# LEMO's Environmentally Sealed Connectors

K Series - Mechanical Keying

E Series - Hermaphroditic Keying





# Expect Success. Spec LEMO.



## • A Global Leader

Since its beginning in Switzerland in 1946, LEMO<sup>®</sup> has evolved into a worldwide leader in the design and manufacture of circular connectors, with products sold in more than 80 countries.

Today, LEMO offers a product line for almost any application, from medical equipment to test and measurement instrumentation.

## • LEMO Means "Quality"

The name LEMO has become synonymous with quality and customer service in the connector industry, setting standards that others strive to meet. Our connectors are designed in an ISO 9001 business environment, ensuring the highest quality products for our customers.

# • LEMO – We Deliver Reliability

Ask for LEMO connectors for any application where quality, safety and ruggedness are essential; where reliability is critical or where connectors are frequently engaged and disengaged, even in the toughest environments.

LEMO Connectors offer a unique combination of benefits:

**Original QUICK-LOK™** push-pull, self-latching system saves space and time while ensuring durable connections.

**Precision construction** from machined brass, stainless steel or aluminum ensures safety and uniform mating.

**Gold plated contacts** assure excellent electrical performance.

**Collet-type strain relief** securely grips circumference of any round cable, protecting connection even under extreme stress.

Bend relief option offers additional cable protection, including color-coding for easy identification.

## **Custom Design**

If we don't have it, we'll build it. Although we offer the most extensive product line in the industry, we understand that some application needs are unique. If we don't have exactly what you need, LEMO will design and build a connector that's just right for your application.

## **Cable Assembly**

Expand the quality of the connector to the cable assembly with our onestop shop value-added service. LEMO's skilled technicians build and test assemblies to your specifications.

## **Customer Support**

Customer Support when you need it. Only LEMO offers extended customer service hours so you get technical support when you need it. LEMO's Customer Support Team includes in-house Product Specialists, plus a nationwide network of sales representatives and distributors.





## • Table of Contents

| General Information     | LEMO's Product Line                                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------|
| General Characteristics | Outer Shell, Technical Characteristics                                                                               |
| K Series Connectors     | Introduction                                                                                                         |
| E Series Connectors     | Introduction.44Interconnections.44Part Section Showing Internal Components.45Part Number Example.46Models.47Types.55 |
| Accessories             | Insulators for Crimp Contacts                                                                                        |
| Tooling                 | Wrenches and Assembly Tools                                                                                          |
|                         | Forms                                                                                                                |



### LEMO's Product Line

Connectors, accessories and tools found in this catalog.

| Connectors   | Single contact from 2 to 150 Amps<br>Coaxial 50 and 75 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Patch Panels | For video HDTV applications: 3 coax 75 $\Omega$ + 2LV For fiber optic applications                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Coaxial 50 $\Omega$ for frequency $\rightarrow$ 12 GHz<br>Multicoaxial 50 and 75 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                           | Adaptors     | For BNC, C, UHF, N, CINCH, GEN-RADIO connectors<br>For TNC, SMA connectors                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Nulticontact from 2 to 10e contacts<br>High Voltage 3, 5, 8, 10, 15, 30 and 50 kV cc<br>Multi High Voltage 3, 5, and 10 kV cc<br>Triaxial 50 and 75 $\Omega$<br>Quadrax<br>Mixed: High Voltage (HV) + Low Voltage (LV)<br>Mixed: Coax + LV<br>Mixed: Triax + LV<br>Thermocouple<br>Multithermocouple<br>Fiber optic singlemode<br>Fiber optic nultimode<br>Mixed: fiber optic + LV<br>Mixed: fiber optic + coax + LV<br>Fluidic<br>Multifluidic<br>Multifluidic<br>Mixed: fluidic + LV<br>Subminiature<br>Miniature | Accessories  | <ul> <li>Insulator for crimp contacts</li> <li>Crimp contacts</li> <li>Coaxial contacts<br/>Triaxial contacts</li> <li>Fiber optic contacts</li> <li>Fiber optic ferrules</li> <li>Caps and bend relief</li> <li>Heatshrink boot</li> <li>Insulating washers<br/>Double plastic panel washers</li> <li>Locking washers</li> <li>Hexagonal nuts<br/>Conical nuts</li> <li>Round nuts</li> <li>Notched nuts</li> <li>Grounding washers<br/>Lead-through with cable collet</li> </ul> |
| Patch Panels | Printed circuit board<br>Remote handling<br>Watertight<br>Sealed (pressure and/or vacuum)<br>With plastic outer shell<br>With aluminium outer shell<br>With special radiation resistant insulator material<br>With special radiation resistant insulator material<br>With screw thread coupling for very high pressure<br>With microswitch<br>For audio-mono applications: triax<br>For audio-stereo applications: 3 contacts<br>For audio-stereo applications: 9 guadrax                                           | Tooling      | <ul> <li>Wrenches</li> <li>Wrenches for assembling plug<br/>Assembly tool</li> <li>Pliers<br/>Tap</li> <li>Crimping tools</li> <li>Positioners<br/>Crimping dies</li> <li>Banding Tool</li> <li>Extractors</li> <li>Insertion testing tool for crimp contacts<br/>Fiber optic termination workstation<br/>Fiber optic polishing tools</li> </ul>                                                                                                                                   |
|              | For audio-stereo applications: 6 contacts For video applications: coax 75 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unrequest    | Connectors with special alloy housing<br>Mixed special connectors<br>Assembly onto cable                                                                                                                                                                                                                                                                                                                                                                                           |

## Characteristics of Primary Series





# • LEMO's Line of Series by Types

| Note:             |                     |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
|-------------------|---------------------|------|----------|----------|-------|------|------|------|------|---|-------|--------|------|------|------|----------|--------|------|--------|-------|----------|
| = inclue          | ded in this catalog | -    |          |          |       |      |      |      |      |   |       |        | 2    | >    |      |          |        |      |        | Ņ     | 0        |
| availa     ipolua | able but not        | Itac | G        | C        | t     | ge   | C    | C    |      |   | ƙial  | L<br>∠ | l+xe | X+L  | 0    |          | ⊢<br>L |      | o      | dic+  | nple     |
| Incluc            |                     | cor  | al 50    | al 75    | onte  | olta | I 50 | 1 75 | ax   | ≥ | Coa   | Ξ      | Ö    | Tria | Opti | 0        | Ŕ      |      | Iuidi  | fluic | 000      |
|                   |                     | gle  | axia     | axia     | Itice | h V  | axia | axia | adra | Ē | IEi O | Ked    | Ked  | (ed  | er ( | Ē        | Ked    | idic | Iti fi | Ked   | erm      |
|                   | Series              | Sin  | ပိ       | ပိ       | Σ     | Ξ.   | Trië | Tris | 0n   | M | M     | Σ      | Ξ    | Σ    | Fib  | Β        | Σ      | E    | M      | ΚİΜ   | Ť        |
|                   | 01                  |      | •        |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
|                   | 00                  |      |          |          |       |      | ٠    |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| D                 | 05                  |      |          |          |       | ٠    |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| j                 | R0                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| e l               | 0A                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| ×                 | 0S                  |      | •        |          |       |      | ٠    |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| tic               | 1S                  |      | •        | •        |       | ٠    | ٠    |      |      |   |       |        |      |      |      |          |        |      |        |       | •        |
| di                | 2S                  | •    | •        | •        | •     | ٠    | ٠    | ٠    |      |   |       | •      |      |      |      |          |        |      |        |       | ٠        |
| 2                 | 3S                  | •    | •        | •        | •     | •    | •    | •    |      | • |       | •      | •    |      |      |          |        |      |        |       | <u> </u> |
| d                 | 45                  | •    | •        | •        | •     | •    | •    | •    |      | • | •     | •      | •    |      |      |          |        |      |        |       |          |
| Ja                | 55<br>69            | -    | •        | •        |       |      |      |      |      | • |       | •      |      |      |      |          |        |      |        |       |          |
| L L               | 10                  |      | <u> </u> |          |       | 1    |      | 1    |      |   |       |        |      |      |      | <u> </u> | 1      |      |        |       | 1        |
| Ψ                 | 20                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      | <u> </u> |        |      |        |       | <u> </u> |
|                   | 20                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
|                   |                     |      |          |          |       |      |      | •    |      |   |       |        |      |      |      |          |        |      |        |       | <u> </u> |
|                   | 11-31-01            |      |          |          |       |      |      |      |      |   |       |        |      |      |      | <u> </u> |        |      |        |       |          |
| <u>.0</u>         | 1E                  | ╟═╸  |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| t j               | 2F                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| ē jā              | 3E                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| it of the         | 4E                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| ayian             | 5E                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
| K<br>S<br>S       | 6E                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
|                   | 3T                  |      |          |          |       |      |      | ٠    |      |   |       |        |      |      |      |          |        |      |        |       |          |
| ±                 | 4M                  |      |          |          |       |      | ٠    | ٠    |      |   |       |        |      |      |      |          |        |      |        |       |          |
|                   | 00                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
|                   | 0B                  |      |          |          | •     |      |      |      |      |   |       |        |      |      | •    |          |        | •    |        |       | •        |
| <u> </u>          | 1B                  |      |          |          | •     |      |      |      |      |   |       | •      |      |      |      |          |        |      |        |       | •        |
| in                | 2B                  |      |          |          | •     |      |      |      |      | • | •     | •      | •    | •    |      | -        | •      |      | -      | •     | •        |
| ey                | 3B<br>/B            |      |          | -        | •     |      |      |      |      |   | •     | •      |      |      |      | •        | •      |      | •      | •     |          |
| <u>e</u> z        | 5B                  |      |          |          | •     |      |      |      |      |   | •     |        | •    | •    |      |          | •      |      |        | •     |          |
| Σ                 | 2G                  |      |          | <u> </u> |       |      |      |      |      |   |       |        |      |      |      | -        |        |      |        |       |          |
|                   | 5G                  |      |          |          |       |      |      |      |      | • |       |        |      |      |      |          |        |      |        |       |          |
|                   | 0K                  |      |          |          |       |      |      |      |      |   |       |        |      |      | •    |          |        |      |        |       | •        |
| t a               | 1K                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       | •        |
| g l j             | 2K                  |      |          |          |       |      |      |      |      |   |       |        |      |      |      |          | ٠      |      |        |       | ٠        |
| an                | 3K                  | -    |          |          |       |      |      |      |      |   |       |        |      |      |      | •        | •      |      |        |       |          |
| te                | 4K                  | -    |          |          |       |      |      |      |      |   |       |        |      |      |      | •        | •      |      |        |       |          |
| Ae Va             | 5K                  |      | <u> </u> |          |       |      |      |      |      |   |       |        |      |      |      | •        |        |      |        |       | <u> </u> |
| 2->               | OF to 5F            |      | <u> </u> |          | •     |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
|                   | 3N to 5N            |      | <u> </u> |          | •     |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       | <u> </u> |
| Plastic           | 1P to 3P            |      |          |          | •     |      |      |      |      |   |       |        | ٠    | •    |      |          |        | •    |        |       |          |
|                   | 03                  |      | •        |          | •     |      |      |      |      |   |       |        |      |      |      |          |        |      |        |       |          |
|                   | 0V                  | •    | •        |          | •     |      | •    |      |      |   |       |        |      |      |      |          |        |      |        | •     |          |
|                   | 1V                  | •    | •        | •        | •     |      | •    |      |      |   |       |        |      |      |      |          |        |      |        | •     |          |
| 6 K               | 2V                  | •    | •        | •        | •     |      | •    | •    |      | - |       | •      | -    |      |      |          |        |      |        | •     |          |
| 5<br>C            | 3V                  |      |          |          |       |      | •    | •    |      | • |       |        |      |      |      |          |        |      |        |       |          |
| S                 | 4V<br>5V            |      |          | -        |       |      |      |      |      |   | •     |        |      |      | -    |          |        |      |        |       |          |
|                   | 0\\/ to 5\\/        |      | <u> </u> |          |       |      |      |      | 1    |   |       |        |      |      |      | <u> </u> |        | 1    | 1      |       |          |
|                   | 211 to 511          |      |          | 1        |       |      |      |      |      |   |       |        |      |      |      |          |        |      | 1      | -     |          |
|                   | 201030              |      | 1        |          | -     | 1    |      | 1    |      |   |       |        |      |      | -    | -        | -      | 1    | 1      |       |          |



#### ■ QUICK-LOK<sup>™</sup> Push-Pull Self-Latching System



LEMO's Original QUICK-LOK push-pull, self-latching system is renowned worldwide for its easy and quick mating and unmating features. It provides absolute security against vibration, shock or pull on the cable, facilitates operation in a very limited space, and offers unique advantages for all applications:

**Speed** – Engage connectors simply and quickly by pushing plugs axially into mating receptacles. Pull on outer shell to remove plug easily.

**Space Savings** – Just one finger clearance on two sides is needed to engage and disengage connectors, so there's no need to twist or turn a locking ring.

Reliability – Connections are reliable and assured when locking mechanism is engaged.

Ruggedness – Sturdy design, with sealed models to various IP levels.

#### How QUICK-LOK<sup>™</sup> Works





#### Engaging

QUICK-LOK allows the connector to be mated by simply pushing the plug straight into the receptacle.



#### Latched

Once firmly latched, connection cannot be broken by pulling on the cable or any other component part other than the outer release sleeve.



#### Disengaging

When required, the connector is disengaged by a single straight pull on the outer release sleeve. This first disengages the latches and then withdraws the plug from the receptacle.

#### Key:

Fv = average latching force. Fd = average unmating force with axial pull on the outer release Fa = average pull force with axial pull on the collet nut.

#### Latching Characteristics for K and E Series Connectors

| Force | Series |     |     |     |     |     |  |  |  |  |
|-------|--------|-----|-----|-----|-----|-----|--|--|--|--|
| (N)   | 0K     | 1K  | 2K  | ЗK  | 4K  | 5K  |  |  |  |  |
| Fv    | 14     | 16  | 20  | 32  | 65  | 85  |  |  |  |  |
| Fd    | 9      | 10  | 13  | 25  | 40  | 60  |  |  |  |  |
| Fa    | 250    | 300 | 400 | 550 | 700 | 800 |  |  |  |  |

| Force |     | Series |     |     |     |     |     |  |  |  |  |  |
|-------|-----|--------|-----|-----|-----|-----|-----|--|--|--|--|--|
| (N)   | 0E  | 1E     | 2E  | 3E  | 4E  | 5E  | 6E  |  |  |  |  |  |
| Fv    | 14  | 16     | 20  | 32  | 65  | 85  | 100 |  |  |  |  |  |
| Fd    | 9   | 10     | 13  | 25  | 40  | 60  | 75  |  |  |  |  |  |
| Fa    | 250 | 300    | 400 | 550 | 700 | 800 | 900 |  |  |  |  |  |

**Notes:** the forces were measured on outer shell not fitted with contacts. The mechanical endurance represents the number of cycles after which the latching system is still effective (1 cycle = 1 latching/unlatching – 300 cycles per hour).

Mechanical endurance: 5000 cycles.

The values were measured according to the standard MIL-STD-1344A method 2013.1.

1N = 0.102kg.



# General Characteristics

#### Materials and Surface Treatment

#### **Outer Shell**

#### Brass

In most cases, LEMO connectors have a brass outer shell which is suitable for most general purpose applications, including civilian and military. The brass outer shells have a chrome nickel-plated surface which ensures very good protection against industrial atmosphere, salt air and most corrosive agents.

Alternative protective coatings are available to satisfy other specific environmental conditions: Electrolytic nickel;

Nickel-gold; and

Nickel-black chrome. After the black chrome treatment, the part is coated with a protective organic film.

#### Other metallic components

In general, most metallic components are manufactured in brass. However, bronze or beryllium copper are used where good elasticity is required (for example: grounding crown). Depending upon the application, these parts have electrolytic nickel or nickel-gold plating.

These parts can also be manufactured in stainless steel.

#### Sealing gasket

In general, sealing gaskets are made of silicone rubber MQ/MVQ. However, for vacuum-tight receptacles and couplers, gaskets are made of fluorosilicone rubber (FPM).

#### Sealing resin

An epoxy resin is used to seal both watertight and vacuum-tight receptacle and coupler models.

|                         |                                                                               |                   |      | ę   | Surfac | ce tre | atmer  | nt (µn | า)  |      |        |       |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------------|-------------------|------|-----|--------|--------|--------|--------|-----|------|--------|-------|--|--|--|--|
| Component               | Material (Standard)                                                           | C                 | hrom | е   | nic    | kel    |        | gold   |     | blac | < chr. | Notes |  |  |  |  |
|                         |                                                                               | Cu                | Ni   | Cr  | Cu     | Ni     | Cu     | Ni     | Au  | Ni   | Cr     |       |  |  |  |  |
|                         | Brass (UNS C 38500)                                                           | 0.5               | 3    | 0.3 | 0.5    | 3      | 0.5    | 3      | 0.5 | 1    | 2      |       |  |  |  |  |
|                         | Stainless steel (AISI 303, 304 or 316L)                                       | without treatment |      |     |        |        |        |        |     |      |        |       |  |  |  |  |
|                         | Avional (AA 2007)                                                             | -                 | -    | -   | -      | 5      | -      | -      | -   | -    | -      | 1)    |  |  |  |  |
|                         | Aluminium alloy (AA 6012)                                                     |                   |      |     |        | ano    | dized  |        |     |      |        |       |  |  |  |  |
| Outer shell,            | POM (Delrin <sup>®</sup> or Ertacetal <sup>®</sup> ), Polyoxymethylene, black |                   |      |     |        |        | -      |        |     |      |        | 2)    |  |  |  |  |
| collet nut, conical nut | PEEK, Polyether etherketone, beige                                            |                   |      |     |        |        | -      |        |     |      |        | 3)    |  |  |  |  |
| collet                  | PSU (Udel <sup>®</sup> ), Polysulfone, gray or white                          |                   |      |     |        |        | -      |        |     |      |        | 4)    |  |  |  |  |
|                         | PPSU (Radel <sup>®</sup> ), Polyphenylsulfone, cream                          |                   |      |     |        | -      |        |        |     |      |        |       |  |  |  |  |
|                         | PA.6 (Grilon®), Polyamid                                                      |                   |      |     |        |        | _      |        |     |      |        | 5)    |  |  |  |  |
|                         | PPS (Ryton <sup>®</sup> ), Polyphenilene sulfide, brown                       |                   |      |     |        |        | -      |        |     |      |        | 6)    |  |  |  |  |
|                         | Bronze (UNS C 54400) or special brass                                         | -                 | -    | _   | 0.5    | 3      | 0.5    | 3      | 1.0 | -    | -      | 7)    |  |  |  |  |
| Grounding crown         | Beryllium Copper (UNS C 17300)                                                | -                 | —    | -   | 0.5    | 3      | 0.5    | 3      | 1.0 | -    | -      | 8)    |  |  |  |  |
|                         | Stainless steel (AISI 416 or 316L)                                            | without treatment |      |     |        |        |        |        |     |      | 9)     |       |  |  |  |  |
| Latch sleeve            | Special brass                                                                 | 0.5               | 3    | 0.3 | 0.5    | 3      | 0.5    | 3      | 0.5 | -    | -      |       |  |  |  |  |
| Later sieeve            | Stainless steel (AISI 416 or 316L)                                            | without treatment |      |     |        |        |        |        |     |      | 9)     |       |  |  |  |  |
| Locking washer          | Bronze (UNS C 52100)                                                          |                   |      |     | 0.5    | 2      | 0.5    | 2      | 0.5 |      |        |       |  |  |  |  |
|                         | Brass (UNS C 38500)                                                           | _                 | _    | _   | 0.5    | 3      | 0.5    | 3      | 0.5 | _    | _      |       |  |  |  |  |
| Hexagonal or round nut  | Stainless steel (AISI 303, 304 or 316L)                                       |                   |      |     | wit    | hout   | treatm | nent   |     |      |        | 10)   |  |  |  |  |
|                         | Aluminium alloy (AA 6012)                                                     |                   |      |     | an     | odize  | d nati | ural   |     |      |        | 10)   |  |  |  |  |
|                         | Brass (UNS C 38500)                                                           | -                 | -    | _   | 0.5    | 3      | 0.5    | 3      | 0.5 | -    | -      |       |  |  |  |  |
|                         | Stainless steel (AISI 303, 304 or 316L) without treatment                     |                   |      |     |        |        |        |        |     |      |        |       |  |  |  |  |
| O-ring and gaskets      | Silicone MQ/MVQ or FPM/FKM (Viton®)                                           | - 11              |      |     |        |        |        |        | 11) |      |        |       |  |  |  |  |
| Sealing resin           | Epoxy (Araldite <sup>®</sup> or Stycast <sup>®</sup> )                        | -                 |      |     |        |        |        |        |     |      |        |       |  |  |  |  |

#### Notes:

standards for surface treatment are as follows:

Chrome-plated: FS QQ-C-320B; Nickel-plated: FS QQ-N-290A, or MIL-C-26074C;

Gold-plated: ISO 4523; and

Black chrome: MIL-C-14538C with a minimum of 10 µm of lacquer protection.
 anthracite color (other colors upon request)
 anthracite color (other colors upon request)

 <sup>2)</sup> for FFP, PCP and ERN models of the 0S to 3S series
 <sup>3)</sup> for FFP, PCP and ERN models of the 0S to 3S series and FGG and ENG models of the 1B, 3B and 4B series

- 4) for the FGY and ENY models of the 2B and 3B series
- 5) for bridge plugs of the B series
- 6) for S and B series elbow receptacles for printed circuits
- 7) gold-plating for single contact types
- 8) used in 00 series free and fixed receptacles and couplers
- 9) AISI 416 steel is used with shells made of AISI 303 or 304
- <sup>10)</sup> delivered with free and fixed receptacles with aluminium alloy or stainless steel shell



#### **Electrical Characteristics**

#### Shell electrical continuity: (measured according to IEC 60512-2 test 2f)

Test current: 1A A = Ammeter mV = MillivoltmeterG = Generator

## Standard and Keyed watertight series



| Series | R <sub>1</sub><br>(mΩ) | R <sub>2</sub><br>(mΩ) |  |
|--------|------------------------|------------------------|--|
| 0E-0K  | 2.8                    | 1.6                    |  |
| 1E-1K  | 2.2                    | 1.5                    |  |
| 2E-2K  | 1.8                    | 1.2                    |  |
| 3E-3K  | 1.6                    | 1.2                    |  |
| 4E-4K  | 1.4                    | 1.0                    |  |
| 5E-5K  | 1.4                    | 1.0                    |  |
| 6E     | 1.0                    | 0.5                    |  |

- $\ensuremath{\mathsf{R}_1}$  Values with grounding crown and latch sleeve or inner-sleeve nickel-plated.
- **R**<sub>2</sub> Values with gold-plated grounding crown and nickel-plated latch sleeve or inner sleeve.

# Electromagnetic compatibility (EMC) and shielding efficiency

The electromagnetic compatibility of a device can only be ensured by meeting a number of basic rules with the design of the device and by carefully selecting components, cables and connectors.

Electrical and electronic devices are to be designed to ensure the following:

- a) Reduce the emission of generated electromagnetic interference to a level where radios and telecommunication and other devices can properly function;
- b) Electromagnetic immunity against electromagnetic interference so that they can properly function.

When selecting a connector, screen or shielding efficiency and low resistance to electric continuity between the cable and the connector should be considered.

The design of LEMO connectors with metal shell and grounding crown guarantee optimum shielding efficiency in all applications where electromagnetic compatibility (EMC) is critical.

The performance of a connector is measured through shielding efficiency, a value that represents the ratio between the electromagnetic field on the outside and the inside of the shell. Our measurements are carried out according to the IEC 60169-1-3 standard.



The performance of K and E series connectors is comparable to the results of measurements carried out on a pair of FGG + PHG.1K connectors.



#### Insulator

Plastic material used by LEMO for manufacturing insulators is selected according to the electric and thermal properties required for the various connector types. Characteristics examined for the two connector types are:

- Dielectric strength;
- Comparative tracking index;
- Surface and volume resistivity;
- Continuous service temperature;
- Water absorption;
- Radiation resistance;
- Flammability rating;
- Resistance to hydrocarbon.

#### **Mechanical and Electrical Properties**

LEMO uses PEEK (Polyether Etherketone) for the insulator material. The performance of this thermo-plastic material is enhanced by the addition of glass fibers in the resin to achieve very high mechanical strength, to increase dielectric strength and to reduce water absorption rate. The above features of PEEK, plus its excellent chemical and radiation resistance, make it ideal for most applications. Sealing grommets are molded from Viton<sup>®</sup>. Such polymer has inherently excellent electrical insulating properties which does not change when exposed to adverse environments.

Insulating resistance  $>10^{12}\Omega$  (per MIL-STD-1344A method 3003.1).



