
R4	2.2 Ω, 1206, 1%, Panasonic	CR1206-J/-2R2ELF
J1, J2	SMA Connector	2052-5636-02

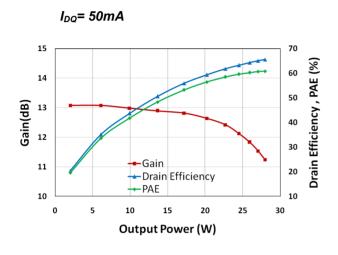
4 Contact factory for Gerber file or additional circuit information.

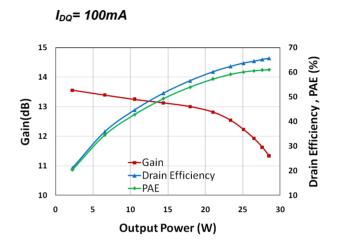
M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

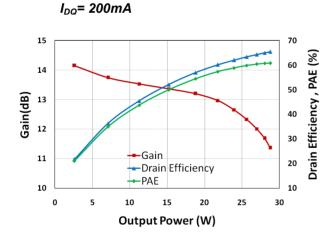
Visit www.macomtech.com for additional data sheets and product information.

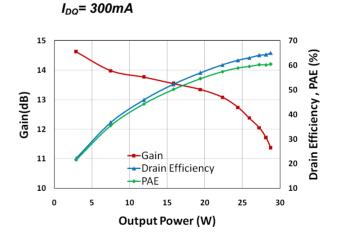
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

GaN on SiC HEMT Power Transistor 25 W, DC-2.5 GHz, CW Power

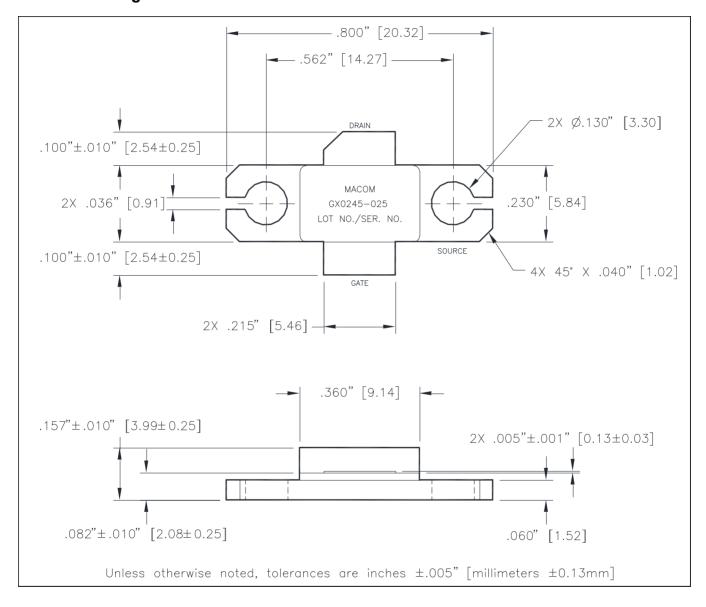

Rev. V1


Application Section


Typical Performance Curves


2450 MHz, V_{DD} = 28 V, CW Operation, T_A = 25°C

Gain, Drain Efficiency, and PAE vs. Output Power over IDO



GaN on SiC HEMT Power Transistor 25 W, DC-2.5 GHz, CW Power

Rev. V1

Outline Drawing MAGX-000245-025000