**Note:** Technical data in this chapter provide general information on plastics used by LEMO as electrical insulators. LEMO reserves the right to propose new materials with better technical characteristics, and to withdraw, without notice, any material mentioned in the present catalog or any other publications edited by LEMO SA. and/or its subsidiaries. LEMO SA and its subsidiaries use only plastic granules, powder or bars supplied by specialized companies, and thus cannot in any case take responsibility with regard to this material.

| Туре                                          | Standard             | Units               | POM               | PEEK             | PSU                | PPSU    | PPS              | PA.6              | Silicone         | FPM               | Ероху             |
|-----------------------------------------------|----------------------|---------------------|-------------------|------------------|--------------------|---------|------------------|-------------------|------------------|-------------------|-------------------|
| Density                                       | ASTM D 792           | _                   | 1.4               | 1.3-1.4          | 1.24               | 1.3     | 1.67             | 1.14              | ~1.2             | ~1.9              | 1.58              |
| Tensile strength (at 73.4° F)                 | ASTM D 638/ ISO R527 | MPa                 | 70-80             | 92-142           | 70                 | 70      | 121              | 55                | > 9              | > 12              | 16                |
| Flexurale strength (at 73.4° F)               | ASTM D 790/ ISO R178 | MPA                 | -                 | 170              | 106                | 91      | 179              | 75                | -                | -                 | 24                |
| Dielectric strength                           | ASTM D 149/IEC 60243 | kV/mm               | 60                | 19-25            | 17-20              | 15      | 17               | 35                | 18-30            | -                 | 15                |
| Volume resis. at 50% HR and 73.4 $^{\circ}$ F | ASTM D 257/IEC 60093 | $\Omega \bullet CM$ | 10 <sup>15</sup>  | 10 <sup>16</sup> | 5x10 <sup>16</sup> | -       | 10 <sup>16</sup> | 10 <sup>15</sup>  | 10 <sup>14</sup> | -                 | 10 <sup>14</sup>  |
| Surface resistivity                           | ASTM D 257           | Ω                   | 10 <sup>13</sup>  | 10 <sup>15</sup> | -                  | -       | _                | -                 | -                | -                 | -                 |
| Thermal conductivity                          | ASTM C 177           | W/K ∙ m             | 0.31              | 0.25             | 0.26               | -       | 0.3              | -                 | -                | -                 | 0.8               |
| Comparative tracking index                    | IEC 60112            | V                   | CTI 600           | CTI 150          | CTI 150            | -       | CTI 200          | CTI 600           | -                | -                 | CTI>600           |
| Maxi. continuous service temperature          | UL 746               | °F                  | 194               | 482              | 284                | 356     | 428              | 176               | 392              | 392               | 176               |
| Min. continuous service temperature           | UL 746               | °F                  | -58               | -67              | -76                | -58     | -106             | -40               | -58              | -4                | -4                |
| Max. short-time service temperature           | _                    | °F                  | 284               | 572              | 320                | 392     | 482              | 302               | > 482            | 572               | 248               |
| Water absorption in 24h at 73.4° F            | ASTM D 570/ISO R62A  | %                   | 0.85              | 0.12             | 0.3                | 0.37    | < 0.05           | > 3               | -                | -                 | 0.25              |
| Radiation resistance                          | _                    | Gy <sup>1)</sup>    | 8x10 <sup>3</sup> | 10 <sup>7</sup>  | 10 <sup>5</sup>    | -       | > 107            | 5x10 <sup>3</sup> | 10 <sup>5</sup>  | 8x10 <sup>4</sup> | 2x10 <sup>6</sup> |
| Flammability rating                           | ASTM D 635/UL 94     | -                   | HB                | V-0/3.2          | V-0/4.4            | V-0/1.6 | V-0/5V           | V-2               | -                | -                 | V-0/4             |
| Resistance to steam sterilization             | _                    | _                   | bad               | excel.           | good               | excel.  | excel.           | bad               | good             | good              | bad               |

#### **Technical characteristics**

Notes: 1) 1 Gy (Gray) = 100 rad

ASTM = American Society for Testing Material ISO = International Standards Organization UL = Underwriters Laboratories IEC = International Electrotechnical Commission

Note: Values of insulation resistance between contacts are given on page 9.



#### **Technical Description**

The secure reliable electromechanical connection achieved with LEMO female cylindrical contacts is mainly due to two important design features:

- 1. Prod proof entry on the mating side which ensures perfect concentric mating even with carelessly handled connectors; and
- 2. The pressure spring, with good elasticity, maintains a constant even force on the male contact when mated. The leading edge of the pressure spring preserves the surface treatment (gold-plated) and prevents undue wear.



#### **Contact Material and Treatment**

LEMO female contacts are made of bronze beryllium (QQ-C-530) or bronze (UNS C 54400). These materials are chosen because of their high modulus of elasticity, their excellent electrical conductivity and a high mechanical strength.

LEMO male solder and printed circuit contacts are made of brass (UNS C 38500). Male crimp contacts are made of brass (UNS C 34500) or annealed brass (UNS C 38500) with optimum hardness (HV) for crimping onto the wire.



Notes: The standard surface treatment are as follows: Nickel: FS QQ-N-290A or MIL-C-26074C; and Gold: ISO 4523.

1) Minimum value 2) For elbow printed circuit contacts <sup>3)</sup> Treatment completed by 6 µm Sn-Pb tin-plating

| Туре                   | Material (standard)  | Surf. treatment (µm |                 |                  |  |  |
|------------------------|----------------------|---------------------|-----------------|------------------|--|--|
| туре                   | Material (Staridard) | Cu                  | Ni              | Au <sup>1)</sup> |  |  |
| Male crimp             | Brass (UNS C 34500)  |                     |                 |                  |  |  |
| Male entrip            | Brass (UNS C 38500)  | 0.5                 | 3               | 1.0              |  |  |
| Male printed circuit   | Brass (UNS C 38500)  |                     |                 |                  |  |  |
| Female crimp           | Bronze (UNS C 54400) | 0.5                 | 2               | 15               |  |  |
| Female printed circuit | Cu-Be (FS QQ-C-530)  | 0.5                 | 5               | 1.5              |  |  |
| Oline                  | Cu-Be (FS QQ-C-530)  |                     |                 |                  |  |  |
| Clips                  | Stainless steel      | -                   | _               | -                |  |  |
| Wire <sup>2)</sup>     | Brass                | -                   | 3 <sup>3)</sup> | -                |  |  |
|                        |                      |                     |                 |                  |  |  |

#### Thickness comparison between the outside and the inside of female contacts



Note: A = inspection point

|                    | Gold thickness |                 |               |  |  |  |  |  |
|--------------------|----------------|-----------------|---------------|--|--|--|--|--|
| Contact            |                | female          |               |  |  |  |  |  |
| (mm)               | male<br>(µm)   | outside<br>(µm) | inside<br>(%) |  |  |  |  |  |
| 0.5                | 1.0            | 1.5             | 65            |  |  |  |  |  |
| 0.7                | 1.0            | 1.5             | 70            |  |  |  |  |  |
| 0.9                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 1.3                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 1.6                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 2.0                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 3.0                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 4.0                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 5.0                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 6.0                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 8.0                | 1.0            | 1.5             | 75            |  |  |  |  |  |
| 12.0 <sup>1)</sup> | -              | -               | -             |  |  |  |  |  |

Notes: <sup>1)</sup> Contacts are silver plated.



#### Contact resistance with relation to the number of mating cyles

Maximum values measured after the mating cycles and the salt spray test according to IEC 60512-6 test 11f.

| ٨          | Contac         | t resistand    | ce (mΩ)        | •  | \ ~ | Contact resistance (mΩ) |                |                |  |  |  |
|------------|----------------|----------------|----------------|----|-----|-------------------------|----------------|----------------|--|--|--|
| Аø<br>(mm) | 1000<br>cycles | 3000<br>cycles | 5000<br>cycles | (m | nm) | 1000<br>cycles          | 3000<br>cycles | 5000<br>cycles |  |  |  |
| 0.5        | 7.5            | 8.3            | 8.7            | 3  | 3.0 | 2.0                     | 2.2            | 3.1            |  |  |  |
| 0.7        | 5.6            | 5.7            | 6.1            | 4  | 4.0 | 1.6                     | 2.0            | 2.8            |  |  |  |
| 0.9        | 4.1            | 4.2            | 4.8            | 5  | 5.0 | 1.4                     | -              | -              |  |  |  |
| 1.3        | 2.8            | 2.9            | 3.6            | 6  | 6.0 | 1.2                     | -              | -              |  |  |  |
| 1.6        | 2.6            | 2.7            | 3.5            | 8  | 8.0 | 0.8                     | -              | -              |  |  |  |
| 2.0        | 2.9            | 3.1            | 3.3            | 12 | 2.0 | 0.7                     | -              | -              |  |  |  |

(measured according to IEC 60512-2 test 2a)

#### Insulation resistance between the contacts and contact/shell

(measured according to IEC 60512-2 test 3a)

| Insulating material               | Multicontact         | Single contact       |  |  |
|-----------------------------------|----------------------|----------------------|--|--|
| moulating material                | PEEK                 | PTFE                 |  |  |
| new                               | > 10 <sup>12</sup> Ω | > 10 <sup>12</sup> Ω |  |  |
| after humidity test <sup>1)</sup> | > 10 <sup>10</sup> Ω | > 10 <sup>10</sup> Ω |  |  |

#### Note:

<sup>1)</sup> 21 days at 95% RH according to IEC 60068-2-3.

#### **Solder Contacts**

The conductor bucket of these contacts is machined at an angle to form a cup into which the solder can flow.



#### Note:

- a) For E series
   b) For O0 multicontact series
   a) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than ø C.

| Con        | tact   |             | Conc                                       | ductor           |                                   |  |
|------------|--------|-------------|--------------------------------------------|------------------|-----------------------------------|--|
| <u>م</u> ۸ | ~ (    |             | Solid                                      |                  | Stranded                          |  |
| (mm)       | (mm)   | AWG<br>max. | AWG Section<br>max. max (mm <sup>2</sup> ) |                  | Section<br>max (mm <sup>2</sup> ) |  |
| 0.52)      | 0.402) | 28          | 0.09                                       | 30               | 0.05                              |  |
| 0.5        | 0.45   | 28          | 0.09                                       | 28               | 0.09                              |  |
| 0.71)      | 0.601) | 24          | 0.25                                       | 26               | 0.14                              |  |
| 0.7        | 0.80   | 22          | 0.34                                       | 223)             | 0.34                              |  |
| 0.9        | 0.80   | 22          | 0.34                                       | 22 <sup>3)</sup> | 0.34                              |  |
| 1.3        | 1.00   | 20          | 0.50                                       | 20 <sup>3)</sup> | 0.50                              |  |
| 1.6        | 1.40   | 16          | 1.00                                       | 18               | 1.00                              |  |
| 2.0        | 1.80   | 14          | 1.50                                       | 16               | 1.50                              |  |
| 3.0        | 2.70   | 10          | 4.00                                       | 12               | 4.00                              |  |
| 4.0        | 3.70   | 10          | 6.00                                       | 10               | 6.00                              |  |
| 5.0        | 5.20   | _           | -                                          | 8                | 10.00                             |  |
| 6.0        | 5.20   | -           | -                                          | 8                | 10.00                             |  |
| 8.0        | 7.00   | -           | -                                          | 4                | 16.00                             |  |
| 12.0       | 6.20   | _           | -                                          | 6                | 16.00                             |  |



#### **Crimp Contacts**

The square form crimp method is used (MIL-C-22520F, class I, type 2) photo 1 for single contact contacts.

For multicontact contacts the standard four-identer crimp method is used, (MIL-C-22520F, class I, type 1), photo 2. The crimp method requires a controlled compression to obtain a symmetrical deformation of the conductor strand and of the contact material. The radial hole in the side of the contact makes it possible to check whether the conductor is correctly positioned within the contact. A good crimping is characterized by only slightly reduced conductor section and practically no gap.

For optimum crimping of bronze or brass contacts they are annealed to relieve internal stress and reduce material hardening during the crimping process.

Only the crimping zone is annealed with the help of an induction heating machine designed by the LEMO Research and Development Department (see photo 3).

Contacts are provided in two forms: with a standard crimp barrel for large conductors (see fig. 1), or with a reduced crimp barrel for smaller conductors (see fig. 2).





#### Advantages of crimping

- practical, quick contact fixing outside the insulator
- possible use at high temperature
- no risk of heating the insulator during the conductorcontact fixing
- high tensile strength

Crimp contacts are available in standard version (figure 1) for mounting maximum size conductors.

For some dimensions, these crimp contacts can be produced with reduced crimp barrels (figure 2) for mounting reduced size conductors.



A detailed range of conductor dimensions that can be crimped into our contacts is given on the table below.

|      | Conta      | ct       |       | Conductor        | r stranded |       | E   |
|------|------------|----------|-------|------------------|------------|-------|-----|
| øΑ   | øС         | Form     | AWG s | tranded          | Section    | (mm²) | (N) |
| (mm) | (mm)       | per fig. | min.  | max.             | min.       | max.  | ()  |
| 0.5  | 0.45       | 1        | 32    | 28               | 0.035      | 0.09  | 12  |
| 0.7  | 0.80       | 1        | 26    | 22 <sup>1)</sup> | 0.140      | 0.34  | 22  |
| 0.7  | 0.45       | 2        | 32    | 28               | 0.035      | 0.09  | 22  |
|      | 1.10       | 1        | 24    | 20               | 0.250      | 0.50  |     |
| 0.9  | 0.80       | 2        | 26    | 221)             | 0.140      | 0.34  | 30  |
|      | 0.45       | 2        | 32    | 28               | 0.035      | 0.09  |     |
|      | 1.40       | 1        | 20    | 18               | 0.500      | 1.00  |     |
| 1.3  | 1.10       | 2        | 24    | 20               | 0.250      | 0.50  | 40  |
|      | 0.80       | 2        | 26    | 22 <sup>1)</sup> | 0.140      | 0.34  |     |
| 16   | 1.90       | 1        | 18    | 14 <sup>1)</sup> | 1.000      | 1.50  | 50  |
| 1.0  | 1.40       | 2        | 22    | 18               | 0.340      | 1.00  | 50  |
| 2.0  | 2.40       | 1        | 16    | 12 <sup>1)</sup> | 1.500      | 2.50  | 65  |
| 2.0  | 2.0 1.90 2 |          | 18    | 14               | 1.000      | 1.50  | 00  |
| 3.0  | 2.90       | 1        | 14    | 10 <sup>1)</sup> | 2.500      | 4.00  | 75  |
| 4.0  | 4.00       | 1        | 12    | 10               | 4.000      | 6.00  | 90  |

**Note:** Fr = mean contact retention force in the insulator (according to IEC 60512-8 test 15a).

#### **Printed Circuit Contacts**

Printed circuit contacts are available in straight or elbow versions for certain connector types, mostly for straight and elbow receptacle models. Connection is made on flexible or rigid printed circuits by soldering.

Printed circuit contacts are gold-plated which guarantees optimum soldering, even after long-term storage. However for wave soldering, we recommend removal of the goldplating from the contact end on the printed circuit side before soldering according to the assembly procedures.







#### **Test Voltage**

Test voltage (Ue):

(measured according to the IEC 60512-2 test 4a standard).

It corresponds to 75% of the mean breakdown voltage. Test voltage is applied at 500 V/s and the test duration is one minute.

This test has been carried out with a mated plug and receptacle, with power supply only on the plug end.

Operating voltage (Us):

It is proposed according to the following ratio: Us =  $\frac{Ue}{3}$ 

#### Caution:

For a number of applications, safety requirements for electrical appliances are more severe with regard to operating voltage.

In such cases operating voltage is defined according to creepage distance and air clearance between live parts.

#### Rated Current

(measured according to IEC 60512-3 test 5a).

The specified rated current can be applied simultaneously to all the contacts, corresponding with an average temperature rise of 104° F of the connector.

The current values are indicated in the table of insulator types in each series. For use at higher temperatures, acceptable rated current will be lower. It tends towards zero as the material is used at the maximum operating temperature accepted for the insulator.

In most cases, the current depends on the conductor dimension, or on the printed circuit dimension.

#### Caution:

In general, connectors should not be unmated while live.

# Please consult us for the choice of a connector by indicating the safety standard to be met by the product.

Voltage values are given in the table on insulator types for each series corresponding with values measured at sea level and are adapted to all applications up to an altitude of 2000 m.

In case a device is used at a higher altitude, air clearance between live parts has to be multiplied by the following coefficients:

(Test voltage also has to be divided by this coefficient).

| altitude (m) | coefficient |
|--------------|-------------|
| 2000         | 1.00        |
| 3000         | 1.14        |
| 4000         | 1.29        |
| 5000         | 1.48        |

For connectors with PEEK insulator, maximum admissible current will follow the curve below depending on the operating temperature T.









# • K Series Connectors





## K Series Connectors

K series connectors have been specifically designed for outdoor applications.

They include an inner sleeve and two seals to prevent penetration of solids or liquids into the housing formed by the plug, free socket, fixed socket or coupler. All models of this series are watertight when mated to give a protection index of IP68 as per IEC 60529 standard (when mated) when correctly assembled to an appropriate cable (IP66 otherwise).

K series connectors have the same insulators as the B series and have the following main features:

- security of the Push-Pull latching system
- watertight connection (IP 68/IP 66)
- multicontact types 2 to 64 contacts
- hybrid types (multicontact, high voltage, low voltage, coaxial)
- solder, crimp or printed circuit (straight or elbow) contacts
- keying system («G» key standard) for connector alignment
- multiple key options to avoid cross mating of similar connectors
- high packing density for space savings
- 360° screening for full EMC shielding
- rugged housing for extreme working conditions.

#### Interconnections





#### Model Description

- EBG Fixed receptacle with square flange, key (G) or keys (A to F, L and R), screw fixing
- EDG Fixed receptacle with square flange, key (G) or keys (A to F, L and R), protruding
- **EEG** Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R), (back panel mounting)
- EEG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R) with straight printed circuit contacts for printed circuit (back panel mounting)
- **EEG** Fixed receptacle, nut fixing, key (G) or keys (A to F and R) with elbow (90°) contacts for printed circuit (back panel mounting)
- **EGG** Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R)
- EHG Fixed receptacle, nut fixing, key (G) or keys (A to F and L), protruding shell
   EMG Fixed receptacle, nut fixing, with
- microswitch, key (G) or keys (A to F and
- ENG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R) and grounding tab

Part Section Showing Internal Components

- EVG Fixed receptacle, nut fixing, key (G) or keys (A to F and L) and dust cap (spring loaded)
- Fixed plug, nut fixing, non-latching, key (G) or keys (A to F, L and R) FAG
- **FGG** Straight plug, key (G) or keys (A to F, L and R), cable collet
- Straight plug, key (G) or keys (A to F, L and R), cable collet FGG and oversize cable collet
- Straight plug, key (G) or keys (A to F, L and R), cable collet and nut for fitting a bend relief FGG
- FHG Elbow (90°) plug, key (G) or keys (A to F, L and R), cable collet FNG Straight plug, key (G) or keys (A to F and L), cable collet and lanyard release
- T-plug, key (G) with receptacles (90°), FTG key (G)
- **FXG** Fixed plug with round flange, key (G) or keys (A to F, L and R), screw fixing
- Fixed receptacle, nut fixing, key (G) HEG or keys (A to F and L), watertight or vacuum-tight (back panel mounting)

- HGG Fixed receptacle, nut fixing, key (G) or keys (A to F and L), watertight or vacuum-tight
- PBG Fixed receptacle, key (G) with square
- flange, cable collet, screw fixing **PEG** Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R),
- cable collet (back panel mounting) PHG Free receptacle, key (G) or keys (A to F, L and R), cable collet
- PHG Free receptacle, key (G) or keys (A to F, L and R), cable collet and oversize cable collet
- PHG Free receptacle, key (G) or keys (A to F, L and R), cable collet and nut for fitting a bend relief
- PKG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R), cable collet
- Fixed coupler, nut fixing, key (G) or keys (L) at the flange end, and key (G) or keys (C or L) at the other end, See watertight or vacuum-tight
- TGL Free coupler, key (G) on one side and keys (L) on the other



#### **Technical Characteristics**

#### Mechanical and Climatic

| Characteristics                    | Value               | Standard             |  |  |  |  |
|------------------------------------|---------------------|----------------------|--|--|--|--|
| Endurance                          | > 5000 cycles       | IEC 60512-5 test 9a  |  |  |  |  |
| Humidity                           | up to 95% at 140° F |                      |  |  |  |  |
| Temperature range <sup>1) 2)</sup> | -58° F, +392° F     |                      |  |  |  |  |
| Resistance to vibrations           | 10-2000 Hz, 15 g    | IEC 60512-4 test 6d  |  |  |  |  |
| Shock resistance                   | 100 g, 6 ms         | IEC 60512-4 test 6c  |  |  |  |  |
| Salt spray corrosion test          | > 144h              | IEC 60512-6 test 11f |  |  |  |  |
| Protection index (mated)           | IP 68/IP 66         | IEC 60529            |  |  |  |  |
| Climatic category <sup>1)</sup>    | 50/175/21           | IEC 60068-1          |  |  |  |  |

#### Electrical

| Characteri | stics     | Value   | Standard      |  |  |
|------------|-----------|---------|---------------|--|--|
| Shielding  | at 10 MHz | > 95 dB | IEC 60169-1-3 |  |  |
| efficiency | at 1 GHz  | > 80 dB | IEC 60169-1-3 |  |  |

#### Note:

The various tests have been carried out with FGG and EGG connector pairs, with chrome-plated brass shell, PEEK insulator and silicone O-ring

Detailed electrical characteristics, as well as materials and treatment are

presented on page 6. <sup>1)</sup> For watertight or vacuum-tight models see page 25.

2) Minimum operating temperature is -4°F for receptacles fitted with an FPM (Viton) O-ring.



#### Available Models (series and types)

| Madal             |    | Multicontact |    |    |    |    |  |  |  |  |  |
|-------------------|----|--------------|----|----|----|----|--|--|--|--|--|
| Iviodei           | 0K | 1K           | 2K | ЗK | 4K | 5K |  |  |  |  |  |
| EBG               |    |              |    |    |    |    |  |  |  |  |  |
| EDG               |    |              |    |    |    |    |  |  |  |  |  |
| EEG               |    |              |    |    |    |    |  |  |  |  |  |
| EEG <sup>4)</sup> |    |              |    |    |    |    |  |  |  |  |  |
| EGG               |    |              |    |    |    |    |  |  |  |  |  |
| EHG               |    |              |    |    |    |    |  |  |  |  |  |
| EMG               |    |              |    |    |    |    |  |  |  |  |  |
| ENG               |    |              |    |    |    |    |  |  |  |  |  |
| EVG               |    |              |    |    |    |    |  |  |  |  |  |

| Madal             |    | Multicontact |    |    |    |    |  |  |  |  |
|-------------------|----|--------------|----|----|----|----|--|--|--|--|
| Iviodei           | 0K | 1K           | 2K | ЗK | 4K | 5K |  |  |  |  |
| FAG               |    |              |    |    |    |    |  |  |  |  |
| FGG               |    |              |    |    |    |    |  |  |  |  |
| FGG <sup>1)</sup> |    |              |    |    |    |    |  |  |  |  |
| FGG <sup>2)</sup> |    |              |    |    |    |    |  |  |  |  |
| FHG               |    |              |    |    |    |    |  |  |  |  |
| FNG               |    |              |    |    |    |    |  |  |  |  |
| FTG               |    |              |    |    |    |    |  |  |  |  |
| FXG               |    |              |    |    |    |    |  |  |  |  |
| HEG               |    |              |    |    |    |    |  |  |  |  |

| Madal             | Multicontact |    |    |    |    |    |  |  |  |  |
|-------------------|--------------|----|----|----|----|----|--|--|--|--|
| woder             | 0K           | 1K | 2K | ЗK | 4K | 5K |  |  |  |  |
| HGG               |              |    |    |    |    |    |  |  |  |  |
| PBG               |              |    |    |    |    |    |  |  |  |  |
| PEG               |              |    |    |    |    |    |  |  |  |  |
| PHG               |              |    |    |    |    |    |  |  |  |  |
| PHG <sup>1)</sup> |              |    |    |    |    |    |  |  |  |  |
| PHG <sup>2)</sup> |              |    |    |    |    |    |  |  |  |  |
| PKG               |              |    |    |    |    |    |  |  |  |  |
| S••               |              |    |    |    |    |    |  |  |  |  |
| TGL <sup>3)</sup> |              |    |    |    |    |    |  |  |  |  |

Note: 1) With oversize cable collet.

<sup>2)</sup> With nut for fitting a bend relief.

a) The TGL model is not available in all types. Please consult the page corresponding to this model.
 4) With elbow (90°) printed circuit contacts.

available models by series and types

#### Alignment Key and Polarized Keying System

Part numbers for the keyed series are composed of three letters. The LAST LETTER indicates the key position and the contact type (male or female). For example, straight plugs with «G» key or A, B, C, D, E, F, R keys, are fitted with male contacts; whereas with L keys, plugs are fitted with female contacts.

Straight receptacles with «G» key or A, B, C, D, E, F, R keys, are fitted with female contacts; whereas with L keys, receptacles are fitted with male contacts.

| Front view of a receptacle | del | # of | les |      |      | Seri | es   |      |      |        | Contact type | e           | Nete |
|----------------------------|-----|------|-----|------|------|------|------|------|------|--------|--------------|-------------|------|
|                            | Mo  | keys | Ang | 0K   | 1K   | 2K   | ЗK   | 4K   | 5K   | Plug   | Receptacle   | Coupler 1)  | Note |
|                            | ●●G | 1    |     | 0°   | 0°   | 0°   | 0°   | 0°   | 0°   | male   | female       | female-male |      |
|                            | ●●A | 2    |     | 30°  | 30°  | 30°  | 30°  | 30°  | 30°  | male   | female       | female-male |      |
|                            | ●●B | 2    | α   | 45°  | 45°  | 45°  | 45°  | 45°  | 45°  | male   | female       | female-male |      |
|                            | o●C | 2    |     | 60°  | 60°  | 60°  | 60°  | 60°  | 60°  | male   | female       | female-male |      |
|                            | ۰D  | 2    | γ   | 95°  | 95°  | 95°  | 95°  | 95°  | 95°  | male   | female       | female-male |      |
| $\langle \rangle$          | ●●E | 2    | ß   | 120° | 120° | 120° | 120° | 120° | 120° | male   | female       | female-male |      |
| γ                          | ●●F | 2    | Р   | 145° | 145° | 145° | 145° | 145° | 145° | male   | female       | female-male |      |
|                            | ••L | 2    | γ   | 75°  | 75°  | 75°  | 75°  | 75°  | 75°  | female | male         | male-female |      |

| Front view of a receptacle | del | # of | gles |    |    | Seri | es   |    |    |      | Contact type       | e           | Note |
|----------------------------|-----|------|------|----|----|------|------|----|----|------|--------------------|-------------|------|
| d B                        | Mo  | keys | Ang  | 0K | 1K | 2K   | ЗK   | 4K | 5K | Plug | Receptacle         | Coupler 1)  | Note |
|                            |     |      | α    | -  | -  | -    | 95°  | -  | -  | male | female female-male |             |      |
|                            | eeB | 5    | β    | -  | -  | -    | 115° | -  | -  |      |                    | female-male |      |
|                            |     | 5    | γ    | -  | -  | -    | 35°  | -  | -  |      |                    | iemaie-maie |      |
|                            |     |      | δ    | _  | -  | -    | 25°  | -  | _  |      |                    |             |      |

#### Note:

See and TGL models are not available with all the keys.

For See models see explanation on page 26. Please consult the pages corresponding to these models.

1) The first contact type mentioned is always the one at the flange end.

First choice alternative Special order alternative



## • Part Number Example

#### Straight plug with cable collet



**FGG.2K.310.CLAC65** = straight plug with key (G) and cable collet, 2K series, multicontact type with 10 contacts, outer shell in chrome-plated brass, PEEK insulator, male solder contacts, C type collet for 6.5 mm diameter cable.



**EGG.1K.306.CLM** = fixed receptacle, nut fixing, with key (G), 1K series, multicontact type with 6 contacts, outer shell in chrome-plated brass, PEEK insulator, female crimp contacts.



**PKG.4K.304.CLLC65** = straight receptacle, nut fixing, with key (G), 4K series, multicontact type with 4 contacts, outer shell in chrome-plated brass, PEEK insulator, female solder contacts, C type collet for 6.5 mm diameter cable.

Note: 1) The «Variant» position in the reference is used to specify either the presence of a collet nut for fitting the bend relief or the anodized color of the housing in aluminium alloy.

For models with collet nut for fitting the bend relief, a «Z» should be indicated and a bend relief can be ordered separately as indicated in the «Accessories» section. An order for a connector with bend relief should thus include two part numbers.

For the various housings available in colors, the corresponding letter in the part number for the color is indicated on page 81.

For the watertight models of receptacle, the letter «P» is used; for the vacuum-tight models of receptacle the letters «PV» shall be indicated.

For the plug and receptacle that should be fitted with an FPM (Viton) O-ring the letter «H» shall be indicated.



## Models













# FGG Straight plug, key (G) or keys (A to F, L and R), cable collet

| Refe  | rence  | Di | mensio | ons (m | m) | Avail-  |  |
|-------|--------|----|--------|--------|----|---------|--|
| Model | Series | A  | L      | М      | S2 | ability |  |
| FGG   | 0K     | 11 | 34     | 23.0   | 8  | •       |  |
| FGG   | 1K     | 13 | 42     | 28.0   | 9  | •       |  |
| FGG   | 2K     | 16 | 52     | 36.0   | 12 | •       |  |
| FGG   | ЗK     | 19 | 61     | 41.0   | 15 | •       |  |
| FGG   | 4K     | 25 | 71     | 50.5   | 19 | 0       |  |
| FGG   | 5K     | 38 | 92     | 67.0   | 30 | 0       |  |

FGG Straight plug, key (G) or keys (A to F, L and R), and oversize cable collet

| Refe  | rence  |    | Dimensions (mm) |     |      |    |    |         |  |  |
|-------|--------|----|-----------------|-----|------|----|----|---------|--|--|
| Model | Series | A  | В               | L   | М    | S1 | S2 | ability |  |  |
| FGG   | 1K     | 13 | 14.5            | 55  | 41.0 | 12 | 12 | 0       |  |  |
| FGG   | 2K     | 16 | 17.0            | 65  | 49.0 | 15 | 15 | 0       |  |  |
| FGG   | ЗK     | 19 | 22.0            | 80  | 60.0 | 19 | 19 | 0       |  |  |
| FGG   | 4K     | 25 | 36.0            | 107 | 86.0 | 30 | 32 | 0       |  |  |

**Note:** The fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up.

# FGG Straight plug, key (G) or keys (A to F, L and R), cable collet and nut for fitting a bend relief

| Refe  | rence  | Dir | nensic | ons (mr | n) | Avail-  |
|-------|--------|-----|--------|---------|----|---------|
| Model | Series | А   | L      | М       | S2 | ability |
| FGG   | 0K     | 11  | 34     | 23.0    | 7  | •       |
| FGG   | 1K     | 13  | 42     | 28.0    | 9  | •       |
| FGG   | 2K     | 16  | 52     | 36.0    | 12 | •       |
| FGG   | ЗK     | 19  | 60     | 40.0    | 15 | •       |
| FGG   | 4K     | 25  | 71     | 50.5    | 19 | 0       |

Note: The bend relief must be ordered separately (see page 91).

# FNG Straight plug, key (G) or keys (A to F and L), cable collet and lanyard release

| Refe  | rence  |                        |      | Dim | ension | s (mm | )  | Avail-  |
|-------|--------|------------------------|------|-----|--------|-------|----|---------|
| Model | Series | A B L M N S2           |      |     |        |       |    | ability |
| FNG   | 2K     | 16                     | 23.6 | 52  | 36.0   | 160   | 12 | 0       |
| FNG   | 4K     | 25 35.2 71 50.5 230 19 |      |     |        |       | 19 | 0       |

Note: Cable material - stainless steel with PVC sheath.

• Standard, typically 0-6 weeks delivery for quantities of 250 or less.

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.





I maxi

\S 1

S 3 S 2

⊳ A-

<u>S 3</u>

E maxi

D 🛏

#### FXG Fixed plug with round flange, key (G) or keys (A to F, L and R) and screw fixing

| Refe  | erence |    |      |     | Dime | nsions | s (mm) |      |    | Avail-  |
|-------|--------|----|------|-----|------|--------|--------|------|----|---------|
| Model | Series | А  | В    | G   | Н    | L      | М      | Р    | S2 | ability |
| FXG   | ЗK     | 38 | 22.5 | 3.4 | 20.6 | 61     | 10.0   | 30.0 | 15 | 0       |
| FXG   | 4K     | 47 | 28.5 | 3.4 | 27.0 | 71     | 11.0   | 32.0 | 19 | 0       |
| FXG   | 5K     | 65 | 42.5 | 4.4 | 38.0 | 100    | 12.5   | 38.5 | 30 | 0       |

Panel cut-out: P6

**Note:** This model does not include an O-ring behind the flange, it allows the device on which it is fitted to reach only IP50 protection index. It does not have a cable collet.

# FAG Fixed plug, nut fixing, non-latching, key (G) or keys (A to F, L and R)

| Refe  | erence |    |      |         | Dim | nensio | ns (m | ım)             |      |    | Avail-  |
|-------|--------|----|------|---------|-----|--------|-------|-----------------|------|----|---------|
| Model | Series | A  | В    | е       | Е   | L      | М     | N <sup>1)</sup> | S1   | S3 | ability |
| FAG   | 2K     | 25 | 27.5 | M20x1.0 | 4.5 | 28.2   | 18.0  | 28.3            | 18.5 | 24 | 0       |
| FAG   | ЗK     | 31 | 34.5 | M24x1.0 | 4.0 | 34.3   | 22.5  | 33.8            | 22.5 | 30 | 0       |
| FAG   | 4K     | 37 | 41.5 | M30x1.0 | 4.0 | 35.3   | 23.0  | 36.3            | 28.5 | 36 | 0       |
| FAG   | 5K     | 55 | 54.0 | M45x1.5 | 4.0 | 43.5   | 28.5  | 42.3            | 42.5 | _  | 0       |

Panel cut-out: P1

Note: 1) Maximum length with crimp contacts.

# FHG Elbow (90°) plug, key (G) or keys (A to F, L and R), cable collet

| Refe  | erence |      |      |    | Dime | ensions | ; (mm) |    |    | Avail-  |
|-------|--------|------|------|----|------|---------|--------|----|----|---------|
| Model | Series | Α    | D    | Н  | L    | М       | S1     | S2 | S3 | ability |
| FHG   | 0K     | 11.5 | 7.6  | 27 | 36   | 25.0    | 10     | 8  | 8  | 0       |
| FHG   | 1K     | 14.0 | 8.8  | 33 | 43   | 29.0    | 12     | 9  | 10 | 0       |
| FHG   | 2K     | 17.5 | 10.5 | 40 | 51   | 35.0    | 15     | 12 | 13 | 0       |
| FHG   | ЗK     | 21.0 | 11.5 | 47 | 60   | 40.0    | 18     | 15 | 15 | 0       |
| FHG   | 4K     | 27.5 | 15.5 | 57 | 72   | 51.5    | 24     | 19 | 20 | 0       |



S 1

#### EGG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R)

| Refe  | rence  |    |      |         | Dim | ensior | ns (m | nm)             |      |    | Avail-  |
|-------|--------|----|------|---------|-----|--------|-------|-----------------|------|----|---------|
| Model | Series | А  | В    | е       | Е   | L      | М     | N <sup>1)</sup> | S1   | S3 | ability |
| EGG   | 0K     | 18 | 19.5 | M14x1.0 | 6   | 21.7   | 4.0   | 20.1            | 12.5 | 17 |         |
| EGG   | 1K     | 20 | 21.5 | M16x1.0 | 9   | 27.0   | 4.5   | 25.1            | 14.5 | 19 | •       |
| EGG   | 2K     | 25 | 27.5 | M20x1.0 | 9   | 30.7   | 5.0   | 28.6            | 18.5 | 24 | •       |
| EGG   | ЗK     | 31 | 34.5 | M24x1.0 | 11  | 36.2   | 6.0   | 33.6            | 22.5 | 30 | 0       |
| EGG   | 4K     | 37 | 40.5 | M30x1.0 | 9   | 40.2   | 6.5   | 38.6            | 28.5 | 36 | 0       |
| EGG   | 5K     | 55 | 54.0 | M45x1.5 | 10  | 47.5   | 9.0   | 43.6            | 42.5 | -  | 0       |

**Note:** <sup>1)</sup> Maximum length with crimp contacts. The 5K series is delivered with a round nut. Panel cut-out: P1

Standard, typically 0-6 weeks delivery for quantities of 250 or less.

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.

Non-standard product is defined as any product which contains one or more components which are not standard.







## ENG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R) and grounding tab

| Refe  | erence |                                          |   |   | Dim | ensio | ns (n | חm)             |    |    | Avail-  |
|-------|--------|------------------------------------------|---|---|-----|-------|-------|-----------------|----|----|---------|
| Model | Series | А                                        | В | е | Е   | L     | Μ     | N <sup>1)</sup> | S1 | S3 | ability |
| ENG   | ЗK     | 31 34.7 M24x1.0 11.3 36.2 6 33.6 22.5 30 |   |   |     |       |       |                 |    | 0  |         |

Panel cut-out: P1

Note: 1) Maximum length with crimp contacts.

#### EEG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R) (back panel mounting)

| Refe  | rence  |      |    |         | Di  | mens | ions | (mm             | )    |      | Avail-  |
|-------|--------|------|----|---------|-----|------|------|-----------------|------|------|---------|
| Model | Series | Α    | В  | е       | Е   | L    | М    | N <sup>1)</sup> | Ρ    | S1   | ability |
| EEG   | 0K     | 18.0 | 18 | M14x1.0 | 3.4 | 21.7 | 3.5  | 20.1            | 7.0  | 12.5 | 0       |
| EEG   | 1K     | 20.0 | 20 | M16x1.0 | 6.2 | 27.0 | 3.5  | 25.1            | 10.0 | 14.5 | 0       |
| EEG   | 2K     | 25.0 | 25 | M20x1.0 | 5.0 | 30.7 | 3.5  | 28.6            | 10.0 | 18.5 | 0       |
| EEG   | ЗK     | 30.0 | 31 | M24x1.0 | 7.5 | 36.2 | 4.5  | 33.6            | 12.0 | 22.5 | 0       |
| EEG   | 4K     | 41.5 | 37 | M30x1.0 | 6.0 | 40.2 | 7.0  | 38.6            | 13.5 | 28.5 | 0       |

Panel cut-out: P1

**Note:** <sup>1)</sup> Maximum length with crimp contacts. The 3K and 4K series are delivered with a conical nut.

EEG Fixed receptacle, nut fixing, key (G) or keys (A to F and R) and straight contacts for printed circuit (back panel mounting)

| Refe  | rence  |      |    | Dii     | men | sion | s (mr | n)   |      | Avail-  |
|-------|--------|------|----|---------|-----|------|-------|------|------|---------|
| Model | Series | A    | В  | е       | Е   | Μ    | Ν     | Р    | S1   | ability |
| EEG   | 0K     | 18.0 | 18 | M14x1.0 | 3.4 | 3.5  | 17.6  | 7.0  | 12.5 | 0       |
| EEG   | 1K     | 20.0 | 20 | M16x1.0 | 6.2 | 3.5  | 23.8  | 10.0 | 14.5 | 0       |
| EEG   | 2K     | 25.0 | 25 | M20x1.0 | 5.0 | 3.5  | 25.8  | 10.0 | 18.5 | 0       |
| EEG   | ЗK     | 30.0 | 31 | M24x1.0 | 7.5 | 4.5  | 31.3  | 12.0 | 22.5 | 0       |
| EEG   | 4K     | 41.5 | 37 | M30x1.0 | 6.0 | 7.0  | 34.3  | 13.5 | 28.5 | 0       |

Panel cut-out: P1

PCB drilling pattern: P15

Note: This contact type is available for  $E^{\bullet \bullet}$  receptacle models fitted with female contact.

Length «L» depends on the number of contacts, see table page 106 The 3K and 4K series are delivered with a conical nut.



Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.

Standard, typically 0-6 weeks delivery for quantities of 250 or less.







| Refe  | rence  |    |    | D       | imen | sion | s (mn | n) |      | Avail-  |
|-------|--------|----|----|---------|------|------|-------|----|------|---------|
| Model | Series | Α  | В  | е       | Е    | М    | N     | Ρ  | S1   | ability |
| EEG   | 0K     | 18 | 18 | M14x1.0 | 3.4  | 3.5  | 19.3  | 7  | 12.5 | 0       |
| EEG   | 1K     | 20 | 20 | M16x1.0 | 6.2  | 3.5  | 24.3  | 10 | 14.5 | 0       |
| EEG   | 2K     | 25 | 25 | M20x1.0 | 5.0  | 3.5  | 26.6  | 10 | 18.5 | 0       |
| EEG   | 3K     | 30 | 31 | M24x1.0 | 7.5  | 4.5  | 31.3  | 12 | 22.5 | 0       |

Panel cut-out: P1

PCB drilling pattern: P17

Note: Length «L» depends on the number of contacts, see PCB drilling pattern page 107. The 3K series is delivered with a conical nut.

**EBG** Fixed receptacle with square flange, key (G) or keys (A to F, L and R) and screw fixing

|   | Refe  | erence |    |    |   | Dime | nsions | s (mm | )   |                 | Avail-  |
|---|-------|--------|----|----|---|------|--------|-------|-----|-----------------|---------|
| I | Model | Series | А  | В  | F | G    | н      | L     | М   | N <sup>1)</sup> | ability |
|   | EBG   | ЗK     | 29 | 23 | 3 | 3.4  | 23     | 36.2  | 6.0 | 32.6            | 0       |
|   | EBG   | 4K     | 37 | 30 | 3 | 3.4  | 29     | 40.2  | 6.5 | 36.6            | 0       |
|   | EBG   | 5K     | 54 | 45 | 4 | 4.4  | 44     | 47.5  | 8.0 | 42.1            | 0       |

Panel cut-out: P7

Note: 1) Maximum length with crimp contacts.

#### **EDG** Fixed receptacle with square flange, key (G) or keys (A to F, L and R), protruding shell and grounding tab, screw fixing

| Refe  | erence |    |    |    | [ | Dimen | sions | (mm) |      |                 | Avail-  |
|-------|--------|----|----|----|---|-------|-------|------|------|-----------------|---------|
| Model | Series | Α  | В  | С  | F | G     | Н     | L    | М    | N <sup>1)</sup> | ability |
| EDG   | ЗK     | 29 | 18 | 23 | 3 | 3.4   | 23    | 36.2 | 22.5 | 32.6            | 0       |

Panel cut-out: P7

Note: 1) Maximum length with crimp contacts.

## L maxi <u>S</u> 4 £ S 3/ E max S 1

øΒ

E

ò

**EHG** Fixed receptacle, nut fixing, key (G) or keys (A to F and L), protruding shell

| Refe  | rence  |    | Dimensions (mm) |         |     |      |      |                 |      |    |    | Avail-  |
|-------|--------|----|-----------------|---------|-----|------|------|-----------------|------|----|----|---------|
| Model | Series | A  | В               | е       | Е   | L    | М    | N <sup>1)</sup> | S1   | S3 | S4 | ability |
| EHG   | 1K     | 20 | 21.5            | M16x1.0 | 1.5 | 27.0 | 15.5 | 25.1            | 14.5 | 19 | 17 | 0       |
| EHG   | 2K     | 25 | 27.5            | M20x1.0 | 1.5 | 30.7 | 17.0 | 27.1            | 18.5 | 24 | 20 | 0       |

Panel cut-out: P1

Note: 1) Maximum length with crimp contacts.

Standard, typically 0-6 weeks delivery for quantities of 250 or less.

ΔA ΔH

ົດເ

00

øG

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.

Non-standard product is defined as any product which contains one or more components which are not standard.





## EVG Fixed receptacle, nut fixing, key (G) or keys (A to F and L) and dust cap (spring loaded)

| Refe  | erence |    | Dimensions (mm) |         |   |      |     |                 |      | Avail- |    |         |
|-------|--------|----|-----------------|---------|---|------|-----|-----------------|------|--------|----|---------|
| Model | Series | А  | В               | е       | Е | L    | М   | N <sup>1)</sup> | Р    | S1     | S3 | ability |
| EVG   | 0K     | 18 | 19.5            | M14x1.0 | 6 | 24.8 | 7.2 | 23.3            | 21.6 | 12.5   | 17 | 0       |

Panel cut-out: P1

Note: 1) Maximum length with crimp contacts.

# PHG Free receptacle, key (G) or keys (A to F, L and R), cable collet



| Refe  | rence  | Dimer | nsions | (mm) | Avail-  |
|-------|--------|-------|--------|------|---------|
| Model | Series | A L   |        | S2   | ability |
| PHG   | 0K     | 13    | 34.0   | 8    | ٠       |
| PHG   | 1K     | 15    | 45.0   | 9    | •       |
| PHG   | 2K     | 19    | 54.0   | 12   | 0       |
| PHG   | ЗK     | 23    | 65.0   | 15   | 0       |
| PHG   | 4K     | 29    | 75.5   | 19   | 0       |
| PHG   | 5K     | 42    | 95.0   | 32   | 0       |







#### PHG Free receptacle, key (G) or keys (A to F, L and R), with oversize cable collet

| Refe  | Reference |    |      | mensi | ons (m | ım) | Avail-  |
|-------|-----------|----|------|-------|--------|-----|---------|
| Model | Series    | А  | В    | L     | S1     | S2  | ability |
| PHG   | 1K        | 15 | 14.5 | 58    | 12     | 12  | 0       |
| PHG   | 2K        | 19 | 17.0 | 67    | 15     | 15  | 0       |
| PHG   | ЗK        | 23 | 22.0 | 84    | 19     | 19  | 0       |
| PHG   | 4K        | 29 | 36.0 | 109   | 30     | 32  | 0       |

**Note:** The fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up.

#### PHG Free receptacle, key (G) or keys (A to F, L and R), cable collet and nut for fitting a bend relief

| Refe  | rence  | Dimer | nsions | (mm) | Avail-  |
|-------|--------|-------|--------|------|---------|
| Model | Series | А     | A L    |      | ability |
| PHG   | 0K     | 13    | 34.0   | 7    | ٠       |
| PHG   | 1K     | 15    | 45.0   | 9    | •       |
| PHG   | 2K     | 19    | 54.0   | 12   | 0       |
| PHG   | ЗK     | 23    | 64.0   | 15   | 0       |
| PHG   | 4K     | 29    | 75.5   | 19   | 0       |

Note: The bend relief must be ordered separately (see page 91).

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.

<sup>•</sup> Standard, typically 0-6 weeks delivery for quantities of 250 or less.





# PKG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R), cable collet

| Refe  | rence  |    |      | Dir     | nens | ions ( | mm) |      |    |    | Avail-  |
|-------|--------|----|------|---------|------|--------|-----|------|----|----|---------|
| Model | Series | Α  | В    | е       | Е    | L      | М   | S1   | S2 | S3 | ability |
| PKG   | 0K     | 18 | 19.5 | M14x1.0 | 6    | 34.0   | 4.0 | 12.5 | 8  | 17 | 0       |
| PKG   | 1K     | 20 | 21.5 | M16x1.0 | 9    | 45.0   | 4.5 | 14.5 | 9  | 19 | 0       |
| PKG   | 2K     | 25 | 27.5 | M20x1.0 | 9    | 54.0   | 5.0 | 18.5 | 12 | 24 | 0       |
| PKG   | ЗK     | 31 | 34.5 | M24x1.0 | 11   | 65.0   | 6.0 | 22.5 | 15 | 30 | 0       |
| PKG   | 4K     | 37 | 40.5 | M30x1.0 | 9    | 75.5   | 6.5 | 28.5 | 19 | 36 | 0       |
| PKG   | 5K     | 55 | 54.0 | M45x1.0 | 15   | 98.0   | 9.0 | 42.5 | 30 | _  | 0       |

Panel cut-out: P1

Note: The 5K series is delivered with a round nut.

PBG Fixed receptacle, key (G) with square flange, cable collet and screw fixing





| Refe  | rence  |    | Dimensions (mm) |    |   |     |    |    |      | Avail- |         |
|-------|--------|----|-----------------|----|---|-----|----|----|------|--------|---------|
| Model | Series | Α  | В               | С  | F | G   | Н  | L  | М    | S2     | ability |
| PBG   | ЗK     | 29 | 19              | 23 | 3 | 3.4 | 23 | 65 | 22.5 | 15     | 0       |

Panel cut-out: P7



#### PEG Fixed receptacle, nut fixing, key (G) or keys (A to F, L and R), cable collet (back panel mounting)

| Refe  | rence  |    | Dimensions (mm) |         |     |    |     |     | Avail- |         |
|-------|--------|----|-----------------|---------|-----|----|-----|-----|--------|---------|
| Model | Series | Α  | В               | е       | Е   | L  | М   | Р   | S1     | ability |
| PEG   | 0K     | 18 | 18              | M14x1.0 | 5.0 | 34 | 3.5 | 8.5 | 12.5   | 0       |
| PEG   | 1K     | 20 | 20              | M16x1.0 | 6.5 | 45 | 3.5 | 10  | 14.5   | 0       |
| PEG   | 2K     | 25 | 25              | M20x1.0 | 4.0 | 54 | 3.5 | 7.5 | 18.5   | 0       |
| PEG   | ЗK     | 30 | 31              | M24x1.0 | 7.5 | 65 | 4.5 | 12  | 22.5   | 0       |

Panel cut-out: P1

Note: The 3K series is delivered with a conical nut.



#### Model with microswitch

Some receptacles are available fitted with a microswitch. The microswitch is independent from the electrical contacts of the receptacle. The introduction of a plug into the receptacle activates the microswitch.



# EMG Fixed receptacle, nut fixing, with microswitch, key (G) or keys (A to F and L)

| Refe  | erence | Dimensions (mm) |      |         |   |    |   |      | Avail- |         |
|-------|--------|-----------------|------|---------|---|----|---|------|--------|---------|
| Model | Series | А               | В    | е       | Е | L  | М | S1   | S3     | ability |
| EMG   | 2K     | 25              | 27.5 | M20x1.0 | 9 | 49 | 5 | 18.5 | 24     | 0       |

Panel cut-out: P1

Note: For the microswitch – maximum operating voltage: 270 Veff/Vdc; – rated current: 8.5A/0.5A.



# TGL Free coupler, key (G) on one side and keys (L) on the other

| Refe  | rence  | Dim. | (mm) | Avail-  |
|-------|--------|------|------|---------|
| Model | Series | A    | L    | ability |
| TGL   | ЗK     | 24   | 64.2 | 0       |

Note: This model is only available in type 308, 310, 316, 318, 320 and 324.



#### FTG T-plug, key (G) with receptacles (90°), key (G)

| Refe  | Reference |    |    | Dimensions (mm) |    |    |         |  |  |  |
|-------|-----------|----|----|-----------------|----|----|---------|--|--|--|
| Model | Series    | Α  | В  | Н               | L  | М  | ability |  |  |  |
| FTG   | 2K        | 16 | 19 | 48              | 77 | 60 | 0       |  |  |  |

Note: This model is only available in type 304.

• Standard, typically 0-6 weeks delivery for quantities of 250 or less.

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.



#### Watertight or vacuum-tight models

HEG, HGG and S•• receptacle or coupler models allow the device on which they are fitted to reach a protection index of IP68 as per IEC 60529. They are fully compatible with plugs of the same series and are widely used for portable radios, military, laboratory equipment, aviation, etc.These models are identified by a letter «P» at the end of the reference. Most of these models are also available in a vacuum-tight version. Such models are identified by an additional letter «V» at the end of the part number (certificate on request).

Epoxy resin is used to seal these models.

| Part number example:    |                    |
|-------------------------|--------------------|
| Watertight receptacle   | – HGG.0K.304.CLLP  |
| Vacuum-tight receptacle | – HGG.0K.304.CLLPV |

# CONTRACTOR OF STATES AND A STAT



#### **Technical Characteristics**

#### **Mechanical and Climatic**

| Characteristics          |    | Value                                     | Standard             |
|--------------------------|----|-------------------------------------------|----------------------|
| Endurance                |    | > 5000 cycles                             | IEC 60512-5 test 9a  |
| Humidity                 |    | up to                                     | o 95% at 140° F      |
| Temperature range        |    |                                           | 4° F/+176° F         |
| Salt spray corrosion tes | st | > 144h                                    | IEC 60512-6 test 11f |
| Protection index (mate   | d) | IP 68                                     | IEC 60529            |
| Climatic category        |    | 20/80/21                                  | IEC 60068-1          |
| Leakage rate (He)1)      |    | < 10 <sup>-7</sup> mbar.l.s <sup>-1</sup> | IEC 60512-7 test 14b |
|                          | 0K | 60 bars                                   |                      |
|                          | 1K | 60 bars                                   |                      |
| Maximum operating        | 2K | 40 bars                                   |                      |
| pressure <sup>2)</sup>   | ЗK | 30 bars                                   | IEC 60512-7 test 14d |
|                          | 4K | 15 bars                                   |                      |
|                          | 5K | 5 bars                                    |                      |

Note:

<sup>1)</sup> Only for vacuum-tight models.

2) This value corresponds to the maximum allowed pressure difference for the assembled receptacle.

## HGG Fixed receptacle, nut fixing, key (G) or keys (A to F and L), watertight or vacuum-tight

| Refe  | rence  |    |      | C       | Dimen | sions | (mm | )    |    | Avail-  |
|-------|--------|----|------|---------|-------|-------|-----|------|----|---------|
| Model | Series | А  | В    | е       | Е     | L     | М   | S1   | S3 | ability |
| HGG   | 0K     | 18 | 19.5 | M14x1.0 | 5.5   | 21.7  | 4.0 | 12.5 | 17 | 0       |
| HGG   | 1K     | 20 | 21.5 | M16x1.0 | 9.0   | 30.0  | 4.5 | 14.5 | 19 | 0       |
| HGG   | 2K     | 25 | 27.5 | M20x1.0 | 13.0  | 33.7  | 5.0 | 18.5 | 24 | 0       |
| HGG   | 5K     | 55 | 54.0 | M45x1.5 | 10.0  | 55.7  | 9.0 | 42.5 | -  | 0       |

Panel cut-out: P1

Note: The 5K series is delivered with a round nut.

#### HEG Fixed receptacle, nut fixing, key (G) or keys (A to F and L), watertight or vacuum-tight (back panel mounting)

| Refe  | rence  |    |    | C       | Dimen | sions | (mm | )  |      | Avail-  |
|-------|--------|----|----|---------|-------|-------|-----|----|------|---------|
| Model | Series | А  | В  | е       | Е     | L     | М   | Р  | S1   | ability |
| HEG   | 0K     | 18 | 18 | M14x1.0 | 2.4   | 21.7  | 3.5 | 7  | 12.5 | 0       |
| HEG   | 1K     | 20 | 20 | M16x1.0 | 6.2   | 30.0  | 3.5 | 10 | 14.5 | 0       |
| HEG   | 2K     | 25 | 25 | M20x1.0 | 5.0   | 33.7  | 3.5 | 10 | 18.5 | 0       |

Panel cut-out: P1



# Soo Fixed coupler, nut fixing, key (G) or keys (L) at the flange end, and key (G) or keys (C or L) at the other end, watertight or vacuum-tight







| Refe  | rence  | Contacts      |    |      | Dime    | nsion | s (mm | ı)  |      |    | Avail-  |
|-------|--------|---------------|----|------|---------|-------|-------|-----|------|----|---------|
| Model | Series | Туре          | А  | В    | е       | Е     | L     | М   | S1   | S3 | ability |
| SGL   | 2K     | female – male | 25 | 27.5 | M20x1.0 | 25    | 52.4  | 5.0 | 18.5 | 24 | 0       |
| SLG   | 4K     | male – female | 37 | 40.0 | M30v1.0 | 48    | 74.0  | 65  | 28.5 | 36 | 0       |
| SLC   | TIX    | indio iomaio  | 0/ | 40.0 | WOOX1.0 | 40    | 74.0  | 0.0 | 20.0 | 00 | 0       |
| SLC   | 5K     | male – female | 55 | 54.0 | M45x1.5 | 58    | 88.0  | 9.0 | 42.5 | -  | 0       |

#### Panel cut-out: P1

**Note:** For this fixed coupler, the first contact type mentioned is always the one at the flange end. On request, these couplers can be produced in other series. With other keys, the 5K series is delivered with a round nut.



## Type

#### **Multicontact**

|    |                      |                        |           |                 |          | So              | lder            | Cri             | mp              | (      | Conta | act ty              | pe                  | Sol<br>con                          | der<br>tact                       | Cri<br>con                          | mp<br>tact                        |                    |
|----|----------------------|------------------------|-----------|-----------------|----------|-----------------|-----------------|-----------------|-----------------|--------|-------|---------------------|---------------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|--------------------|
|    | Male solder contacts | Female solder contacts |           | cts             |          | (               | (papu           | ded)            | (papu           |        |       | raight)             | bow)                | rms) <sup>1)</sup>                  | rms) <sup>1)</sup>                | rms) <sup>1)</sup>                  | rms) <sup>1)</sup>                | )1)                |
|    | Male crimp contacts  | Female crimp contacts  | Reference | Number of conta | ø A (mm) | AWG max. (solid | AWG max. (strar | AWG min. (stran | AWG max. (strar | Solder | Crimp | Printed circuit (st | Printed circuit (el | Test voltage (kV<br>Contact-contact | Test voltage (kV<br>Contact-shell | Test voltage (kV<br>Contact-contact | Test voltage (kV<br>Contact-shell | Rated current (A   |
| ок |                      | 8                      | 302       | 2               | 0.9      | 22              | 224)            | 24              | 20              | 0      | 0     | 0                   | 0                   | 1.30                                | 1.05                              | 1.45                                | 1.20                              | 10.0 <sup>2)</sup> |
|    |                      |                        | 303       | 3               | 0.9      | 22              | 224)            | 24              | 20              | 0      | 0     | 0                   | 0                   | 1.20                                | 0.90                              | 1.70                                | 1.60                              | 8.0 <sup>2)</sup>  |
|    |                      |                        | 304       | 4               | 0.7      | 22              | 224)            | 26              | 224)            | 0      | 0     | 0                   | 0                   | 0.85                                | 0.70                              | 1.35                                | 1.10                              | 7.0 <sup>2)</sup>  |
|    |                      |                        | 305       | 5               | 0.7      | 22              | 224)            | 26              | 224)            | 0      | 0     | 0                   | 0                   | 1.00                                | 0.70                              | 1.25                                | 1.20                              | 6.5 <sup>2)</sup>  |
|    |                      | 63                     | 306       | 6               | 0.5      | 28              | 28              | 32              | 28              | 0      | 0     | 0                   | 0                   | 0.85                                | 0.65                              | 1.40                                | 1.20                              | 2.5                |
|    |                      |                        | 307       | 7               | 0.5      | 28              | 28              | 32              | 28              | 0      | 0     | 0                   | 0                   | 0.80                                | 0.70                              | 1.40                                | 1.20                              | 2.5                |
|    |                      |                        | 309       | 9               | 0.5      | 28              | 28              | 32              | 28              | 0      | 0     | 0                   | 0                   | 0.60                                | 0.50                              | 1.00                                | 0.85                              | 2.0                |
| 1K |                      | 8                      | 302       | 2               | 1.3      | 20              | 204)            | 20              | 18              | 0      | 0     | 0                   | 0                   | 1.50                                | 1.35                              | 1.70                                | 1.45                              | 15.0 <sup>3)</sup> |
|    |                      |                        | 303       | 3               | 1.3      | 20              | 204)            | 20              | 18              | 0      | 0     | 0                   | 0                   | 1.30                                | 1.55                              | 1.60                                | 1.85                              | 12.0               |
|    |                      | 63                     | 304       | 4               | 0.9      | 22              | 224)            | 24              | 20              | •      | •     | 0                   | 0                   | 1.35                                | 1.45                              | 1.70                                | 1.80                              | 10.0 <sup>2)</sup> |
|    |                      |                        | 305       | 5               | 0.9      | 22              | 224)            | 24              | 20              | 0      | 0     | 0                   | 0                   | 1.25                                | 1.15                              | 1.30                                | 1.55                              | 9.0 <sup>2)</sup>  |
|    |                      |                        | 306       | 6               | 0.7      | 22              | 224)            | 26              | 224)            | 0      | 0     | 0                   | 0                   | 1.05                                | 1.20                              | 1.35                                | 1.45                              | 7.02)              |
|    |                      |                        | 307       | 7               | 0.7      | 22              | 224)            | 26              | 224)            | 0      | 0     | 0                   | 0                   | 0.95                                | 1.05                              | 1.45                                | 1.45                              | 7.02)              |
|    |                      |                        | 308       | 8               | 0.7      | 22              | 224)            | 26              | 224)            | 0      | 0     | 0                   | 0                   | 0.95                                | 1.15                              | 1.30                                | 1.30                              | 5.0                |
|    |                      |                        | 310       | 10              | 0.5      | 28              | 28              | -               | -               | 0      | -     | 0                   | 0                   | 0.90                                | 1.50                              | 1.20                                | 1.80                              | 2.5                |
|    |                      |                        | 314       | 14              | 0.5      | 28              | 28              | -               | -               | 0      | -     | 0                   | 0                   | 0.80                                | 1.20                              | 0.95                                | 1.60                              | 2.0                |
|    |                      |                        | 316       | 16              | 0.5      | 28              | 28              | -               | -               | 0      | -     | 0                   | 0                   | 0.80                                | 1.25                              | 0.95                                | 1.60                              | 1.5                |

Note: 1) See calculation method, caution and suggested standard on page 11. <sup>2)</sup> Rated current = 6A for receptacle with elbow (90°) contact for printed circuit. <sup>3)</sup> Rated current = 12A for receptacle with elbow (90°) contact for printed circuit.

4) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



|    |                      |                        |           |                    |          | So               | der                 | Cr                  | imp                 | (      | Conta | act ty                     | pe                     | Sol<br>con                                            | der<br>tact                                         | Cri<br>con                                            | mp<br>tact                                          |                                 |
|----|----------------------|------------------------|-----------|--------------------|----------|------------------|---------------------|---------------------|---------------------|--------|-------|----------------------------|------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|---------------------------------|
|    | Male solder contacts | Female solder contacts | Reference | Number of contacts | a A (mm) | 4WG max. (solid) | 4WG max. (stranded) | AWG min. (stranded) | AWG max. (stranded) | Solder | Crimp | Printed circuit (straight) | rinted circuit (elbow) | Test voltage (kV ms) <sup>1)</sup><br>Contact-contact | Test voltage (kV ms) <sup>1)</sup><br>Contact-shell | Test voltage (kV ms) <sup>1)</sup><br>Contact-contact | Test voltage (kV ms) <sup>1)</sup><br>Contact-shell | Rated current (A) <sup>1)</sup> |
| 2K |                      | 8                      | 302       | 2                  | 2.0      | 14               | 16                  | 16                  | 124)                | 0      | 0     | 0                          | 0                      | 2.10                                                  | 1.75                                                | 2.85                                                  | 2.70                                                | 30.0 <sup>3)</sup>              |
|    |                      |                        | 303       | 3                  | 1.6      | 16               | 18                  | 18                  | 144)                | 0      | 0     | 0                          | 0                      | 2.40                                                  | 1.85                                                | 1.90                                                  | 1.90                                                | 17.03)                          |
|    |                      | 63                     | 304       | 4                  | 1.3      | 20               | 204)                | 20                  | 18                  | 0      | 0     | 0                          | 0                      | 1.85                                                  | 1.85                                                | 2.20                                                  | 2.20                                                | 15.0 <sup>3)</sup>              |
|    |                      | <b>C</b>               | 305       | 5                  | 1.3      | 20               | 204)                | 20                  | 18                  | 0      | 0     | 0                          | 0                      | 1.75                                                  | 1.60                                                | 2.15                                                  | 2.15                                                | 14.0 <sup>3)</sup>              |
|    |                      |                        | 306       | 6                  | 1.3      | 20               | 204)                | 20                  | 18                  | 0      | 0     | 0                          | 0                      | 1.35                                                  | 1.45                                                | 2.00                                                  | 2.35                                                | 12.0                            |
|    |                      |                        | 307       | 7                  | 1.3      | 20               | 204)                | 20                  | 18                  | 0      | 0     | 0                          | 0                      | 1.75                                                  | 1.60                                                | 1.95                                                  | 2.15                                                | 11.0                            |
|    |                      | <b>B</b>               | 308       | 8                  | 0.9      | 22               | 224)                | 24                  | 20                  | 0      | 0     | 0                          | 0                      | 1.50                                                  | 1.25                                                | 1.95                                                  | 1.95                                                | 10.0 <sup>2</sup> )             |
|    |                      |                        | 310       | 10                 | 0.9      | 22               | 224)                | 24                  | 20                  | 0      | 0     | 0                          | 0                      | 1.45                                                  | 1.30                                                | 1.80                                                  | 2.10                                                | 8.02                            |
|    |                      |                        | 312       | 12                 | 0.7      | 22               | 224)                | 26                  | 224)                | 0      | 0     | 0                          | 0                      | 1.25                                                  | 1.35                                                | 1.65                                                  | 2.00                                                | 7.02)                           |
|    |                      |                        | 314       | 14                 | 0.7      | 22               | 224)                | 26                  | 224)                | 0      | 0     | 0                          | 0                      | 1.15                                                  | 1.35                                                | 1.55                                                  | 1.95                                                | 6.5 <sup>2)</sup>               |
|    |                      |                        | 316       | 16                 | 0.7      | 22               | 224)                | 26                  | 224)                | 0      | 0     | 0                          | 0                      | 0.95                                                  | 1.25                                                | 1.55                                                  | 1.75                                                | 6.0                             |
|    |                      |                        | 318       | 18                 | 0.7      | 22               | 22 <sup>4)</sup>    | 26                  | 224)                | 0      | 0     | 0                          | 0                      | 0.85                                                  | 1.20                                                | 1.45                                                  | 2.10                                                | 5.5                             |
|    |                      |                        | 319       | 19                 | 0.7      | 22               | 224)                | 26                  | 224)                | 0      | 0     | 0                          | 0                      | 0.95                                                  | 1.25                                                | 1.55                                                  | 1.65                                                | 5.0                             |
|    |                      |                        | 326       | 26                 | 0.5      | 28               | 28                  | _                   | _                   | 0      | _     | 0                          | _                      | 0.95                                                  | 1.30                                                | 1.20                                                  | 1.80                                                | 2.0                             |
|    |                      |                        | 332       | 32                 | 0.5      | 28               | 28                  | _                   | _                   | 0      | -     | 0                          | -                      | 0.80                                                  | 1.2                                                 | 0.95                                                  | 1.60                                                | 1.5                             |

Note: <sup>1)</sup> See calculation method, caution and suggested standard on page 11.
<sup>2)</sup> Rated current = 6A for receptacle with elbow (90°) contact for printed circuit.
<sup>3)</sup> Rated current = 12A for receptacle with elbow (90°) contact for printed circuit.
<sup>4)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than ØC on page 9 (for solder), and page 10 (for crimp).



|    |                      |                        |           |                    |            | So              | lder                   | Cr                 | imp                    | (      | Conta | act ty                     | pe                      | Sol<br>con                                            | der<br>tact                                         | Cri<br>con                                            | mp<br>itact                                         |                                 |
|----|----------------------|------------------------|-----------|--------------------|------------|-----------------|------------------------|--------------------|------------------------|--------|-------|----------------------------|-------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|---------------------------------|
|    | Male solder contacts | Female solder contacts | Reference | Jumber of contacts | ( A (mm)   | WG max. (solid) | WG max. (stranded)     | WG min. (stranded) | WG max. (stranded)     | solder | Crimp | Printed circuit (straight) | Printed circuit (elbow) | est voltage (kV rms) <sup>1)</sup><br>Contact-contact | est voltage (kV rms) <sup>1)</sup><br>Contact-shell | est voltage (kV rms) <sup>1)</sup><br>Contact-contact | est voltage (kV rms) <sup>1)</sup><br>Contact-shell | Rated current (A) <sup>1)</sup> |
| ЗК |                      |                        | 302       | 2                  | 3.0        | 10              | 12                     | 14                 | 103)                   | 0      | 0     | 0                          | -                       | 2.10                                                  | 1.55                                                | 2.30                                                  | 1.80                                                | 35.0                            |
| L] |                      |                        | 303       | 3                  | 2.0        | 14              | 16                     | 16                 | 12 <sup>3)</sup>       | 0      | 0     | 0                          | _                       | 1.90                                                  | 1.50                                                | 3.20                                                  | 2.65                                                | 25.0                            |
|    |                      |                        | 304       | 4                  | 2.0        | 14              | 16                     | 16                 | 12 <sup>3)</sup>       | 0      | 0     | 0                          | _                       | 1.45                                                  | 1.25                                                | 2.50                                                  | 2.20                                                | 19.0                            |
|    |                      |                        | 305       | 5                  | 1.6        | 16              | 18                     | 18                 | 14 <sup>3)</sup>       | 0      | 0     | 0                          | -                       | 1.90                                                  | 1.25                                                | 2.40                                                  | 1.75                                                | 19.0                            |
|    |                      |                        | 306       | 6                  | 1.6        | 16              | 18                     | 18                 | 14 <sup>3)</sup>       | 0      | 0     | 0                          | _                       | 1.60                                                  | 1.15                                                | 1.90                                                  | 1.80                                                | 17.0                            |
|    |                      |                        | 307       | 7                  | 1.6        | 16              | 18                     | 18                 | 14 <sup>3)</sup>       | 0      | 0     | 0                          | _                       | 1.70                                                  | 1.25                                                | 2.00                                                  | 2.05                                                | 15.0                            |
|    |                      |                        | 308       | 8                  | 1.3        | 20              | 20 <sup>3)</sup>       | 20                 | 18                     | 0      | 0     | 0                          | 0                       | 1.65                                                  | 1.15                                                | 1.85                                                  | 1.75                                                | 13.0                            |
|    |                      |                        | 309       | 8<br>1             | 1.3<br>2.0 | 20<br>14        | 20 <sup>3)</sup><br>16 | 20<br>16           | 18<br>12 <sup>3)</sup> | 0      | 0     | 0                          | -                       | 1.35<br>1.35                                          | 1.05<br>1.05                                        | 1.10<br>1.10                                          | 1.05<br>1.05                                        | 6.0<br>15.0                     |
|    |                      |                        | 310       | 10                 | 1.3        | 20              | 203)                   | 20                 | 18                     | 0      | 0     | 0                          | 0                       | 1.25                                                  | 0.90                                                | 1.50                                                  | 1.80                                                | 12.0                            |
|    |                      |                        | 312       | 12                 | 0.9        | 22              | 22 <sup>3)</sup>       | 24                 | 20                     | 0      | 0     | 0                          | 0                       | 1.45                                                  | 1.00                                                | 1.65                                                  | 1.85                                                | 9.0                             |
|    |                      |                        | 314       | 14                 | 0.9        | 22              | 223)                   | 24                 | 20                     | 0      | 0     | 0                          | 0                       | 1.20                                                  | 1.20                                                | 1.80                                                  | 1.65                                                | 9.02)                           |
|    |                      |                        | 316       | 16                 | 0.9        | 22              | 223)                   | 24                 | 20                     | 0      | 0     | 0                          | 0                       | 1.20                                                  | 0.85                                                | 1.80                                                  | 1.50                                                | 8.0                             |
|    |                      |                        | 318       | 18                 | 0.9        | 22              | 223)                   | 24                 | 20                     | 0      | 0     | 0                          | 0                       | 1.20                                                  | 1.05                                                | 1.85                                                  | 1.60                                                | 7.0                             |
|    |                      |                        | 320       | 20                 | 0.7        | 22              | 223)                   | 26                 | 22 <sup>3)</sup>       | 0      | 0     | 0                          | 0                       | 1.00                                                  | 0.90                                                | 1.35                                                  | 1.55                                                | 6.0                             |
|    |                      |                        | 322       | 22                 | 0.7        | 22              | 223)                   | 26                 | 22 <sup>3)</sup>       | 0      | 0     | 0                          | 0                       | 1.00                                                  | 0.90                                                | 1.70                                                  | 1.45                                                | 5.5                             |
|    |                      |                        | 324       | 24                 | 0.7        | 22              | 223)                   | 26                 | 223)                   | 0      | 0     | 0                          | 0                       | 0.95                                                  | 0.80                                                | 1.35                                                  | 1.35                                                | 4.0                             |
|    |                      |                        | 326       | 26                 | 0.7        | 22              | 223)                   | 26                 | 223)                   | 0      | 0     | 0                          | 0                       | 0.95                                                  | 0.70                                                | 1.50                                                  | 1.30                                                | 4.0                             |
|    |                      |                        | 330       | 30                 | 0.7        | 22              | 22 <sup>3)</sup>       | 26                 | 22 <sup>3)</sup>       | 0      | 0     | 0                          | 0                       | 0.80                                                  | 0.70                                                | 1.35                                                  | 1.20                                                | 3.5                             |

Note: 1) See calculation method, caution and suggested standard on page 11.
 2) Rated current = 6A for receptacle with elbow (90°) contact for printed circuit.
 3) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



|    |                      |                        |           |                    |          | So               | lder                | Cri                 | mp                       | Con    | tact  | type                       | Sol<br>con                                             | der<br>tact                                          | Crii<br>con                                            | mp<br>tact                                           |                                 |
|----|----------------------|------------------------|-----------|--------------------|----------|------------------|---------------------|---------------------|--------------------------|--------|-------|----------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|---------------------------------|
|    | Male solder contacts | Female solder contacts | Reference | Number of contacts | ø A (mm) | AWG max. (solid) | AWG max. (stranded) | AWG min. (stranded) | AWG max. (stranded)      | Solder | Crimp | Printed circuit (straight) | Test voltage (kV rms) <sup>1)</sup><br>Contact-contact | Test voltage (kV rms) <sup>1)</sup><br>Contact-shell | Test voltage (kV rms) <sup>1)</sup><br>Contact-contact | Test voltage (kV rms) <sup>1)</sup><br>Contact-shell | Rated current (A) <sup>1)</sup> |
| 4K |                      |                        | 304       | 4                  | 3.0      | 10               | 12                  | 14                  | 10 <sup>2)</sup>         | 0      | 0     | 0                          | 2.10                                                   | 1.50                                                 | 1.80                                                   | 1.20                                                 | 30.0                            |
|    |                      |                        | 306       | 6                  | 2.0      | 14               | 16                  | 16                  | 12 <sup>2)</sup>         | 0      | 0     | 0                          | 2.00                                                   | 1.75                                                 | 2.75                                                   | 2.40                                                 | 24.0                            |
|    |                      |                        | 307       | 7                  | 2.0      | 14               | 16                  | 16                  | 12 <sup>2)</sup>         | 0      | 0     | 0                          | 2.00                                                   | 1.80                                                 | 1.50                                                   | 1.35                                                 | 20.0                            |
|    |                      |                        | 310       | 10                 | 1.6      | 16               | 18                  | 18                  | <b>1</b> 4 <sup>2)</sup> | 0      | 0     | 0                          | 1.85                                                   | 1.30                                                 | 1.90                                                   | 1.95                                                 | 17.0                            |
|    |                      |                        | 312       | 12                 | 1.3      | 20               | 202)                | 20                  | 18                       | 0      | 0     | 0                          | 1.45                                                   | 1.60                                                 | 1.90                                                   | 1.85                                                 | 12.0                            |
|    |                      |                        | 316       | 16                 | 0.9      | 22               | 22 <sup>2)</sup>    | 24                  | 20                       | 0      | 0     | 0                          | 1.35                                                   | 1.50                                                 | 2.30                                                   | 2.10                                                 | 10.0                            |
|    |                      |                        | 320       | 20                 | 0.9      | 22               | 22 <sup>2)</sup>    | 24                  | 20                       | 0      | 0     | 0                          | 1.35                                                   | 1.00                                                 | 1.05                                                   | 0.95                                                 | 8.0                             |
|    |                      |                        | 324       | 24                 | 0.9      | 22               | 22 <sup>2)</sup>    | 24                  | 20                       | 0      | 0     | 0                          | 1.20                                                   | 1.45                                                 | 1.80                                                   | 2.05                                                 | 7.0                             |
|    |                      |                        | 330       | 30                 | 0.9      | 22               | 22 <sup>2)</sup>    | 24                  | 20                       | 0      | 0     | 0                          | 0.95                                                   | 0.85                                                 | 1.75                                                   | 1.45                                                 | 5.0                             |
|    |                      |                        | 340       | 40                 | 0.7      | 22               | 22 <sup>2)</sup>    | 26                  | 22 <sup>2)</sup>         | 0      | 0     | 0                          | 0.90                                                   | 0.95                                                 | 1.35                                                   | 1.30                                                 | 2.0                             |

Note: 1) See calculation method, caution and suggested standard on page 11.
 <sup>2)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



|           |                      |                                                               |         |                  |      | So              | lder               | Cri                | mp                 | Con | tact | type                    | Sol<br>con                                         | der<br>tact                                      | Cri<br>con                                         | mp<br>tact                                       |                               |
|-----------|----------------------|---------------------------------------------------------------|---------|------------------|------|-----------------|--------------------|--------------------|--------------------|-----|------|-------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-------------------------------|
|           | Male solder contacts | Female solder contacts                                        | ference | mber of contacts | (mm) | /G max. (solid) | /G max. (stranded) | /G min. (stranded) | /G max. (stranded) | der | mp   | nted circuit (straight) | st voltage (kV rms) <sup>1)</sup><br>ntact-contact | st voltage (kV rms) <sup>1)</sup><br>ntact-shell | st voltage (kV rms) <sup>1)</sup><br>ntact-contact | st voltage (kV rms) <sup>1)</sup><br>ntact-shell | ted current (A) <sup>1)</sup> |
| []        | Male crimp contacts  | Female crimp contacts                                         | Ве      | Ŋ                | ø    | AV              | A                  | AM                 | AV                 | So  | Cri  | Pri                     | ĕ°                                                 | ĕ°S                                              | ĕ°                                                 | ĕ°                                               | Ba                            |
| <b>5K</b> |                      | $\left(\begin{array}{c} 0\\ 0\end{array}\right)$              | 302     | 2                | 6.0  | -               | 8                  | _                  | _                  | 0   | _    | _                       | 3.60                                               | 2.95                                             | _                                                  | _                                                | 50.0                          |
|           |                      | $\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array}\right)$ | 304     | 4                | 4.0  | 10              | 10                 | 12                 | 10 <sup>2)</sup>   | 0   | 0    | 0                       | 2.95                                               | 2.65                                             | 3.20                                               | 2.40                                             | 35.0                          |
|           |                      |                                                               | 310     | 10               | 3.0  | 10              | 12                 | 14                 | 10 <sup>2)</sup>   | 0   | 0    | 0                       | 2.35                                               | 2.30                                             | 2.65                                               | 3.20                                             | 20.0                          |
|           |                      |                                                               | 314     | 14               | 2.0  | 14              | 16                 | 16                 | 12 <sup>2)</sup>   | 0   | 0    | 0                       | 2.10                                               | 2.00                                             | 2.85                                               | 2.95                                             | 18.0                          |
|           |                      |                                                               | 316     | 16               | 2.0  | 14              | 16                 | 16                 | 12 <sup>2)</sup>   | 0   | 0    | 0                       | 1.85                                               | 1.95                                             | 2.45                                               | 3.05                                             | 12.0                          |
|           |                      |                                                               | 320     | 20               | 1.6  | 16              | 18                 | 18                 | 14 <sup>2)</sup>   | 0   | 0    | 0                       | 1.90                                               | 1.70                                             | 2.20                                               | 2.40                                             | 10.0                          |
|           |                      |                                                               | 330     | 30               | 1.3  | 20              | 20 <sup>2)</sup>   | 20                 | 18                 | 0   | 0    | 0                       | 1.45                                               | 1.60                                             | 2.05                                               | 2.45                                             | 8.0                           |
|           |                      |                                                               | 340     | 40               | 1.3  | 20              | 20 <sup>2)</sup>   | 20                 | 18                 | 0   | 0    | 0                       | 1.30                                               | 1.45                                             | 2.00                                               | 1.95                                             | 7.0                           |
|           |                      |                                                               | 348     | 48               | 1.3  | 20              | 20 <sup>2)</sup>   | 20                 | 18                 | 0   | 0    | 0                       | 1.20                                               | 1.10                                             | 2.00                                               | 1.55                                             | 6.0                           |
|           |                      |                                                               | 350     | 50               | 0.9  | 22              | 22 <sup>2)</sup>   | 24                 | 20                 | 0   | 0    | 0                       | 1.30                                               | 1.60                                             | 1.20                                               | 1.45                                             | 6.0                           |
|           |                      |                                                               | 354     | 54               | 0.9  | 22              | 22 <sup>2)</sup>   | 24                 | 20                 | 0   | 0    | 0                       | 1.15                                               | 1.55                                             | 2.00                                               | 2.10                                             | 5.0                           |
|           |                      |                                                               | 364     | 64               | 0.9  | 22              | 22 <sup>2)</sup>   | 24                 | 20                 | 0   | 0    | 0                       | 1.30                                               | 1.55                                             | 1.35                                               | 1.85                                             | 3.0                           |

Note: 1) See calculation method, caution and suggested standard on page 11. <sup>2)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



#### Mixed (High Voltage + Low Voltage)

|           |                            |                              |           |                 |                 |                            | Hig                   | h vol            | tage             |                   |                   |                  |                 |                 |                  |                | L                      | -ow \     | /olta       | ge                                  |                                   |                                     |                                   |                  |
|-----------|----------------------------|------------------------------|-----------|-----------------|-----------------|----------------------------|-----------------------|------------------|------------------|-------------------|-------------------|------------------|-----------------|-----------------|------------------|----------------|------------------------|-----------|-------------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|------------------|
|           |                            |                              |           |                 |                 |                            | iey «G» <sup>2)</sup> |                  | mm)              | ial <sup>3)</sup> |                   |                  |                 |                 | lder)            | (du            | (du                    | Cor<br>ty | ntact<br>pe | Sol<br>con                          | der<br>tact                       | Cr<br>coi                           | rimp<br>ntact                     |                  |
|           | LV male<br>solder contacts | LV female<br>solder contacts |           | acts            | u)              |                            | der with k            | i max.           | ø max. (r        | tor materi        | dc) <sup>4)</sup> | (۱/              | acts            | (C              | anded/Sol        | nded/Crir      | anded/Cri              |           |             | ms) <sup>4)</sup>                   | ms) <sup>4)</sup>                 | rms) <sup>4)</sup>                  | ms) <sup>4)</sup>                 | A) <sup>4)</sup> |
|           | LV male<br>crimp contacts  | LV female<br>crimp contacts  | Reference | Number of conta | Contact ø A (mr | Contact type <sup>1)</sup> | HV contact gend       | Conductor AWG    | Cable dielectric | Standard insulat  | Test voltage (kV  | Rated current (A | Number of conta | Contact ø A (mr | AWG max. (Stra   | AWG min. (Stra | AWG max. (Stra         | Solder    | Crimp       | Test voltage (kV<br>Contact-contact | Test voltage (kV<br>Contact-shell | Test voltage (kV<br>Contact-contact | Test voltage (kV<br>Contact-shell | Rated current (A |
| 1K        |                            |                              | 702       | 1               | 0.7             | S                          | L                     | 26               | 1.5              | L                 | 7.5               | 2                | 2               | 1.3             | 205)             | 20             | 18                     | 0         | 0           | 1.2                                 | 0.9                               | 0.6                                 | 0.50                              | 8                |
|           |                            |                              | 731       | 2               | 0.7             | S                          | L                     | 26               | 1.5              | L                 | 7.5               | 2                | 1               | 1.3             | 205)             | 20             | 18                     | 0         | 0           | 1.2                                 | 0.9                               | 0.6                                 | 0.50                              | 8                |
| 2K        | (O)<br>Q                   |                              | 704       | 1               | 1.3             | S                          | L                     | 205)             | 3.4              | L/T               | 7.5               | 8                | 4               | 0.7             | 225)             | 26             | 22 <sup>5)</sup>       | 0         | 0           | 0.85                                | 1.2                               | 0.6                                 | 1.0                               | 5                |
|           |                            |                              | 706       | 1               | 0.7             | S                          | L                     | 26               | 2.0              | L                 | 7.5               | 3                | 6               | 1.3             | 205)             | 20             | 18                     | 0         | 0           | 1.75                                | 1.6                               | 1.05                                | 1.15                              | 11               |
|           |                            |                              | 708       | 1               | 0.9             | S                          | L                     | 225)             | 3.0              | L                 | 8.0               | 4                | 8               | 0.9             | 225)             | 24             | 20                     | 0         | 0           | 1.5                                 | 1.25                              | 0.75                                | 0.75                              | 10               |
| 3K        |                            |                              | 709       | 1               | 0.9             | S                          | L                     | 22 <sup>5)</sup> | 3.0              | L                 | 12                | 4                | 9               | 0.7             | 22 <sup>5)</sup> | 26             | 22 <sup>5)</sup>       | 0         | 0           | 1.7                                 | 0.9                               | 1.45                                | 0.65                              | 5                |
|           |                            |                              | 712       | 1               | 0.9             | S                          | L                     | 22 <sup>5)</sup> | 3.0              | L                 | 12                | 4                | 12              | 0.9             | 225)             | 24             | 20                     | 0         | 0           | 1.2                                 | 0.85                              | 0.75                                | 0.60                              | 5                |
|           |                            |                              | 718       | 1               | 1.3             | S                          | L                     | 205)             | 3.4              | L/T               | 7.5               | 8                | 18              | 0.7             | 225)             | 26             | 225)                   | 0         | 0           | 0.7                                 | 0.7                               | 0.4                                 | 0.55                              | 5.5              |
|           |                            |                              | 740       | 2               | 0.9             | S                          | L                     | 22 <sup>5)</sup> | 3.0              | L                 | 12                | 3                | 10              | 0.7             | 22 <sup>5)</sup> | 26             | 22 <sup>5)</sup>       | 0         | 0           | 0.8                                 | 0.7                               | 0.5                                 | 0.55                              | 5                |
| <b>4K</b> |                            |                              | 745       | 2               | 0.9             | S                          | L                     | 225)             | 3.0              | L                 | 18                | 3                | 16              | 0.9             | 225)             | 24             | 20                     | 0         | 0           | 1.2                                 | 1.45                              | 0.7                                 | 1.2                               | 7                |
| 5K        |                            |                              | 752       | 2               | 2.0             | S                          | A                     | 14               | 3.9              | L                 | 6.5               | 12               | 20<br>2         | 1.3<br>1.6      | 20⁵)<br>18       | 20<br>18       | 18<br>14 <sup>5)</sup> | - 0       | 0           | _<br>2.8                            | _<br>2.8                          | 1.5<br>_                            | 1.5<br>–                          | 8<br>10          |
|           |                            |                              | 759       | 2               | 0.9             | S                          | L                     | 22 <sup>5)</sup> | 3.0              | L                 | 18                | 3                | 54              | 0.9             | 225)             | 24             | 20                     | 0         | 0           | 1.3                                 | 1.55                              | 0.9                                 | 1.3                               | 3                |

Note: <sup>1)</sup> S = solder, C = crimp
<sup>2)</sup> A = male for plug; female for socket, L = female for plug; male for socket
<sup>3)</sup> L = Peek, T = PTFE
<sup>4)</sup> See calculation method, caution and suggested standard on page 11
<sup>5)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than ØC on page 9 (for solder), and page 10 (for crimp).



#### Mixed (Coax + Low Voltage)

|    |                              |                                        |           |                    |                  |                  |                            | Co               | ax          |                 |                 |                                 |                    |                  |                            | L                         | .ow \                     | /olta  | age   | )               |                 |                                 |
|----|------------------------------|----------------------------------------|-----------|--------------------|------------------|------------------|----------------------------|------------------|-------------|-----------------|-----------------|---------------------------------|--------------------|------------------|----------------------------|---------------------------|---------------------------|--------|-------|-----------------|-----------------|---------------------------------|
|    | LV male<br>solder contacts   | LV female<br>solder contacts           | Reference | Number of contacts | Contact ø A (mm) | AWG max.         | Contact type <sup>1)</sup> | Impedance (ohms) | Cable Group | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/Solder) | AWG min. (Stranded/Crimp) | AWG max. (Stranded/Crimp) | Solder | Crimp | Test voltage AC | Test voltage DC | Rated current (A) <sup>4)</sup> |
| 2K |                              |                                        | 802       | 1                  | 0.7              | 26               | A1                         | 50               | 1,2,3       | 900             | 1440            | 5                               | 2                  | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0      | 0     | 1000            | 1500            | 8                               |
|    |                              |                                        | 804       | 1                  | 0.7              | 26               | A1                         | 50               | 1,2,3       | 900             | 1440            | 5                               | 4                  | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 1200            | 1800            | 5                               |
|    |                              |                                        | 806       | 1                  | 0.7              | 26               | A1                         | 50               | 1,2,3       | 900             | 1440            | 5                               | 6                  | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 1200            | 1800            | 5                               |
|    |                              |                                        | 810       | 1                  | 0.7              | 22               | C <sup>1)</sup>            | 50               | 1,2,3       | 900             | 1400            | 5                               | 6                  | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 1700            | 2500            | 6.5                             |
| ЗК |                              |                                        | 803       | 1                  | 1.3              | 20 <sup>2)</sup> | A0                         | 50               | 6           | 3000            | 4200            | 5                               | 3                  | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0      | 0     | 800             | 1200            | 5                               |
|    |                              |                                        | 806       | 1                  | 0.7              | 26               | A1                         | 50               | 1,2,3       | 900             | 1440            | 5                               | 6                  | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 1200            | 1800            | 5                               |
|    |                              |                                        | 809       | 1                  | 0.7              | 26               | A1                         | 50               | 1,2,3       | 900             | 1440            | 5                               | 9                  | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 1200            | 1800            | 5                               |
|    |                              |                                        | 812       | 1                  | 0.7              | 26               | A1                         | 50               | 1,2,3       | 900             | 1440            | 5                               | 12                 | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0      | 0     | 1200            | 1800            | 5                               |
|    |                              |                                        | 813       | 1                  | 0.7              | 26               | A1                         | 50               | 1,2,3       | 900             | 1440            | 5                               | 13                 | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 1200            | 1800            | 5                               |
|    |                              | 00000000000000000000000000000000000000 | 822       | 1                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | 22                 | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 1200            | 1800            | 5                               |
|    |                              |                                        | 844       | 2                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | 4                  | 0.9              | 222)                       | 24                        | 20                        | 0      | 0     | 1200            | 1800            | 8                               |
|    |                              |                                        | 846       | 2                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | 6                  | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0      | 0     | 1200            | 1800            | 8                               |
|    |                              |                                        | 850       | 2                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | 10                 | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 600             | 850             | 5                               |
|    |                              |                                        | 856       | 2                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | 16                 | 0.7              | 22 <sup>2)</sup>           | 26                        | 22 <sup>2)</sup>          | 0      | 0     | 600             | 850             | 3                               |
|    | $\bigcirc \bigcirc \bigcirc$ | $\bigcirc \bigcirc \bigcirc$           | 862       | 3                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | 2                  | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0      | 0     | 1200            | 1800            | 7                               |
|    |                              |                                        | 242       | 2                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | -                  | -                | -                          | -                         | -                         | -      | -     | -               | -               | -                               |
|    | G                            | G                                      | 243       | 3                  | 0.7              | 22 <sup>2)</sup> | C <sup>1)</sup>            | 50               | 1,2,3       | 1500            | 2190            | 2                               | -                  | -                | -                          | -                         | -                         | -      | -     | -               | -               | -                               |

Note: 1) You may substitute fluidic/pneumatic or fiber optic contacts
2) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



#### Mixed (Coax + Low Voltage)

|    |                            |                           |           |           |             |          |                   | Co        | ax         |             |             |                       |           |             |                   | L                | .ow v            | /olt     | age        | e           |             |                       |
|----|----------------------------|---------------------------|-----------|-----------|-------------|----------|-------------------|-----------|------------|-------------|-------------|-----------------------|-----------|-------------|-------------------|------------------|------------------|----------|------------|-------------|-------------|-----------------------|
|    |                            |                           |           | contacts  | A (mm)      | _        | De <sup>1</sup> ) | (ohms)    | dn         | e AC        | e DC        | ent (A) <sup>1)</sup> | contacts  | A (mm)      | (Stranded/Solder) | (Stranded/Crimp) | (Stranded/Crimp) | Co<br>ty | ont.<br>pe | e AC        | e DC        | ent (A) <sup>4)</sup> |
|    | LV male<br>solder contacts | LV female solder contacts | Reference | Number of | Contact ø / | AWG max. | Contact typ       | Impedance | Cable Grou | Test voltag | Test voltag | Rated curr            | Number of | Contact ø / | AWG max.          | AWG min.         | AWG max.         | Solder   | Crimp      | Test voltag | Test voltag | Rated curr            |
| 4K |                            |                           | 802       | 1         | 1.6         | 18       | А                 | 50        | 6          | 1800        | 2700        | 12                    | 2         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 8                     |
|    |                            | 00                        | 822       | 1         | 1.3         | 20       | А                 | 75        | 4,5,7      | 2400        | 3300        | 7                     | 2         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 8                     |
|    |                            |                           | 804       | 1         | 1.6         | 18       | А                 | 50        | 6          | 1800        | 2700        | 12                    | 4         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 7                     |
|    |                            |                           | 824       | 1         | 1.3         | 20       | А                 | 75        | 4,5,7      | 2400        | 3300        | 7                     | 4         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 7                     |
|    |                            | $\bigcirc$                | 806       | 1         | 1.6         | 18       | A                 | 50        | 6          | 1800        | 2700        | 12                    | 6         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 5                     |
|    | Real                       | 0000                      | 826       | 1         | 1.3         | 20       | A                 | 75        | 4,5,7      | 2400        | 3300        | 7                     | 6         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 5                     |
|    |                            |                           | 842       | 2         | 0.7         | 26       | A1                | 50        | 1,2,3      | 900         | 1440        | 5                     | 2         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 8                     |
|    |                            |                           | 844       | 2         | 0.7         | 26       | A1                | 50        | 1,2,3      | 900         | 1440        | 5                     | 4         | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 7                     |
|    |                            |                           | 852       | 2         | 0.7         | 22       | C¹                | 50        | 1,2,3      | 1500        | 2100        | 2                     | 12        | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 4                     |
|    |                            |                           | 856       | 2         | 0.7         | 22       | C <sup>1</sup>    | 50        | 1,2,3      | 1500        | 2100        | 2                     | 16        | 0.9         | 22 <sup>2)</sup>  | 24               | 20               | 0        | 0          | 1200        | 1800        | 4                     |
|    |                            |                           | 858       | 2         | 0.7         | 22       | C <sup>1</sup>    | 50        | 1,2,3      | 1500        | 2100        | 2                     | 18        | 0.7         | 22 <sup>2)</sup>  | 26               | 22 <sup>2)</sup> | 0        | 0          | 1500        | 2100        | 2                     |
|    |                            |                           | 866       | 3         | 0.7         | 22       | C <sup>1</sup>    | 50        | 1,2,3      | 1500        | 2100        | 2                     | 6         | 0.7         | 22 <sup>2)</sup>  | 26               | 22 <sup>2)</sup> | 0        | 0          | 1000        | 1500        | 3                     |
|    |                            |                           | 879       | 4         | 0.7         | 22       | C <sup>1</sup>    | 50        | 1,2,3      | 1500        | 2100        | 2                     | 9         | 0.7         | 22 <sup>2)</sup>  | 26               | 22 <sup>2)</sup> | 0        | 0          | 1000        | 1500        | 3                     |
|    |                            |                           | 885       | 3         | 0.7         | 22       | C¹                | 50        | 1,2,3      | 1500        | 2100        | 2                     | 12        | 0.7         | 22 <sup>2)</sup>  | 26               | 22 <sup>2)</sup> | 0        | 0          | 1000        | 1500        | 2                     |
|    |                            |                           | 244       | 4         | 0.7         | 22       | C¹                | 50        | 1,2,3      | 1500        | 2100        | 2                     | -         | -           | -                 | -                | -                | -        | -          | -           | -           | -                     |

Note: 1) You may substitute fluidic/pneumatic or fiber optic contacts
2) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).


# Mixed (Coax + Low Voltage)

|    |                            |                              |           |                    |                  |          |                            | Со               | ax          |                 |                 |                                 |                    |                  |                            | L                         | _ow <sup>y</sup>          | volt          | age   | е               |                 |                                 |
|----|----------------------------|------------------------------|-----------|--------------------|------------------|----------|----------------------------|------------------|-------------|-----------------|-----------------|---------------------------------|--------------------|------------------|----------------------------|---------------------------|---------------------------|---------------|-------|-----------------|-----------------|---------------------------------|
|    | LV male<br>solder contacts | LV female<br>solder contacts | Reference | Number of contacts | Contact ø A (mm) | AWG max. | Contact type <sup>1)</sup> | Impedance (ohms) | Cable Group | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/Solder) | AWG min. (Stranded/Crimp) | AWG max. (Stranded/Crimp) | Solder Solder | Crimp | Test voltage AC | Test voltage DC | Rated current (A) <sup>4)</sup> |
| 5K |                            |                              | 850       | 2                  | 1.3              | 20       | в                          | 50               | 1,2,6       | 840             | 1380            | 11                              | 10                 | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0             | 0     | 1500            | 2100            | 8                               |
|    |                            |                              |           | 2                  | 0.9              | 22       | в                          | 75               | 3,5         | 2100            | 3000            | 6                               | 10                 | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0             | 0     | 500             | 2100            | 8                               |
|    |                            |                              |           | 2                  | 1.3              | 20       | в                          | 50               | 1,2,6       | 840             | 1380            | 11                              | 16                 | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0             | 0     | 1500            | 2100            | 8                               |
|    |                            | 000 000                      | 876       | 2                  | 0.9              | 22       | В                          | 75               | 3,5         | 2100            | 3000            | 6                               | 16                 | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0             | 0     | 1500            | 2100            | 8                               |
|    |                            | $\odot$                      | 857       | 2                  | 1.3              | 20       | В                          | 50               | 1,2,6       | 840             | 1380            | 11                              | 2<br>15            | 2.0<br>0.9       | 16<br>22 <sup>2)</sup>     | 16<br>24                  | 12 <sup>2)</sup><br>20    | 000           | 00    | 1500            | 2100            | 30<br>8                         |
|    |                            |                              |           | 2                  | 0.9              | 22       | В                          | 75               | 3,5         | 2100            | 3000            | 6                               | 2<br>15            | 2.0<br>0.9       | 16<br>22 <sup>2)</sup>     | 16<br>24                  | 12 <sup>2)</sup><br>20    | 00            | 00    | 1500            | 2100            | 30<br>8                         |
|    |                            |                              | 864       | 2                  | 1.3              | 20       | В                          | 50               | 1,2,6       | 840             | 1380            | 11                              | 24                 | 1.3              | 20 <sup>2)</sup>           | 20                        | 18                        | 0             | 0     | 1500            | 2100            | 8                               |
|    |                            |                              | 892       | 6                  | 0.7              | 22       | D                          | 75               | 5           | 1000            | 1500            | 5                               | 10                 | 0.9              | 22 <sup>2)</sup>           | 24                        | 20                        | 0             | 0     | 600             | 900             | 4                               |
|    |                            |                              | 240       | 10                 | 0.7              | 22       | с                          | 50               | 1,2,3       | 1000            | 1500            | 2                               | -                  | -                | -                          | -                         | -                         | -             | -     | -               | -               | -                               |
|    |                            |                              | 260       | 7                  | 0.7              | 22       | D                          | 75               | 5           | 1000            | 1500            | 5                               | -                  | -                | -                          | -                         | -                         | -             | -     | -               | -               | -                               |
|    |                            |                              | 273       | 3                  | 0.9              | 22       | В                          | 75               | 3,5         | 2100            | 3000            | 6                               | -                  | -                | -                          | -                         | -                         | -             | -     | -               | -               | -                               |
|    |                            |                              | 274       | 4                  | 0.9              | 22       | В                          | 75               | 3,5         | 2100            | 3000            | 6                               | -                  | -                | -                          | -                         | -                         | -             | -     | -               | -               | -                               |
|    |                            |                              | 997       | 1                  | 0.9              | 22       | A1                         | 50               | 8           | 2400            | 3300            | 7                               | 32                 | 1.3              | 20 <sup>2)</sup>           | 20                        | 18                        | 0             | 0     | 1500            | 2100            | 8                               |

 $^{o}\ensuremath{\textbf{Note:1}}\xspace$  ) You may substitute fluidic/pneumatic or fiber optic contacts 2) See footnote 2) page 34



### **Technical Information**



#### Coaxial, Type A0, A, A1 and type A3

The coaxial of this type is permanently fixed into the insert. The conductor is soldered and the shield is clamped.

|    | Component         | Matarial             | Surface<br>Treatment |    |     |  |
|----|-------------------|----------------------|----------------------|----|-----|--|
|    | Component         | Material             | Cu                   | Ni | Au  |  |
| 1  | Male Sleeve       | Brass (UNS C 38500)  | 0.5                  | 3  | 1.5 |  |
| 2  | Insert            | PTFE (UNS D 1457-83) | -                    | -  | -   |  |
| 3  | Male Contact      | Brass (UNS C 38500)  | 0.5                  | 3  | 1.5 |  |
| 4  | Female Sleeve     | Bronze (UNS C 54400) | 0.5                  | 3  | 2.0 |  |
| 5  | Insert            | PTFE (UNS D 1457-83) | -                    | -  | -   |  |
| 6  | Female Contact    | Bronze (UNS C 54400) | 0.5                  | 3  | 2.5 |  |
| 7  | Insulating Sleeve | PTFE (UNS D 1457-83) | -                    | -  | -   |  |
| 8  | Grounding Sleeve  | Brass (UNS C 38500)  | 0.5                  | 3  | -   |  |
| 9  | Collet            | Brass (UNS C 38500)  | 0.5                  | 3  | -   |  |
| 10 | Ferrule           | Brass (UNS C 38500)  | 0.5                  | 3  | -   |  |



ΤĒ

Crimp

#### Coaxial, Type B

In this type, the coaxial is removable and fixed in place by clips. The conductor and shield are crimped.

|    | Component         | Motorial             | ې<br>Tr | Surfac<br>eatme | e<br>ent |
|----|-------------------|----------------------|---------|-----------------|----------|
|    | Component         | Material             | Cu      | Ni              | Au       |
| 1  | Male Sleeve       | Brass (UNS C 38500)  | 0.5     | 3               | 1.5      |
| 2  | Insert            | PTFE (UNS D 1457-83) | -       | -               | -        |
| 3  | Male Contact      | Brass (UNS C 38500)  | 0.5     | 3               | 1.5      |
| 4  | Female Sleeve     | Bronze (UNS C 54400) | 0.5     | 3               | 2.0      |
| 5  | Insert            | PTFE (UNS D 1457-83) | -       | -               | -        |
| 6  | Female Contact    | Bronze (UNS C 54400) | 0.5     | 3               | 2.5      |
| 7  | Insulating Sleeve | PTFE (UNS D 1457-83) | -       | -               | -        |
| 8  | Crimp Nuts        | Brass (UNS C 38500)  | 0.5     | 3               | 1.5      |
| 9  | Collet            | Brass (UNS C 18700)  | 0.5     | 3               | -        |
| 10 | Clips             | Cu-Be (FS-QQ-C-530)  | -       | -               | -        |



In this type, the coaxial is removable and fixed in place by clips. The conductor and shield are crimped.

|    | Component         | Motorial             | ع<br>Tr | Surface<br>eatment |     |  |
|----|-------------------|----------------------|---------|--------------------|-----|--|
|    | Component         | Material             | Cu      | Ni                 | Au  |  |
| 1  | Male Sleeve       | Brass (UNS C 38500)  | 0.5     | 3                  | 1.5 |  |
| 2  | Insert            | PTFE (UNS D 1457-83) | -       | -                  | -   |  |
| 3  | Male Contact      | Brass (UNS C 38500)  | 0.5     | 3                  | 1.5 |  |
| 4  | Female Sleeve     | Bronze (UNS C 54400) | 0.5     | 3                  | 2.0 |  |
| 5  | Insert            | PFTE (UNS D 1457-83) | -       | -                  | -   |  |
| 6  | Female Contact    | Bronze (UNS C 54400) | 0.5     | 3                  | 2.5 |  |
| 7  | Insulating Sleeve | PTFE (UNS D 1457-83) | -       | -                  | -   |  |
| 8  | Crimp Nuts        | Brass (UNS C 38500)  | 0.5     | 3                  | 1.5 |  |
| 9  | Crimp Ferrule     | Brass (UNS C 18700)  | 0.5     | 3                  | -   |  |
| 10 | Clips             | Brass (UNS C 38500)  | -       | -                  | -   |  |



#### Technical characteristics for coax contacts

#### Coaxial, Type D

In this type, the coaxial is removable and fixed in place by clips. The conductor is soldered and the shield is crimped.

| Component           | Motorial             | Surface<br>Treatment |    |     |  |
|---------------------|----------------------|----------------------|----|-----|--|
| Component           | Material             | Cu                   | Ni | Au  |  |
| 1 Male Sleeve       | Brass (UNS C 38500)  | 0.5                  | 3  | 1.5 |  |
| 2 Insert            | PTFE (UNS D 1457-83) | -                    | -  | -   |  |
| 3 Male Contact      | Brass (UNS C 38500)  | 0.5                  | 3  | 1.5 |  |
| 4 Female Sleeve     | Bronze (UNS C 54400) | 0.5                  | 3  | 2.0 |  |
| 5 Insert            | PFTE (UNS D 1457-83) | -                    | -  | -   |  |
| 6 Female Contact    | Bronze (UNS C 54400) | 0.5                  | 3  | 2.5 |  |
| 7 Insulating Sleeve | PTFE (UNS D 1457-83) | -                    | -  | -   |  |
| 8 Crimp Nuts        | Brass (UNS C 38500)  | 0.5                  | 3  | 1.5 |  |
| 9 Crimp Ferrule     | Brass (UNS C 18700)  | 0.5                  | 3  | -   |  |
| 10 Clips            | Brass (UNS C 38500)  | -                    | -  | -   |  |

| Characteristics           | Unit | Сс<br>Тур       | bax<br>be A     | Coax<br>Type A1   | Со<br>Тур         | ax<br>e B         | Coax<br>Type C    | Coax<br>Type D |
|---------------------------|------|-----------------|-----------------|-------------------|-------------------|-------------------|-------------------|----------------|
| Impedance                 | Ω    | 50              | 75              | 50                | 50                | 75                | 50                | 75             |
| Test voltage at 50 Hz     | AC   | 1800            | 2300            | 800               | 800               | 2100              | 1600              | 1000           |
| Rated current             | Α    | 12              | 7               | 5                 | 11                | 6                 | 2                 | 5              |
| Insulating resistance     | Ω    | >1012           | >1012           | >10 <sup>12</sup> | >10 <sup>12</sup> | >10 <sup>12</sup> | >10 <sup>12</sup> | >1012          |
| Contact resistance        | mΩ   | 2.0             | 2.9             | 3.8               | 4.1               | 5.7               | 5.8               | 6              |
| Shell to shell resistance | mΩ   | 1.8             | 1.8             | 3                 | 3.2               | 3.2               | 3.7               | 3.2            |
| VSWR (f = GHz)            | -    | 1.01<br>+0.146f | 1.01<br>+0.019f | 1.01<br>+0.127f   | 1.06<br>+0.156f   | 1.00<br>+0.22f    | 1.04<br>+0.1f     | 1.00<br>+0.38f |





# Recommended coaxial and triaxial cable for mixed coax and multicoax connectors



1) The cable group number corrresponding to the chosen cable must be written in the variant position of the part number.



# Housings

|      |                               | Surface                    | treatment                           |      |                                                                                                                                              |
|------|-------------------------------|----------------------------|-------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Ref. | Material                      | Outer shell and collet nut | Latch sleeve<br>and grounding crown | Note |                                                                                                                                              |
| С    | Brass                         | chrome                     | nickel                              |      |                                                                                                                                              |
| Ν    | Brass                         | nickel                     | nickel                              | 0    |                                                                                                                                              |
| Κ    | Brass                         | black chrome               | nickel                              |      | Note: detailed characteristics of these materials and                                                                                        |
| S    | Stainless steel               | without treatment          | nickel-plated brass                 |      | treatments are presented on page 5.                                                                                                          |
| Т    | Stainless steel               | without treatment          | stainless steel                     | 0    | <sup>1</sup> ) The other metallic parts are in stainless steel.<br><sup>2</sup> ) The «variant» position of the reference is used to specify |
| U    | Stainless steel1)             | without treatment          | stainless steel                     | 0    | the anodized color. See color chart on page 81.                                                                                              |
| L    | Aluminium alloy <sup>2)</sup> | anodized                   | nickel-plated brass                 | 0    | <sup>3)</sup> Only available for elbow (90°) receptacles for printed circuit                                                                 |
| Н    | PPS <sup>3)</sup> /brass      | without treat./Ni          | nickel-plated brass                 |      | <sup>4)</sup> Only available for FGG and ENG models of the B series.                                                                         |
| G    | PEEK <sup>4)</sup>            | without treatment          | nickel-plated brass                 |      | <sup>5)</sup> Only for CFF and CRG bridge plugs.                                                                                             |
| Р    | PA.6 <sup>5)</sup>            | without treatment          | nickel-plated brass                 |      | For the color, see the «variant» position.                                                                                                   |
| Р    | PSU <sup>6)</sup>             | without treatment          | nickel-plated brass                 |      | <sup>7)</sup> Only available for ENY and FGY models of the B series.                                                                         |
| R    | PPSU <sup>7)</sup>            | without treatment          | nickel-plated brass                 |      | <sup>o)</sup> Anthracite color.                                                                                                              |
| Х    | Avional <sup>8)</sup>         | nickel                     | nickel-plated brass                 |      | First choice alternative O Special order alternative                                                                                         |

# Insulators

| Ref. | Material | Note |
|------|----------|------|
| L    | PEEK     | 1)   |
| Y    | PEEK     | 2)   |

Note: Detailed characteristics of these materials are presented on page 7.

- 1) For solder or printed circuit contacts.
- <sup>2)</sup> Only for crimp contacts. For the type 3B.309; 4B.304; 4B.307; 4B.320; 5B.304 and 5B.350, the reference shall be «L» instead of «Y».

# **Contacts**

| Ref. | Contact type          |   | Ref. | Contact type                        |
|------|-----------------------|---|------|-------------------------------------|
| А    | Male solder           | ] | М    | Female crimp (fig. 1) <sup>1)</sup> |
| С    | Male crimp (fig. 1)1) |   | Р    | Female crimp (fig. 2)1)             |
| В    | Male crimp (fig. 2)1) |   | U    | Female crimp (fig. 2)1)             |
| G    | Male crimp (fig. 2)1) |   | N    | Female straight printed circuit     |
| L    | Female solder         |   | V    | Female elbow printed circuit        |

#### Contacts for plugs, free or fixed receptacles

Note: 1) There are two forms of crimp barrels. Please consult adjacent table, and page 10 for contact selection .

#### Contacts for couplers, plug with receptacle and bridge plug



Note: The first contact type mentioned is always the one at the flange end.

#### **Dimension of crimp barrels**

|      | Conta | ct       | Ref. con | tact type |      | C    | onductor |                    |
|------|-------|----------|----------|-----------|------|------|----------|--------------------|
| øΑ   | øΟ    | Form     | Malo     | Fomalo    | AV   | VG   | Section  | (mm <sup>2</sup> ) |
| (mm) | (mm)  | per fig. | Male     | Temale    | min. | max. | min.     | max.               |
| 0.5  | 0.45  | 1        | С        | М         | 32   | 28   | 0.035    | 0.09               |
| 0.7  | 0.80  | 1        | С        | М         | 26   | 22   | 0.140    | 0.34               |
| 0.7  | 0.45  | 2        | В        | Р         | 32   | 28   | 0.035    | 0.09               |
|      | 1.10  | 1        | С        | М         | 24   | 20   | 0.250    | 0.50               |
| 0.9  | 0.80  | 2        | В        | Р         | 26   | 22   | 0.140    | 0.34               |
|      | 0.45  | 2        | G        | U         | 32   | 28   | 0.035    | 0.09               |
|      | 1.40  | 1        | С        | М         | 20   | 18   | 0.500    | 1.00               |
| 1.3  | 1.10  | 2        | В        | Р         | 24   | 20   | 0.250    | 0.50               |
|      | 0.80  | 2        | G        | U         | 26   | 22   | 0.140    | 0.34               |
| 1.6  | 1.90  | 1        | С        | М         | 18   | 14   | 1.000    | 1.50               |
| 1.0  | 1.40  | 2        | В        | Р         | 22   | 18   | 0.340    | 1.00               |
| 2.0  | 2.40  | 1        | С        | М         | 16   | 12   | 1.500    | 2.50               |
| 2.0  | 1.90  | 2        | В        | Р         | 18   | 14   | 1.000    | 1.50               |
| 3.0  | 2.90  | 1        | С        | М         | 14   | 10   | 2.500    | 4.00               |
| 4.0  | 4.00  | 1        | С        | М         | 12   | 10   | 4.000    | 6.00               |

• Standard, typically 0-6 weeks delivery for quantities of 250 or less.

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.



# • Collets

### C and K type collets

|    |               |           |             | 0           | $\bigcirc$  | G B          | V V                                               |                                                                                      |                                                |                   |
|----|---------------|-----------|-------------|-------------|-------------|--------------|---------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|-------------------|
|    | Refer<br>Type | ence<br>ø | Coll<br>ø A | et ø<br>ø B | Cab<br>max. | le ø<br>min. | Part number<br>of the collet system <sup>1)</sup> | Part number of the oversize collet and of the two split center-pieces <sup>2</sup> ) | Part number<br>of the collet nut <sup>2)</sup> | Avail-<br>ability |
|    | C             | 10        | 1.6         | _           | 1.2         | 1.0          | FFA.0F.710.CNS                                    |                                                                                      | FFA.0F.130.LC                                  | 0                 |
| 0K | C             | 15        | 1.6         | _           | 1.5         | 1.3          | FFA.0E.715.CNS                                    | _                                                                                    | FFA.0E.130.LC                                  | 0                 |
|    | С             | 20        | 2.1         | _           | 2.0         | 1.6          | FFA.0E.720.CNS                                    | _                                                                                    | FFA.0E.130.LC                                  | 0                 |
|    | С             | 25        | 3.1         | _           | 2.5         | 2.1          | FFA.0E.725.CNS                                    | _                                                                                    | FFA.0E.130.LC                                  | 0                 |
|    | С             | 30        | 3.1         | _           | 3.0         | 2.6          | FFA.0E.730.CNS                                    | _                                                                                    | FFA.0E.130.LC                                  | •                 |
|    | С             | 35        | 4.2         | 4.2         | 3.5         | 3.1          | FFA.0E.735.CNS                                    | _                                                                                    | FFA.0E.130.LC                                  | •                 |
|    | С             | 40        | 4.2         | 4.2         | 4.0         | 3.6          | FFA.0E.740.CNS                                    | _                                                                                    | FFA.0E.130.LC                                  | 0                 |
|    | С             | 45        | 5.2         | 5.2         | 4.5         | 4.1          | FFA.0E.745.CNS                                    | _                                                                                    | FFA.0E.131.LC                                  |                   |
|    | С             | 50        | 5.2         | 5.2         | 5.0         | 4.6          | FFA.0E.750.CNS                                    | _                                                                                    | FFA.0E.131.LC                                  |                   |
|    | С             | 15        | 1.6         | _           | 1.5         | 1.3          | FFA.1E.715.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  | 0                 |
| 1K | С             | 20        | 2.2         | _           | 2.0         | 1.6          | FFA.1E.720.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  | 0                 |
|    | С             | 25        | 3.2         | _           | 2.5         | 2.1          | FFA.1E.725.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  |                   |
|    | С             | 30        | 3.2         | _           | 3.0         | 2.6          | FFA.1E.730.CNS                                    | -                                                                                    | FFA.1E.130.LC                                  | •                 |
|    | С             | 35        | 4.2         | -           | 3.5         | 3.1          | FFA.1E.735.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  | 0                 |
|    | С             | 40        | 4.2         | -           | 4.0         | 3.6          | FFA.1E.740.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  |                   |
|    | С             | 45        | 5.2         | -           | 4.5         | 4.1          | FFA.1E.745.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  |                   |
|    | С             | 50        | 5.2         | -           | 5.0         | 4.6          | FFA.1E.750.CNS                                    | -                                                                                    | FFA.1E.130.LC                                  | •                 |
|    | С             | 55        | 6.2         | 6.2         | 5.5         | 5.1          | FFA.1E.755.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  | •                 |
|    | С             | 60        | 6.2         | 6.2         | 6.0         | 5.6          | FFA.1E.760.CNS                                    | -                                                                                    | FFA.1E.130.LC                                  | •                 |
|    | С             | 65        | 7.2         | 6.7         | 6.5         | 6.1          | FFA.1E.765.CNS                                    | _                                                                                    | FFA.1E.130.LC                                  | •                 |
|    | К             | 70        | 7.2         | _           | 7.0         | 6.6          | FFA.2E.770.CNS                                    | FFA.1K.137.LCN                                                                       | FFA.2E.130.LC <sup>2)</sup>                    | 0                 |
|    | К             | 75        | 8.2         | 8.2         | 7.5         | 7.1          | FFA.2E.775.CNS                                    | FFA.1K.137.LCN                                                                       | FFA.2E.130.LC <sup>2)</sup>                    | 0                 |
|    | K             | 80        | 8.2         | 8.2         | 8.0         | 7.6          | FFA.2E.780.CNS                                    | FFA.1K.137.LCN                                                                       | FFA.2E.130.LC <sup>2)</sup>                    | 0                 |
|    | К             | 85        | 9.2         | 8.6         | 8.5         | 8.1          | FFA.2E.785.CNS                                    | FFA.1K.137.LCN                                                                       | FFA.2E.130.LC <sup>2)</sup>                    | 0                 |
|    | C             | 15        | 2.2         | -           | 1.5         | 1.3          | FFA.2E.715.CNS                                    | _                                                                                    | FFA.2E.130.LC                                  | 0                 |
| 2K | C             | 20        | 2.2         | _           | 2.0         | 1.6          | FFA.2E.720.CNS                                    | _                                                                                    | FFA.2E.130.LC                                  | 0                 |
|    | C             | 25        | 3.2         | -           | 2.5         | 2.1          | FFA.2E.725.CNS                                    | -                                                                                    | FFA.2E.130.LC                                  | 0                 |
|    | 0             | 30        | 3.2         | _           | 3.0         | 2.6          | FFA.2E.730.CNS                                    | —                                                                                    | FFA.2E.130.LC                                  |                   |
|    | C             | 35        | 4.2         | _           | 3.5         | 3.1          | FFA.2E.735.CNS                                    |                                                                                      | FFA.2E.130.LC                                  | 0                 |
|    | C             | 40        | 4.2         |             | 4.0         | 3.0          | FFA.2E.740.0N3<br>FFA 2E 745 CNIS                 |                                                                                      | FFA.2E. 130.LC                                 |                   |
|    | 0             | 40<br>50  | 5.2         | _           | 4.5         | 4.1          | FFA 2E 750 CNS                                    |                                                                                      | FFA 2E 130 LC                                  |                   |
|    | C             | 55        | 6.2         |             | 5.5         | 4.0          | FFA 2E 755 CNS                                    |                                                                                      | FFA 2E 130 LC                                  |                   |
|    | 0             | 60        | 6.2         | _           | 6.0         | 5.6          | FFA 2E 760 CNS                                    |                                                                                      | FFA 2E 130 LC                                  |                   |
|    | C             | 65        | 7.2         | _           | 6.5         | 6.1          | FFA.2E.765.CNS                                    | _                                                                                    | FFA.2E.130.LC                                  | •                 |
|    | C             | 70        | 7.2         | _           | 7.0         | 6.6          | FFA.2E.770.CNS                                    |                                                                                      | FFA.2E.130.LC                                  | •                 |
|    | C             | 75        | 8.2         | 8.2         | 7.5         | 7.1          | FFA.2E.775.CNS                                    | _                                                                                    | FFA.2E.130.LC                                  | •                 |
|    | С             | 80        | 8.2         | 8.2         | 8.0         | 7.6          | FFA.2E.780.CNS                                    | _                                                                                    | FFA.2E.130.LC                                  | 0                 |
|    | С             | 85        | 9.2         | 8.6         | 8.5         | 8.1          | FFA.2E.785.CNS                                    | _                                                                                    | FFA.2E.130.LC                                  | 0                 |
|    | K             | 90        | 9.2         | _           | 9.0         | 8.6          | FFA.3E.790.CNS                                    | FFA.2K.137.LCN                                                                       | FFA.3E.130.LC 2)                               | 0                 |
|    | K             | 95        | 10.2        | 10.2        | 9.5         | 9.1          | FFA.3E.795.CNS                                    | FFA.2K.137.LCN                                                                       | FFA.3E.130.LC 2)                               | 0                 |
|    | К             | 10        | 10.2        | 10.2        | 10.0        | 9.6          | FFA.3E.710.CNS                                    | FFA.2K.137.LCN                                                                       | FFA.3E.130.LC 2)                               | 0                 |
|    | K             | 11        | 11.2        | 10.6        | 10.5        | 10.1         | FFA.3E.711.CNS                                    | FFA.2K.137.LCN                                                                       | FFA.3E.130.LC 2)                               | 0                 |

Note: <sup>1)</sup> For ordering the collet system separately. <sup>2)</sup> For ordering the K type collet, the oversize collet and the split center-pieces, as well as the corresponding collet nut should be ordered.

All dimensions are in millimeters.



#### C and K type collets

|   |    |       |       |      | 0     | $\bigcirc$ | B 0  | V V                                |                                            |                                 |                |
|---|----|-------|-------|------|-------|------------|------|------------------------------------|--------------------------------------------|---------------------------------|----------------|
|   |    | Refer | rence | Col  | let ø | Cable ø    |      | Dort number                        |                                            | Dort number                     | Avail-         |
|   |    | Туре  | ø     | ø A  | øΒ    | max.       | min. | of the collet system <sup>1)</sup> | and of the two split center-pieces $^{2)}$ | of the collet nut <sup>2)</sup> | ability        |
|   |    | С     | 30    | 3.2  | -     | 3.0        | 2.6  | FFA.3E.730.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   | 3K | С     | 35    | 4.2  | -     | 3.5        | 3.1  | FFA.3E.735.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 40    | 4.2  | -     | 4.0        | 3.6  | FFA.3E.740.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 45    | 5.2  | -     | 4.5        | 4.1  | FFA.3E.745.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 50    | 5.2  | -     | 5.0        | 4.6  | FFA.3E.750.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 55    | 6.2  | -     | 5.5        | 5.1  | FFA.3E.755.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 60    | 6.2  | -     | 6.0        | 5.6  | FFA.3E.760.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 65    | 7.2  | -     | 6.5        | 6.1  | FFA.3E.765.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 70    | 7.2  | -     | 7.0        | 6.6  | FFA.3E.770.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 75    | 8.2  | -     | 7.5        | 7.1  | FFA.3E.775.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 80    | 8.2  | -     | 8.0        | 7.6  | FFA.3E.780.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 85    | 9.2  | -     | 8.5        | 8.1  | FFA.3E.785.CNS                     | -                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 90    | 9.2  | -     | 9.0        | 8.6  | FFA.3E.790.CNS                     | _                                          | FFA.3E.130.LC                   |                |
|   |    | C     | 95    | 10.2 | 10.2  | 9.5        | 9.1  | FFA.3E.795.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | C     | 10    | 10.2 | 10.2  | 10.0       | 9.6  | FFA.3E.710.CNS                     | _                                          | FFA.3E.130.LC                   | 0              |
|   |    | С     | 11    | 11.2 | 10.6  | 10.5       | 10.1 | FFA.3E.711.CNS                     | -                                          | FFA.3E.130.LC                   | 0              |
|   |    | K     | 11    | 12.3 | -     | 12.0       | 10.6 | FFA.4E.711.CNS                     | FFA.3K.137.LCN                             | FFA.4E.130.LC <sup>2)</sup>     | 0              |
|   |    | K     | 12    | 13.8 | 13.8  | 12.8       | 12.1 | FFA.4E.712.CNS                     | FFA.3K.137.LCN                             | FFA.4E.130.LC <sup>2)</sup>     | 0              |
|   |    | K     | 13    | 13.8 | 13.8  | 13.5       | 12.9 | FFA.4E.713.CNS                     | FFA.3K.137.LCN                             | FFA.4E.130.LC <sup>2)</sup>     | 0              |
|   |    | K     | 14    | 15.3 | 15.3  | 14.0       | 13.6 | FFA.4E.714.CNS                     | FFA.3K.137.LCN                             | FFA.4E.130.LC <sup>2)</sup>     | 0              |
| _ |    | ĸ     | 15    | 15.3 | 15.3  | 15.0       | 14.1 | FFA.4E.715.CNS                     | FFA.3K.137.LCN                             | FFA.4E.130.LC <sup>2)</sup>     | 0              |
|   |    | C     | 50    | 6.3  | -     | 5.0        | 4.8  | FFA.4E.750.CNS                     | _                                          | FFA.4E.130.LC                   | 0              |
|   | 4K | C     | 55    | 6.3  | -     | 5.5        | 5.1  | FFA.4E.755.CNS                     | _                                          | FFA.4E.130.LC                   | 0              |
|   |    | C     | 60    | 6.3  | -     | 6.0        | 5.6  | FFA.4E.760.CNS                     | _                                          | FFA.4E.130.LC                   | 0              |
|   |    | C     | 65    | 7.3  | -     | 6.5        | 6.1  | FFA.4E.765.CNS                     | _                                          | FFA.4E.130.LC                   |                |
|   |    | 0     | 70    | 7.3  | _     | 7.0        | 6.6  | FFA.4E.770.CNS                     | -                                          | FFA.4E.130.LC                   |                |
|   |    |       | /5    | 8.3  | -     | 7.5        | 7.1  | FFA.4E.775.CNS                     |                                            | FFA.4E.130.LC                   |                |
|   |    |       | 80    | 0.3  | _     | 0.0        | 7.0  | FFA.4E.780.CNS                     |                                            | FFA.4E.130.LC                   |                |
|   |    | C     | 85    | 9.3  | _     | 8.5        | 8.1  | FFA.4E.785.CNS                     | —                                          | FFA.4E.130.LC                   | 0              |
|   |    |       | 90    | 9.3  |       | 9.0        | 0.0  | FFA.4E.790.CNS                     |                                            | FFA.4E.130.LC                   |                |
|   |    | C     | 10    | 10.0 |       | 10.5       | 9.1  | FFA 4E 710 CNS                     |                                            | FFA 4E 130 LC                   |                |
|   |    | 0     | 11    | 10.0 |       | 12.0       | 10.6 | FEA /E 711 CNS                     |                                            | FFA 4E 130 LC                   |                |
|   |    | C     | 12    | 12.0 | 13.8  | 12.0       | 10.0 | FFA 4E 712 CNS                     |                                            | FFA 4E 130 LC                   | 0              |
|   |    | C C   | 13    | 13.8 | 13.8  | 13.5       | 12.1 | FFA 4E 713 CNS                     | _                                          | FFA 4F 130 LC                   | 0              |
|   |    | C C   | 14    | 15.3 | 15.3  | 14.0       | 13.6 | FFA 4E 714 CNS                     |                                            | FFA 4F 130 LC                   |                |
|   |    | C     | 15    | 15.3 | 15.3  | 15.0       | 14.1 | FFA 4E 715 CNS                     |                                            | FFA 4F 130 L C                  |                |
|   |    | ĸ     | 16    | 17.8 | -     | 16.5       | 15.6 | FFA 4K 716 CNS                     | EFA 4K 137 L CN <sup>3</sup> )             | FFA 4K 136   C <sup>2</sup>     | 0              |
|   |    | ĸ     | 17    | 17.8 | _     | 17.5       | 16.6 | FFA.4K.717.CNS                     | FFA.4K.137.LCN <sup>3</sup>                | FFA.4K.136.LC <sup>2</sup>      | 0              |
|   |    | ĸ     | 18    | 19.8 | _     | 18.5       | 17.6 | FFA.4K.718.CNS                     | FFA.4K.137.LCN <sup>3</sup>                | FFA.4K.136.LC <sup>2</sup>      |                |
|   |    | K     | 19    | 19.8 | _     | 19.5       | 18.6 | FFA.4K.719 CNS                     | FFA.4K.137.1 CN <sup>3)</sup>              | FFA.4K.136.LC <sup>2)</sup>     | $\int_{0}^{1}$ |
|   |    | K     | 20    | 21.8 | _     | 20.5       | 19.6 | FFA.4K.720.CNS                     | FFA.4K.137.LCN <sup>3)</sup>               | FFA.4K.136.LC <sup>2)</sup>     | 0              |
|   |    | K     | 21    | 21.8 | _     | 21.5       | 20.6 | FFA.4K.721.CNS                     | FFA.4K.137.LCN <sup>3)</sup>               | FFA.4K.136.LC <sup>2)</sup>     | Ō              |
|   |    | K     | 22    | 23.8 | 23.8  | 22.5       | 21.6 | FFA.4K.722.CNS                     | FFA.4K.137.LCN <sup>3)</sup>               | FFA.4K.136.LC <sup>2)</sup>     | Ō              |
|   |    | К     | 23    | 23.8 | 23.8  | 23.5       | 22.6 | FFA.4K.723.CNS                     | FFA.4K.137.LCN <sup>3)</sup>               | FFA.4K.136.LC 2)                | 0              |

Note:
<sup>1)</sup> For ordering the collet system separately.
<sup>2)</sup> For ordering the K type collet, the oversize collet and the split center-pieces, as well as the corresponding collet nut should be ordered.
<sup>3)</sup> In 4K series, the center-piece is made of one piece.

All dimensions are in millimeters.



#### C type collets

|           |       |       | Ć    | 0    |      | Ø B ( |                                    |                   |         |
|-----------|-------|-------|------|------|------|-------|------------------------------------|-------------------|---------|
|           | Refer | rence | Coll | et ø | Cab  | le ø  | Part number                        | Part number       | Avail-  |
|           | Туре  | Ø     | ø A  | øВ   | max. | min.  | of the collet system <sup>1)</sup> | of the collet nut | ability |
|           | С     | 10    | 11.8 | -    | 10.5 | 9.6   | FFA.5K.710.CNS                     | FFA.5K.130.LC     | 0       |
| <b>5K</b> | С     | 11    | 11.8 | -    | 11.5 | 10.6  | FFA.5K.711.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 12    | 13.8 | -    | 12.5 | 11.6  | FFA.5K.712.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 13    | 13.8 | -    | 13.5 | 12.6  | FFA.5K.713.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 14    | 15.8 | -    | 14.5 | 13.6  | FFA.5K.714.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 15    | 15.8 | -    | 15.5 | 14.6  | FFA.5K.715.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 16    | 17.8 | -    | 16.5 | 15.6  | FFA.5K.716.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 17    | 17.8 | -    | 17.5 | 16.6  | FFA.5K.717.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 18    | 19.8 | -    | 18.5 | 17.6  | FFA.5K.718.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 19    | 19.8 | -    | 19.5 | 18.6  | FFA.5K.719.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 20    | 21.8 | -    | 20.5 | 19.6  | FFA.5K.720.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 21    | 21.8 | _    | 21.5 | 20.6  | FFA.5K.721.CNS                     | FFA.5K.130.LC     | 0       |
|           | C     | 22    | 23.8 | 23.8 | 22.5 | 21.6  | FFA.5K.722.CNS                     | FFA.5K.130.LC     | 0       |
|           | С     | 23    | 23.8 | 23.8 | 23.5 | 22.6  | FFA.5K.723.CNS                     | FFA.5K.130.LC     |         |

**Note:** <sup>1)</sup> For ordering the collet system separately.

#### Bend relief collet nut and bend relief

|           | Refe | rence    | Part number of the collet nut | Bend relief to be used <sup>1)</sup> |
|-----------|------|----------|-------------------------------|--------------------------------------|
|           | Туре | Ø        |                               |                                      |
| 0K        | С    | 10 to 50 | FFM.0E.130.LC                 | GMA.0B                               |
| 112       | С    | 15 to 65 | FFM.1E.130.LC                 | GMA.1B                               |
| IN        | K    | 70 to 85 | FFM.2E.130.LC                 | GMA.2B                               |
| 01/       | С    | 15 to 85 | FFM.2E.130.LC                 | GMA.2B                               |
| 2N        | K    | 90 to 10 | FFM.3E.130.LC                 | GMA.3B                               |
| 01/       | С    | 30 to 10 | FFM.3E.130.LC                 | GMA.3B                               |
| JN        | K    | 11 to 15 | FFM.4E.130.LC                 | GMA.4B                               |
| <b>4K</b> | С    | 50 to 15 | FFM.4E.130.LC                 | GMA.4B                               |

Note: 1) The bend relief is to be ordered separately (see pages 91 and 92).

All dimensions are in millimeters.







# • E Series Connectors





# • E Series Connectors

E series connectors have been specifically designed for outdoor applications. They include an inner sleeve and two seals to prevent penetration of solids or liquids into the housing formed by the plug, free receptacle, fixed receptacle or coupler. All models of these series are watertight when mated and give a protection index of IP 68 as per IEC 60529 standard (in mated condition) when correctly assembled to an appropriate cable (IP 66 otherwise).

- security of the Push-Pull latching system
- watertight connection (IP 68/IP 66)
- single contact types transmitting current up to 230 A and multicontact types with up to 106 contacts
- hybrid types (multicontact, high voltage, low voltage, coaxial)
- solder or printed circuit contacts (straight or elbow)
- polarization by stepped insert (half-moon) fitted with male and female contacts
- wide range of models satisfying most applications
- 360° screening for full EMC shielding
- rugged housing for extreme working conditions.

#### Interconnections



### **Model Description**

- EBR Fixed receptacle with round flange, watertight, protruding shell and screw fixing
- **EEP** Fixed receptacle, nut fixing
- (back panel mounting)
- EEP Fixed receptacle, nut fixing, with elbow (90°) contacts for printed circuit (back panel mounting)
- **EEP** Fixed receptacle, nut fixing, with straight contacts for printed circuit (back panel mauring)
- (back panel mounting) EHP Fixed receptacle, nut fixing,
- protruding shell
- **ERA** Fixed receptacle, nut fixing
- ERB Fixed receptacle, nut fixing with two flats in the flange

- **ERC** Fixed receptacle, nut fixing with slot in the flange
- FAA Fixed plug non-latching, nut fixing
- FFA Straight plug, cable collet
- **FFA** Straight plug with oversize cable collet **FFA** Straight plug, cable collet and nut
- for fitting a bend relief
- FFF Straight plug non-latching, cable collet FFP Straight plug, cable collet
- and inner anti-rotating device
- **FLA** Elbow (90°) plug, cable collet **FZP** Straight plug for remote handling,
- cable collet and inner anti-rotating device HGP Fixed receptacle, nut fixing,
- watertight or vacuum-tight
- PCA Free receptacle, cable collet

- PCA Free receptacle with oversize cable collet
- PCA Free receptacle, cable collet
- and nut for fitting a bend relief **PCP** Free receptacle, cable collet
- and inner anti-rotating device
- PSA Fixed receptacle, nut fixing, cable collet
- **PSP** Fixed receptacle, nut fixing, cable
- and inner anti-rotating device
- RMA Free coupler
- SWH Fixed coupler, nut fixing, watertight or vacuum-tight



# Part Section Showing Internal Components



# **Technical Characteristics**

#### **Mechanical and Climatic**

| Characteristics                    | Value            | Standard             |
|------------------------------------|------------------|----------------------|
| Endurance                          | > 5000 cycles    | IEC 60512-5 test 9a  |
| Humidity                           | up to 9          | 5% at 140° F         |
| Temperature range <sup>1) 2)</sup> | -58°             | F, +392° F           |
| Resistance to vibrations           | 10-2000 Hz, 15 g | IEC 60512-4 test 6d  |
| Shock resistance                   | 100 g, 6 ms      | IEC 60512-4 test 6c  |
| Salt spray corrosion test          | > 144h           | IEC 60512-6 test 11f |
| Protection index (mated)           | IP 68/IP 66      | IEC 60529            |
| Climatic category <sup>1)</sup>    | 50/175/21        | IEC 60068-1          |

### Available Models (series and types)

| Madal             |    | Sir | ngle | cont | act |    |    |    | Mul | ticor | tact |    |    |
|-------------------|----|-----|------|------|-----|----|----|----|-----|-------|------|----|----|
| Model             | 0E | 1E  | 2E   | 3E   | 4E  | 5E | 0E | 1E | 2E  | 3E    | 4E   | 5E | 6E |
| EBR               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| EEP               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| EEP <sup>1)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| EGG <sup>5)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| EHP               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| ERA               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| ERB               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| ERC               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FAA               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FFA               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FFA <sup>2)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FFA <sup>3)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FFF               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FFP               |    |     |      |      |     |    |    |    |     |       |      |    |    |

#### Note:

RMA and SWH models are not available in all types. Please consult pages corresponding to the models.
 1) with elbow (90°) printed circuit contacts
 2) with oversize cable collet
 3) with cable collet and nut for fitting a bend relief
 4) with cable collet and nut for fitting a bend relief

4) with key (6E series)

5) with key (G)

e available models by series and types

#### Electrical

| Characteri | stics     | Value   | Standard      |
|------------|-----------|---------|---------------|
| Shielding  | at 10 MHz | > 95 dB | IEC 60169-1-3 |
| efficiency | at 1 GHz  | > 80 dB | IEC 60169-1-3 |

Note: The various tests have been carried out with FFA and ERA connector pairs, with chrome-plated brass shell, PEEK insulator and silicone O-ring. Detailed electrical characteristics, as well as materials and treatment are presented in the chapter Technical Characteristics on

and not incurrent progenetics of the page 5.
 <sup>1)</sup> For watertight or vacuum-tight models see page 53.
 <sup>2)</sup> Minimum operating temperature is -4° F for receptacles fitted with an FPM (Viton) O-ring.

| Madal             |    | Sir | ngle | cont | act |    |    |    | Mul | ticor | tact |    |    |
|-------------------|----|-----|------|------|-----|----|----|----|-----|-------|------|----|----|
| Iviodei           | 0E | 1E  | 2E   | 3E   | 4E  | 5E | 0E | 1E | 2E  | 3E    | 4E   | 5E | 6E |
| FGG <sup>5)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FLA               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| FZP               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| HGP <sup>4)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PCA               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PCA <sup>2)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PCA <sup>3)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PCP               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PHG <sup>5)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PKG <sup>5)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PSA               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| PSP               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| RMA               |    |     |      |      |     |    |    |    |     |       |      |    |    |
| SWH <sup>4)</sup> |    |     |      |      |     |    |    |    |     |       |      |    |    |



# Part Number Example

Straight plug with cable collet



**FFA.1E.304.CLAC35** = straight plug with cable collet, 1E series, multicontact type with four contacts, chrome-plated brass shell and PEEK insulator, male solder contacts, C type collet for a 3.5 mm diameter cable.



ERA.0E.302.CLL = fixed receptacle, nut fixing, 0E series, multicontact type with two contacts, chrome-plated outer shell, PEEK insulator, female solder contacts.

# Straight coupler



RMA.4E.324.CLL = straight coupler, 4E series, multicontact type with 24 contacts, chrome-plated brass outer shell PEEK insulator, 12 female and 12 male contacts each end.

For the plug and receptacle that should be fitted with an FPM (Viton) O-ring the letter «H» shall be indicated.

Note: 1) The «Variant» position of the part number is used to specify either the presence of a nut for fitting a bend relief, or the anodized color of the aluminium housings.

For models with collet nut for fitting a bend relief, a «Z» should be indicated and a bend relief can be ordered separately as indicated in the «Accessories» section. An order for a connector with bend relief should thus include two part numbers.

For the various housings available in colors, the corresponding letter in the part number for the color is indicated on page 81. For the watertight models of receptacle, the letter «P» is used; for the vacuum-tight models of receptacle the letters «PV» shall be indicated.



# Models













### FFA Straight plug, cable collet

| Refe              | rence  | Di | Dimensions (mm) |      |    |         |  |  |
|-------------------|--------|----|-----------------|------|----|---------|--|--|
| Model             | Series | А  | L               | М    | S2 | ability |  |  |
| FFA               | 0E     | 11 | 34              | 23.0 | 8  | •       |  |  |
| FFA               | 1E     | 13 | 42              | 28.0 | 9  | •       |  |  |
| FFA               | 2E     | 16 | 52              | 36.0 | 12 | •       |  |  |
| FFA               | 3E     | 19 | 61              | 41.0 | 15 | •       |  |  |
| FFA               | 4E     | 25 | 71              | 50.5 | 19 | 0       |  |  |
| FFA               | 5E     | 38 | 92              | 67.0 | 32 | 0       |  |  |
| FGG <sup>1)</sup> | 6E     | 47 | 118             | 89.0 | 38 | 0       |  |  |

Note: 1) With key (G)

### FFA Straight plug with oversize cable collet

| Refe  | rence  |    | Dimensions (mm) |     |    |    |    |         |
|-------|--------|----|-----------------|-----|----|----|----|---------|
| Model | Series | А  | В               | L   | М  | S1 | S2 | ability |
| FFA   | 1E     | 13 | 14.5            | 55  | 41 | 12 | 12 | 0       |
| FFA   | 2E     | 16 | 17.0            | 65  | 49 | 15 | 15 | 0       |
| FFA   | 3E     | 19 | 22.0            | 80  | 60 | 19 | 19 | 0       |
| FFA   | 4E     | 25 | 36.0            | 105 | 84 | 30 | 32 | 0       |

Note: The fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up.

#### Straight plug, cable collet and nut for fitting a bend relief FFA

| Refe  | Dir    | Dimensions (mm) |    |      |    |         |  |
|-------|--------|-----------------|----|------|----|---------|--|
| Model | Series | А               | L  | М    | S2 | ability |  |
| FFA   | 0E     | 11              | 34 | 23.0 | 7  |         |  |
| FFA   | 1E     | 13              | 42 | 28.0 | 9  | •       |  |
| FFA   | 2E     | 16              | 52 | 36.0 | 12 | •       |  |
| FFA   | 3E     | 19              | 60 | 40.0 | 15 | •       |  |
| FFA   | 4E     | 25              | 71 | 50.5 | 19 | 0       |  |

Note: The bend relief must be ordered separately (see page 91).

#### FFF Straight plug non-latching, cable collet

| Refe   | rence  | Di | Dimensions (mm) |    |    |         |  |  |
|--------|--------|----|-----------------|----|----|---------|--|--|
| Model  | Series | Α  | L               | М  | S2 | ability |  |  |
| FFF 0E |        | 11 | 34              | 23 | 8  | 0       |  |  |
| FFF    | 1E     | 13 | 42              | 28 | 9  | 0       |  |  |





#### FFP Straight plug, cable collet and inner anti-rotating device

| Refe  | rence  | Dir | Dimensions (mm) |      |    |         |  |  |
|-------|--------|-----|-----------------|------|----|---------|--|--|
| Model | Series | Α   | L               | М    | S2 | ability |  |  |
| FFP   | 3E     | 19  | 61              | 41.0 | 15 | 0       |  |  |
| FFP   | 4E     | 25  | 71              | 50.5 | 19 | 0       |  |  |



#### Straight plug for remote handling, cable collet and inner anti-rotating device FZP

| Refe  | rence  |    | Dimensions (mm) |      |      |    |    |         |  |  |
|-------|--------|----|-----------------|------|------|----|----|---------|--|--|
| Model | Series | Α  | L               | М    | Ν    | S1 | S2 | ability |  |  |
| FZP   | 1E     | 20 | 42              | 28.0 | 15.0 | 15 | 9  | 0       |  |  |
| FZP   | 2E     | 22 | 52              | 36.0 | 16.0 | 16 | 12 | 0       |  |  |
| FZP   | 3E     | 23 | 61              | 41.0 | 20.0 | 19 | 15 | 0       |  |  |
| FZP   | 4E     | 32 | 71              | 50.5 | 29.0 | 25 | 19 | 0       |  |  |
| FZP   | 5E     | 44 | 92              | 67.0 | 39.5 | 36 | 32 | 0       |  |  |

#### FAA Fixed plug non-latching, nut fixing

| Refe  | rence  |    |      |         | Dime | ensior | ns (mr | n)   |      |    | Avail-  |
|-------|--------|----|------|---------|------|--------|--------|------|------|----|---------|
| Model | Series | Α  | В    | е       | Е    | L      | L1)    | М    | S1   | S3 | ability |
| FAA   | 0E     | 18 | 19.5 | M14x1.0 | 3.5  | 19.5   | 19.5   | 13.0 | 12.5 | 17 | 0       |
| FAA   | 1E     | 20 | 21.5 | M16x1.0 | 3.5  | 23.0   | 23.0   | 16.0 | 14.5 | 19 | 0       |
| FAA   | 2E     | 25 | 27.5 | M20x1.0 | 4.0  | 27.0   | 27.0   | 18.0 | 18.5 | 24 | 0       |
| FAA   | 3E     | 31 | 34.5 | M24x1.0 | 4.5  | 32.5   | 32.5   | 22.5 | 22.5 | 30 | 0       |

Panel cut-out: P1

Note: 1) Single contact model

### FLA Elbow (90°) plug, cable collet

| Refe  | rence  |      |      |    | Dimer | nsions | (mm) |    |    | Avail-  |
|-------|--------|------|------|----|-------|--------|------|----|----|---------|
| Model | Series | А    | D    | Н  | L     | М      | S1   | S2 | S3 | ability |
| FLA   | 0E     | 11.5 | 7.6  | 27 | 36    | 25.0   | 10   | 8  | 8  | 0       |
| FLA   | 1E     | 14.0 | 8.8  | 33 | 43    | 29.0   | 12   | 9  | 10 | 0       |
| FLA   | 2E     | 17.5 | 10.5 | 40 | 51    | 35.0   | 15   | 12 | 13 | 0       |
| FLA   | 3E     | 21.0 | 11.5 | 47 | 60    | 40.0   | 18   | 15 | 15 | 0       |
| FLA   | 4E     | 27.5 | 15.5 | 57 | 72    | 51.5   | 24   | 19 | 20 | 0       |









L maxi

Μ

S 1

S 3

E maxi

#### ERA Fixed receptacle, nut fixing

| Refe              | rence  |    |      |         | Din  | nensio | ons (m          | nm)  |      |    | Avail-  |
|-------------------|--------|----|------|---------|------|--------|-----------------|------|------|----|---------|
| Model             | Series | А  | В    | е       | Е    | L      | L <sup>1)</sup> | М    | S1   | S3 | ability |
| ERA               | 0E     | 18 | 19.5 | M14x1.0 | 7.0  | 19.5   | 20.5            | 4.0  | 12.5 | 17 | 0       |
| ERA               | 1E     | 20 | 21.5 | M16x1.0 | 9.0  | 24.0   | 25.3            | 4.5  | 14.5 | 19 | 0       |
| ERA               | 2E     | 25 | 27.5 | M20x1.0 | 9.0  | 28.5   | 30.0            | 5.0  | 18.5 | 24 | 0       |
| ERA               | 3E     | 31 | 34.5 | M24x1.0 | 11.0 | 34.0   | 35.0            | 6.0  | 22.5 | 30 | 0       |
| ERA               | 4E     | 37 | 40.5 | M30x1.0 | 9.0  | 36.0   | 38.0            | 6.5  | 28.5 | 36 | 0       |
| ERA               | 5E     | 55 | 54.0 | M45x1.5 | 10.0 | 44.5   | 78.0            | 9.0  | 42.5 | -  | 0       |
| EGG <sup>2)</sup> | 6E     | 65 | 65.0 | M55x2.0 | 10.5 | 48.5   | -               | 10.0 | 52.0 | -  | 0       |

Panel cut-out: P1

Note: 1) Single contact model

Note: 2) With key (G). The 5E and 6E series are delivered with a round nut.

#### ERC Fixed receptacle, nut fixing with slot in the flange

| Refe  | rence  | Dimensions (mm) |      |         |    |     |      |                 | Avail- |      |    |         |
|-------|--------|-----------------|------|---------|----|-----|------|-----------------|--------|------|----|---------|
| Model | Series | Α               | В    | е       | Е  | F   | L    | L <sup>1)</sup> | М      | S1   | S3 | ability |
| ERC   | 0E     | 18              | 19.5 | M14x1.0 | 7  | 1.5 | 19.5 | 20.5            | 4.0    | 12.5 | 17 | 0       |
| ERC   | 3E     | 31              | 34.5 | M24x1.0 | 11 | 3.0 | 34.0 | 35.0            | 6.0    | 22.5 | 30 | 0       |
| ERC   | 4E     | 37              | 41.5 | M30x1.0 | 9  | 3.0 | 36.0 | 38.0            | 6.5    | 28.5 | 36 | 0       |

Panel cut-out: P1

Note: 1) Single contact model.



# **ERB** Fixed receptacle, nut fixing with two flats in the flange

| Refe  | rence  |    |      |         | D  | imens | sions           | (mm) |      |    |    | Avail-  |
|-------|--------|----|------|---------|----|-------|-----------------|------|------|----|----|---------|
| Model | Series | А  | В    | е       | Е  | L     | L <sup>1)</sup> | М    | S1   | S3 | S4 | ability |
| ERB   | 0E     | 18 | 19.5 | M14x1.0 | 7  | 19.5  | 20.5            | 4.0  | 12.5 | 17 | 14 | 0       |
| ERB   | 1E     | 20 | 21.5 | M16x1.0 | 9  | 24.0  | 25.3            | 4.5  | 14.5 | 19 | 17 | 0       |
| ERB   | 2E     | 25 | 27.5 | M20x1.0 | 9  | 28.5  | 30.0            | 5.0  | 18.5 | 24 | 20 | 0       |
| ERB   | 3E     | 31 | 34.5 | M24x1.0 | 11 | 34.0  | 35.0            | 6.0  | 22.5 | 30 | 24 | 0       |

Panel cut-out: P1

Note: 1) Single contact model.

#### EEP Fixed receptacle, nut fixing (back panel mounting)

| Refe  | rence  |    |    |         | Dim | ensio | ns (m           | m)  |    |      | Avail-  |
|-------|--------|----|----|---------|-----|-------|-----------------|-----|----|------|---------|
| Model | Series | А  | В  | е       | Е   | L     | L <sup>1)</sup> | М   | Р  | S1   | ability |
| EEP   | 0E     | 18 | 18 | M14x1.0 | 3.4 | 19.5  | 20.5            | 3.5 | 7  | 12.5 | 0       |
| EEP   | 1E     | 20 | 20 | M16x1.0 | 6.5 | 24.0  | 25.3            | 3.5 | 10 | 14.5 | 0       |
| EEP   | 2E     | 25 | 25 | M20x1.0 | 5.0 | 28.5  | 30.0            | 3.5 | 10 | 18.5 | 0       |
| EEP   | 3E     | 30 | 31 | M24x1.0 | 7.0 | 34.0  | 35.0            | 4.5 | 12 | 22.5 | 0       |

Panel cut-out: P1

Note: 1) Single contact model.

Note: The 3E series is delivered with a conical nut.



Standard, typically 0-6 weeks delivery for quantities of 250 or less.
 Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.

Data Subject to Change 49





#### EEP Fixed receptacle, nut fixing, with straight contact for printed circuit (back panel mounting)

| Refe       | rence   |    |    | C       | imen | sions | (mm)    |       |        | Avail-  |
|------------|---------|----|----|---------|------|-------|---------|-------|--------|---------|
| Model      | Series  | А  | В  | е       | Е    | М     | Ν       | Ρ     | S1     | ability |
| EEP        | 0E      | 18 | 18 | M14x1.0 | 3.4  | 3.5   | 18.4    | 7     | 12.5   | 0       |
| EEP        | 1E      | 20 | 20 | M16x1.0 | 6.2  | 3.5   | 23.5    | 10    | 14.5   | 0       |
| EEP        | 2E      | 25 | 25 | M20x1.0 | 5.0  | 3.5   | 25.5    | 10    | 18.5   | 0       |
| EEP        | 3E      | 30 | 31 | M24x1.0 | 7.0  | 4.5   | 30.5    | 12    | 22.5   | 0       |
| Panel cut- | out: P1 |    |    |         |      | PCB   | drillin | g pat | ttern: | P21     |

**Note:** This contact type is available for all Eee receptacle models. See page 109 for table of available types. Length «L» depends on the number of contacts, see PCB drilling pattern on page 109. The 3E series is delivered with a conical nut.

Fixed receptacle, nut fixing, with elbow (90°) EEP contacts for printed circuit



(back panel mounting)

| Refe      | rence  |    | Dimensions (mm) |         |   |     |            |    |      |         |
|-----------|--------|----|-----------------|---------|---|-----|------------|----|------|---------|
| Model     | Series | Α  | В               | е       | Е | М   | Ν          | Ρ  | S1   | ability |
| EEP       | 2E     | 25 | 25              | M20x1.0 | 5 | 3.5 | 24.5       | 10 | 18.5 | 0       |
| Danal aut |        |    |                 |         |   |     | مانالاندام |    |      | Do 4    |

Panel cut-out: P1

PCB drilling pattern: **P24** 

**Note:** This contact type is available for all back panel mounting receptacle types. See page 110 for available types. Length «L» depends on the number of contacts, see PCB drilling pattern on page 110.

### EHP Fixed receptacle, nut fixing, protruding shell

| Refe  | rence  |    | Dimensions (mm) |         |     |      |      |      | Avail- |    |         |
|-------|--------|----|-----------------|---------|-----|------|------|------|--------|----|---------|
| Model | Series | А  | В               | е       | Е   | L    | L1)  | М    | S3     | S4 | ability |
| EHP   | 0E     | 18 | 19.5            | M14x1.0 | 1.5 | 19.5 | 20.5 | 10.5 | 17     | 15 | 0       |
| EHP   | 1E     | 20 | 21.5            | M16x1.0 | 1.5 | 24.0 | 25.3 | 15.5 | 19     | 17 | 0       |
| EHP   | 2E     | 25 | 27.5            | M20x1.0 | 2.0 | 28.5 | 30.0 | 17.0 | 24     | 20 | 0       |

Panel cut-out: P1

Note: 1) Single contact model.

#### PCA Free receptacle, cable collet

| Refe              | rence  | Dimer | nsions | (mm) | Avail-  |
|-------------------|--------|-------|--------|------|---------|
| Model             | Series | А     | L      | S2   | ability |
| PCA               | 0E     | 13    | 34.0   | 8    | 0       |
| PCA               | 1E     | 15    | 45.0   | 9    | 0       |
| PCA               | 2E     | 19    | 54.0   | 12   | 0       |
| PCA               | 3E     | 23    | 65.0   | 15   | 0       |
| PCA               | 4E     | 29    | 75.5   | 19   | 0       |
| PCA               | 5E     | 42    | 95.0   | 32   | 0       |
| PHG <sup>1)</sup> | 6E     | 52    | 125.0  | 38   | 0       |

Note: 1) With key (G).



S 3

E maxi \S 4









| Refe  | rence  |    | D    | imensi | ons (n | חm) | Avail-  |
|-------|--------|----|------|--------|--------|-----|---------|
| Model | Series | A  | В    | L      | S1     | S2  | ability |
| PCA   | 1E     | 15 | 14.5 | 58.0   | 12     | 12  | 0       |
| PCA   | 2E     | 19 | 17.0 | 67.0   | 15     | 15  | 0       |
| PCA   | 3E     | 23 | 22.0 | 84.0   | 19     | 19  | 0       |
| PCA   | 4E     | 29 | 36.0 | 109.0  | 30     | 32  | 0       |

Note: The fitting of oversize collets onto this model allows them to be fitted to the cables that can be accommodated by the next housing size up.



| Refe  | rence  | Dimer | nsions | (mm) | Avail-  |
|-------|--------|-------|--------|------|---------|
| Model | Series | А     | L      | S2   | ability |
| PCA   | 0E     | 13    | 34.0   | 7    | 0       |
| PCA   | 1E     | 15    | 45.0   | 9    | 0       |
| PCA   | 2E     | 19    | 54.0   | 12   | 0       |
| PCA   | 3E     | 23    | 64.0   | 15   | 0       |
| PCA   | 4E     | 29    | 75.5   | 19   | 0       |

Note: The bend relief must be ordered separately (see page 91).



<u>S 2</u>

# PCP Free receptacle, cable collet and inner anti-rotating device

| Re    | fe | rence  | Dimer | nsions | (mm) | Avail-  |
|-------|----|--------|-------|--------|------|---------|
| Model |    | Series | Α     | L      | S2   | ability |
| PCP   |    | 3E     | 23    | 65.0   | 15   | 0       |
| PCP   |    | 4E     | 29    | 75.5   | 19   | 0       |





#### **PSA** Fixed receptacle, nut fixing, cable collet

| Refe              | rence  |    | Dimensions (mm) |         |      |       |      |      |    |    |         |  |
|-------------------|--------|----|-----------------|---------|------|-------|------|------|----|----|---------|--|
| Model             | Series | A  | В               | е       | Е    | L     | М    | S1   | S2 | S3 | ability |  |
| PSA               | 0E     | 18 | 19.5            | M14x1.0 | 7.0  | 34.0  | 4.0  | 12.5 | 8  | 17 | 0       |  |
| PSA               | 1E     | 20 | 21.5            | M16x1.0 | 9.0  | 45.0  | 4.5  | 14.5 | 9  | 19 | 0       |  |
| PSA               | 2E     | 25 | 27.5            | M20x1.0 | 9.0  | 54.0  | 5.0  | 18.5 | 12 | 24 | 0       |  |
| PSA               | 3E     | 31 | 34.5            | M24x1.0 | 11.0 | 65.0  | 6.0  | 22.5 | 15 | 30 | 0       |  |
| PSA               | 4E     | 37 | 40.5            | M30x1.5 | 9.0  | 75.5  | 6.5  | 28.5 | 19 | 36 | 0       |  |
| PSA               | 5E     | 51 | 54.0            | M45x1.5 | 10.0 | 95.0  | 9.0  | -    | 32 | 54 | 0       |  |
| PKG <sup>1)</sup> | 6E     | 65 | 65.0            | M55x2.0 | 10.5 | 125.0 | 10.0 | -    | 38 | -  | 0       |  |

Panel cut-out: P1

**Note:** 1) With key (G). The 5E and 6E series are delivered with a round nut.

#### PSP Fixed receptacle, nut fixing, cable collet and inner anti-rotating device

| Refe  | rence  | Dimensions (mm) |      |         |      |      |     |      |    |                      | Avail- |  |  |
|-------|--------|-----------------|------|---------|------|------|-----|------|----|----------------------|--------|--|--|
| Model | Series | А               | В    | е       | Е    | L    | М   | S1   | S2 | 2 S3 <sup>abil</sup> |        |  |  |
| PSP   | 3E     | 31              | 34.5 | M24x1.0 | 11.0 | 65.0 | 6.0 | 22.5 | 15 | 30                   | 0      |  |  |
| PSP   | 4E     | 37              | 41.5 | M30x1.5 | 9.0  | 75.5 | 6.5 | 28.5 | 19 | 36                   | 0      |  |  |
| PSP   | 5E     | 51              | 54.0 | M45x1.5 | 10.0 | 95.0 | 9.0 | -    | 32 | 54                   | 0      |  |  |

Panel cut-out: P1

Note: The 5E series are delivered with a round nut.

#### **RMA** Free coupler

| Refe  | rence  | Dim. | (mm) | Avail-  |
|-------|--------|------|------|---------|
| Model | Series | A    | L    | ability |
| RMA   | 0E     | 14   | 30   | 0       |
| RMA   | 1E     | 16   | 40   | 0       |
| RMA   | 2E     | 20   | 44   | 0       |
| RMA   | 3E     | 25   | 54   | 0       |
| RMA   | 4E     | 30   | 57   | 0       |
| RMA   | 5E     | 44   | 67   | 0       |

Note: See page 77 for the available plug and contact configurations and in order to ensure correct contact alignment.



X

S 2



E maxi

\S 1



### Watertight or vacuum-tight models

HGP, EBR and SWH receptacle or coupler models allow the device on which they are fitted to reach a protection index of IP 68 as per IEC 60529. They are fully compatible with plugs of the same series and are widely used for portable radios, military, laboratory equipment, aviation, etc. These models are identified by a letter «P» at the end of the reference.

Most of these models are also available in a vacuum-tight version. Such models are identified by an additional letter «V» at the end of the part number (certificate on request).

L maxi

Μ

S 3

Epoxy resin is used to seal these models.

| Part number example:    |                    |
|-------------------------|--------------------|
| Watertight receptacle   | – HGP.1E.304.CLLP  |
| Vacuum-tight receptacle | - HGP.1E.304.CLLPV |

# **Technical Characteristics**

### Mechanical and Climatic

| Characteristics         | ;   | Value                                     | Standard             |
|-------------------------|-----|-------------------------------------------|----------------------|
| Endurance               |     | > 5000 cycles                             | IEC 60512-5 test 9a  |
| Humidity                |     | up to                                     | o 95% at 140° F      |
| Temperature range       |     |                                           | 4° F/+176° F         |
| Salt spray corrosion te | est | > 144h                                    | IEC 60512-6 test 11f |
| Protection index (mate  | ed) | IP 68                                     | IEC 60529            |
| Climatic category       |     | 20/80/21                                  | IEC 60068-1          |
| Leakage rate (He)1)     |     | < 10 <sup>-7</sup> mbar.l.s <sup>-1</sup> | IEC 60512-7 test 14b |
|                         | 0E  | 60 bars                                   |                      |
|                         | 1E  | 60 bars                                   |                      |
|                         | 2E  | 40 bars                                   |                      |
| pressure <sup>2)</sup>  | 3E  | 30 bars                                   | IEC 60512-7 test 14d |
| F                       | 4E  | 15 bars                                   |                      |
|                         | 5E  | 5 bars                                    |                      |
|                         | 6E  | 5 bars                                    | ]                    |

#### Note:

1) Only for vacuum-tight models.

2) This value corresponds to the maximum allowed pressure difference for the assembled receptacle.



| Refe              | rence  |    |      |         | Dime | ensior | ns (m | m)   |      |    | Avail-  |
|-------------------|--------|----|------|---------|------|--------|-------|------|------|----|---------|
| Model             | Series | А  | В    | е       | Е    | L      | L1)   | М    | S1   | S3 | ability |
| HGP               | 0E     | 18 | 19.5 | M14x1.0 | 7.0  | 23.5   | 22.0  | 4.0  | 12.5 | 17 | 0       |
| HGP               | 1E     | 20 | 21.5 | M16x1.0 | 9.0  | 28.0   | 28.0  | 4.5  | 14.5 | 19 | 0       |
| HGP               | 2E     | 25 | 27.5 | M20x1.0 | 10.5 | 32.5   | 28.0  | 5.0  | 18.5 | 24 | 0       |
| HGP               | 3E     | 31 | 34.5 | M24x1.0 | 15.5 | 39.5   | 38.5  | 6.0  | 22.5 | 30 | 0       |
| HGP               | 4E     | 37 | 40.5 | M30x1.0 | 17.5 | 43.0   | 44.0  | 6.5  | 28.5 | 36 | 0       |
| HGP               | 5E     | 55 | 54.0 | M45x1.5 | 20.0 | 52.0   | 76.0  | 9.0  | 42.5 | -  | 0       |
| HGP <sup>1)</sup> | 6E     | 65 | 65.0 | M55x2.0 | 20.5 | 52.0   | -     | 10.0 | 52.0 | -  | 0       |

Panel cut-out: P1

Note: 1) Single contact model

Note: 1) With key (G). The 5E and 6E series are delivered with a round nut.

# EBR Fixed receptacle with round flange, watertight, protruding shell and screw fixing

| Refe  | rence  |    |    |     | Di   | mensi | ons (ı | mm)  |    |    | Avail-  |
|-------|--------|----|----|-----|------|-------|--------|------|----|----|---------|
| Model | Series | А  | В  | С   | H1   | H2    | L      | L1)  | М  | Ν  | ability |
| EBR   | 2E     | 28 | 19 | 2.8 | 11.8 | 20.4  | 32.5   | 28.0 | 19 | 15 | 0       |

Panel cut-out: P6

**Note:** <sup>1)</sup> Single contact model. This model is only available in a watertight version.







# SWH Fixed coupler, nut fixing, watertight or vacuum-tight

| Refe              | rence  |    | Dimensions (mm) |         |      |      |      |      |    |         |  |
|-------------------|--------|----|-----------------|---------|------|------|------|------|----|---------|--|
| Model             | Series | Α  | В               | е       | Е    | L    | М    | S1   | S3 | ability |  |
| SWH               | 0E     | 18 | 19.5            | M14x1.0 | 22.5 | 36.0 | 4.0  | 12.5 | 17 | 0       |  |
| SWH               | 1E     | 20 | 21.5            | M16x1.0 | 30.5 | 47.0 | 4.5  | 14.5 | 19 | 0       |  |
| SWH               | 2E     | 25 | 27.5            | M20x1.0 | 28.0 | 52.4 | 5.0  | 18.5 | 24 | 0       |  |
| SWH               | 3E     | 31 | 34.5            | M24x1.0 | 33.0 | 64.2 | 6.0  | 22.5 | 30 | 0       |  |
| SWH               | 4E     | 37 | 40.5            | M30x1.0 | 44.5 | 70.0 | 6.5  | 28.5 | 36 | 0       |  |
| SWH               | 5E     | 55 | 54.0            | M45x1.5 | 47.0 | 81.0 | 9.0  | 42.5 | -  | 0       |  |
| SWH <sup>1)</sup> | 6E     | 65 | 65.0            | M55x2.0 | 12.0 | 76.0 | 10.0 | -    | _  | 0       |  |

Panel cut-out: P1

**Note:** <sup>1)</sup> With key (G). The 5E and 6E series are delivered with a round nut. See page 77 for the available plug and contact configurations and in order to ensure correct contact alignment.

# • Type Single contact

|    |                      |                        |           |          |                  | (þé               | Contac<br>availa | ct type<br>ability | s) <sup>1)</sup>   | (1)                  |                                 |
|----|----------------------|------------------------|-----------|----------|------------------|-------------------|------------------|--------------------|--------------------|----------------------|---------------------------------|
|    | Male solder contacts | Female solder contacts | Reference | ø A (mm) | AWG max. (solid) | AWG max. (strande | Solder           | Crimp              | Test voltage (kV m | Test voltage (kV dc) | Rated current (A) <sup>1)</sup> |
| 0E | ۲                    | 0                      | 116       | 1.6      | 16               | 18                | _2)              | _                  | 1.7                | 2.4                  | 12                              |
| 1E | ۲                    |                        | 120       | 2.0      | 14               | 16                | _2)              | -                  | 1.8                | 2.7                  | 18                              |
|    |                      | $\bigcirc$             | 130       | 3.0      | 10               | 12                | 0                | _                  | 1.5                | 2.1                  | 25                              |
| 2E |                      | $\bigcirc$             | 130       | 3.0      | 10               | 12                | 0                | _                  | 2.1                | 3.0                  | 30                              |
|    |                      |                        | 140       | 4.0      | 10               | 10                | 0                | _                  | 1.7                | 2.4                  | 40                              |
| 3E |                      |                        | 140       | 4.0      | 10               | 10                | 0                | _                  | 2.3                | 3.3                  | 43                              |
|    |                      |                        | 160       | 6.0      | -                | 8                 | 0                | -                  | 1.7                | 2.4                  | 65                              |
| 4E |                      |                        | 160       | 6.0      | -                | 8                 | 0                | -                  | 2.7                | 3.9                  | 70                              |
| 5E |                      |                        | 112       | 12.0     | -                | 6                 | 0                | _                  | 1.5                | 2.1                  | 230                             |

Note: 1) See calculation method, caution and suggested standard on page 11. 2) Also available with reversed contacts: plug = female, receptacle = male.





# Single contact high voltage

|           | Male solder contacts | Female solder contacts | Reference | ø A (mm) | AWG max. (solid) | AWG max. (stranded) | Cor<br>ty<br>availa | ability<br>during | HV contact gender <sup>2)</sup> | Cable dielectric ø max. (mm) | Standard insulator material <sup>3)</sup> | Test voltage (kV dc) <sup>1)</sup> | Rated current (A) <sup>1)</sup> |
|-----------|----------------------|------------------------|-----------|----------|------------------|---------------------|---------------------|-------------------|---------------------------------|------------------------------|-------------------------------------------|------------------------------------|---------------------------------|
| <b>0E</b> | 0                    | $\bigcirc$             | 403       | 0.9      | 20               | 225)                | 0                   | -                 | A<br>L                          | 2.9                          | Т                                         | 6                                  | 4                               |
|           | $\bigcirc$           | $\bigcirc$             | 405       | 0.7      | 24               | 26                  | 0                   | -                 | A                               | 2.9                          | L                                         | 12                                 | 4                               |
| 1E        |                      |                        | 405       | 1.3      | 18               | 205)                | 0                   | -                 | A<br>L                          | 4.0                          | Т                                         | 10.5                               | 8                               |
|           | $\bigcirc$           | $\bigcirc$             | 408       | 0.9      | 20               | 225)                | 0                   | -                 | A                               | 4.0                          | L                                         | 18                                 | 6                               |
| 2E        |                      |                        | 408       | 2.0      | 14               | 16                  | 0                   | -                 | A<br>L                          | 5.1                          | Т                                         | 12                                 | 10                              |
| 3E        |                      |                        | 405       | 4.0      | 10               | 12                  | 0                   | -                 | А                               | 7.5                          | т                                         | 10.5                               | 15                              |
|           |                      |                        | 410       | 2.0      | 12               | 14                  | 0                   | -                 | A<br>L                          | 7.3                          | т                                         | 15                                 | 10                              |
|           |                      |                        | 415       | 1.3      | 16               | 18                  | 0                   | -                 | A<br>L                          | 7.3                          | Т                                         | 21                                 | 8                               |
| <b>4E</b> |                      |                        | 410       | 2.5      | 6                | 8                   | 0                   | -                 | A                               | 9.5                          | Т                                         | 15                                 | 12                              |

Note:

<sup>2)</sup> A = male for plug; female for socket, L = female for plug; male for socket
<sup>3)</sup> L = Peek, T = PTFE
<sup>4)</sup> See calculation method, caution and suggested standard on page 11
<sup>5)</sup> For a given AWG, the diameter of some stranded conductor designs in larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than ØC on page 9 (for solder), and page 10 (for crimp).



Coaxial

|           |            |            |           |           | vailable                 |              |               | Te<br>Vol | est<br>tage |                      |              |
|-----------|------------|------------|-----------|-----------|--------------------------|--------------|---------------|-----------|-------------|----------------------|--------------|
|           | Male       | Female     | Reference | Impedance | Male or female contact a | Cable Group  | VSWR (GHz)    | AC (V)    | DC (V)      | Rated current (Amps) | Availability |
| <b>0E</b> |            | $\bigcirc$ | 250       | 50        | M/F                      | 1,2,3,4      | 1.02<br>+.25f | 3000      | 4200        | 6                    | 0            |
| 1E        | $\bigcirc$ | $\bigcirc$ | 250       | 50        | M/F                      | 1,2,3<br>4,6 | 1.01<br>+.08f | 3000      | 4200        | 12                   | 0            |
|           | $\odot$    | $\bigcirc$ | 275       | 75        | M/F                      | 5,6,7        | 1.02<br>+.08f | 2400      | 3300        | 10                   | 0            |
| 2E        |            |            | 250       | 50        | M/F                      | 6,7          | 1.02<br>+.95f | 3000      | 4200        | 15                   | 0            |
|           |            |            | 275       | 75        | M/F                      | 6,7          | 1.02<br>+.03f | 1500      | 2100        | 12                   | 0            |
| 3E        |            |            | 250       | 50        | M/F                      | 8            | 1.06<br>+.5f  | 3000      | 4200        | 26                   | 0            |
|           |            |            | 275       | 75        | M/F                      | 8            | 1.04<br>+.05f | 2700      | 3900        | 15                   | 0            |
| <b>4E</b> |            | $\bigcirc$ | 250       | 50        |                          | 8,9          | 1.01<br>+1.9f | 2100      | 3000        | 36                   | 0            |
|           |            |            | 275       | 75        | M/F                      | 8,9,0        | 1.01<br>.12f  | 1800      | 2700        | 26                   | 0            |
| 5E        |            |            | 250       | 50        |                          | 9            | 1.02<br>+2.3f | 3000      | 4200        | 45                   | 0            |
|           |            |            | 275       | 75        |                          | 9,0          | 1.01<br>+.7f  | 3000      | 4200        | 36                   | 0            |

1) The cable group corresponding to the chosen cable must be written in the Variant position of the part number.



### Triaxial

|    | Male       | Female     | Reference | Impedance | Male or female contact available | Cable Group | VSWR (GHz)    | Rated current (Amps) | Availability |
|----|------------|------------|-----------|-----------|----------------------------------|-------------|---------------|----------------------|--------------|
| 0E | $\bigcirc$ | $\bigcirc$ | 650       | 50        | M/F                              | 1,2         | 1.03<br>+.34f | 6                    | 0            |
| 1E | $\bigcirc$ |            | 650       | 50        | M/F                              | 1,2         | 1.01<br>+.17f | 6                    | 0            |
| 2E |            |            | 650       | 50        | M/F                              | 2,3,4       | 1.01<br>+.3f  | 12                   | 0            |
|    |            |            | 675       | 75        | M/F                              | 4,6         | 1.02<br>+.07f | 6                    | 0            |
| 3E |            |            | 650       | 50        | M/F                              | 3,4,5       | 1.01<br>+.27f | 15                   | 0            |
|    |            |            | 675       | 75        | M/F                              | 4,5         | 1.02<br>+.05f | 6                    | 0            |
| 4E |            |            | 650       | 50        | M/F                              | 4,5         | 1.01<br>+.38f | 26                   | 0            |
|    |            |            | 675       | 75        | M/F                              | 4,5,7       | 1.01<br>+.14f | 15                   | 0            |

# **Recommended coaxial cables**

| Turne      |   |   |   | Gr | oup | 1) |   |   |   | Turne      |   |   |   | Gr | oup | 1) |   |   |   | Turpo                |   | ( | Grou | ip 1) | ) |   |
|------------|---|---|---|----|-----|----|---|---|---|------------|---|---|---|----|-----|----|---|---|---|----------------------|---|---|------|-------|---|---|
| туре       | 1 | 2 | 3 | 4  | 5   | 6  | 7 | 8 | 0 | туре       | 1 | 2 | 3 | 4  | 5   | 6  | 7 | 8 | 9 | туре                 | 2 | 3 | 4    | 5     | 6 | 7 |
| RG.11A/U   |   |   |   |    |     |    |   |   |   | RG.178B/U  |   |   |   |    |     |    |   |   |   | RG.302/U             |   |   |      |       |   |   |
| RG.12A/U   |   |   |   |    |     |    |   |   |   | RG.179B/U  |   |   |   |    |     |    |   |   |   | RG.316/U             |   |   |      |       |   |   |
| RG.58C/U   |   |   |   |    |     |    |   |   |   | RG.187A/U  |   |   |   |    |     |    |   |   |   | RG.400/U             |   |   |      |       |   |   |
| RG.59B/U   |   |   |   |    |     |    |   |   |   | RG.188 A/U |   |   |   |    |     |    |   |   |   | HF-2114 Datwyler     |   |   |      |       |   |   |
| RG.115A/U  |   |   |   |    |     |    |   |   |   | RG.196A/U  |   |   |   |    |     |    |   |   |   | HF-5408/1 Datwyler   |   |   |      |       |   |   |
| RG.122/U   |   |   |   |    |     |    |   |   |   | RG.213/U   |   |   |   |    |     |    |   |   |   | 2YCCY .4/2.4 Siemens |   |   |      |       |   |   |
| RG.142B/U  |   |   |   |    |     |    |   |   |   | RG.214/U   |   |   |   |    |     |    |   |   |   | CCE.99.281.505 LEMO  |   |   |      |       |   |   |
| RG.144/U   |   |   |   |    |     |    |   |   |   | RG.216/U   |   |   |   |    |     |    |   |   |   | CCH.99.281.505 LEMO  |   |   |      |       |   |   |
| RG.165/U   |   |   |   |    |     |    |   |   |   | RG.223/U   |   |   |   |    |     |    |   |   |   |                      |   |   |      |       |   |   |
| RG.174 A/U |   |   |   |    |     |    |   |   |   | RG.225/U   |   |   |   |    |     |    |   |   |   |                      |   |   |      |       |   |   |

# **Recommended triaxial cables**

| Turne               |   | Gr | oup | 1) |   | Turno               | ( | Grou | up 1 | ) |
|---------------------|---|----|-----|----|---|---------------------|---|------|------|---|
| Туре                | 1 | 2  | 3   | 4  | 5 | туре                | 4 | 5    | 6    | 7 |
| CTA.99.290.803 LEMO |   |    |     |    |   | HF-2426 Datwyler    |   |      |      |   |
| CTD.99.391.505 LEMO |   |    |     |    |   | CTC.99.371.603 LEMO |   |      |      |   |
| 9222 Belden         |   |    |     |    |   | 12765700 F&G        |   |      |      |   |
| 21.738 Amphenol     |   |    |     |    |   | 9627 Belden         |   |      |      |   |
| 118202 Filotex      |   |    |     |    |   | 10069-C-G20 BIW     |   |      |      |   |
| 21.204 Amphenol     |   |    |     |    |   | 12766400 F&G        |   |      |      |   |
| HF-2318 Datwyler    |   |    |     |    |   | 12766601 F&G        |   |      |      |   |
| 8215 Belden         |   |    |     |    |   | 8233 Belden         |   |      |      |   |
| 8232 Belden         |   |    |     |    |   | 9888 Belden         |   |      |      |   |



|    | r> ↓<br>Male sold  | er contacts                                                                                      | Female sol                                                               | der contacts                                                             | Reference | Number of contacts | ø A (mm)   | AWG max. (solid) | AWG max. (stranded) ap   | Solder | Contad<br>availa | Printed circuit (straight) | Printed circuit (elbow) | Test voltage (kV rms) <sup>1) 2)</sup> | Test voltage (kV dc) <sup>1) 2)</sup> | Rated current (A) <sup>1)</sup>     |
|----|--------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------|--------------------|------------|------------------|--------------------------|--------|------------------|----------------------------|-------------------------|----------------------------------------|---------------------------------------|-------------------------------------|
| OE |                    |                                                                                                  |                                                                          |                                                                          | 302       | 2                  | 0.9        | 22               | 22 <sup>6)</sup>         | 0      | 0                | 0                          | 0                       | 1.5                                    | 2.1                                   | 10 <sup>3)</sup>                    |
|    |                    |                                                                                                  |                                                                          |                                                                          | 303       | 3                  | 0.7        | 24               | 26                       | 0      | -                | 0                          | 0                       | 1.0                                    | 1.5                                   | 73)                                 |
|    |                    |                                                                                                  |                                                                          |                                                                          | 304       | 4                  | 0.7        | 24               | 26                       | 0      | -                | 0                          | 0                       | 1.0                                    | 1.5                                   | 73)                                 |
| 1E |                    |                                                                                                  |                                                                          |                                                                          | 302       | 2                  | 1.3        | 20               | 20 <sup>6)</sup>         | 0      | 0                | 0                          | 0                       | 1.2                                    | 1.8                                   | 15 <sup>3)</sup>                    |
|    |                    |                                                                                                  | -                                                                        |                                                                          | 303       | 3                  | 0.9        | 22               | 226)                     | 0      | -                | 0                          | 0                       | 1.2                                    | 1.8                                   | 10 <sup>3)</sup>                    |
|    |                    |                                                                                                  |                                                                          |                                                                          | 304       | 4                  | 0.9        | 22               | 22 <sup>6)</sup>         | 0      | 0                | 0                          | 0                       | 1.2                                    | 1.8                                   | 10 <sup>3)</sup>                    |
|    |                    |                                                                                                  |                                                                          |                                                                          | 305       | 2<br>3             | 0.9<br>0.7 | 22<br>24         | 22 <sup>6)</sup><br>26   | 0      | -                | 0                          | 0                       | 1.5<br>1.5                             | 2.1<br>2.1                            | 10 <sup>3)</sup><br>7 <sup>3)</sup> |
|    |                    |                                                                                                  |                                                                          |                                                                          | 306       | 6                  | 0.7        | 24               | 26                       | 0      | -                | 0                          | 0                       | 1.5                                    | 2.1                                   | 73)                                 |
| 2E |                    |                                                                                                  |                                                                          |                                                                          | 302       | 2                  | 1.6        | 16               | 18                       | 0      | -                | 0                          | 0                       | 1.7                                    | 2.4                                   | 204)                                |
|    |                    |                                                                                                  |                                                                          |                                                                          | 303       | 3                  | 1.3        | 20               | 206)                     | 0      | -                | 0                          | 0                       | 1.5                                    | 2.1                                   | 15 <sup>4)</sup>                    |
|    |                    | $\begin{pmatrix} 2 \bullet & - \\ 3 \bullet & 0 \\ \hline 3 \bullet & 0 \\ \hline \end{pmatrix}$ |                                                                          | $\begin{pmatrix} 1 \bigcirc & \bigcirc \\ 4 & \bullet & 3 \end{pmatrix}$ | 304       | 4                  | 1.3        | 20               | 206)                     | 0      | -                | 0                          | 0                       | 1.7                                    | 2.4                                   | 15 <sup>4)</sup>                    |
|    |                    | 3 • 2                                                                                            |                                                                          |                                                                          | 305       | 5                  | 1.3        | 20               | 206)                     | 0      | -                | 0                          | 0                       | 1.5                                    | 2.1                                   | 13 <sup>4)</sup>                    |
|    |                    |                                                                                                  | 0 <sup>2</sup> 0 <sup>3</sup> 04                                         |                                                                          | 306       | 6                  | 1.3        | 20<br>20         | 20 <sup>6)</sup>         | 0      | ()5)             | 0                          | 0                       | 1.5<br>0.8                             | 2.1                                   | 12<br>12 <sup>3)</sup>              |
|    | 50 <sub>60</sub> 7 |                                                                                                  |                                                                          |                                                                          | 307       | 4                  | 0.9        | 22               | 22 <sup>6)</sup>         | 0      | _                | 0                          | 0                       | 0.8                                    | 1.2                                   | 9 <sup>3)</sup>                     |
|    |                    | 60 70 <sup>5</sup>                                                                               |                                                                          |                                                                          | 310       | 10                 | 0.9        | 22               | 22 ·<br>22 <sup>6)</sup> | 0      | _                | 0                          | 0                       | 0.8                                    | 1.2                                   | 73)                                 |
|    | 60705              |                                                                                                  |                                                                          |                                                                          |           |                    | 0.0        | 14               | 10                       |        |                  |                            |                         | 0.0                                    | 4.0                                   | 00                                  |
| 3E |                    |                                                                                                  |                                                                          | 2                                                                        | 302       | 2                  | 2.0        | 14               | 10                       | 0      | _                | 0                          | _                       | 3.0                                    | 4.2                                   | 23                                  |
|    |                    |                                                                                                  |                                                                          |                                                                          | 303       | 3                  | 2.0        | 14               | 16                       | 0      | -                | 0                          | -                       | 1.5                                    | 2.1                                   | 20                                  |
|    |                    |                                                                                                  |                                                                          |                                                                          | 304       | 4                  | 2.0        | 14               | 16                       | 0      | -                | 0                          | -                       | 1.5                                    | 2.1                                   | 18                                  |
|    |                    |                                                                                                  | $ \begin{pmatrix} 0 & 0^2 \\ 0 & 0_3 \\ 5 & 0_3 \\ 5 & 4 \end{pmatrix} $ |                                                                          | 305       | 2<br>3             | 2.0<br>1.3 | 14<br>20         | 16<br>20 <sup>6)</sup>   | 0      | -                | 0                          | _                       | 1.5<br>1.5                             | 2.1<br>2.1                            | 18<br>14                            |
|    |                    |                                                                                                  |                                                                          |                                                                          | 306       | 6                  | 1.3        | 20               | 20 <sup>6)</sup>         | 0      | -                | 0                          | -                       | 2.1                                    | 3.0                                   | 14                                  |
|    |                    |                                                                                                  |                                                                          |                                                                          | 307       | 7                  | 1.3        | 20               | 206)                     | 0      | -                | 0                          | -                       | 1.0                                    | 1.5                                   | 12                                  |

#### Note:

<sup>1)</sup> See calculation method, caution and suggested standard on page 11.

2) Lowest measured value; contact to contact or contact to shell.
3) Rated current = 6A for receptacle with elbow (90°) contacts for printed circuit.
4) Rated current = 12A for receptacle with elbow (90°) contacts for printed circuit.

<sup>5)</sup> Only for FFL model.



|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                    |            | So               | lder                   |        | Conta<br>avail | ct type<br>ability         | 9                       | )1) 2)               | ) 2)                              |                                 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|------------|------------------|------------------------|--------|----------------|----------------------------|-------------------------|----------------------|-----------------------------------|---------------------------------|
|    | Male solder contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Female solder contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference | Number of contacts | ø A (mm)   | AWG max. (solid) | AWG max. (stranded)    | Solder | Crimp          | Printed circuit (straight) | Printed circuit (elbow) | Test voltage (kV rms | Test voltage (kV dc) <sup>1</sup> | Rated current (A) <sup>1)</sup> |
| 3E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 308       | 8                  | 1.3        | 20               | 203)                   | 0      | _              | 0                          | 0                       | 1.0                  | 1.5                               | 10                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 310       | 10                 | 1.3        | 20               | 20 <sup>3)</sup>       | 0      | _              | 0                          | 0                       | 1.0                  | 1.5                               | 9                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 312       | 12                 | 0.9        | 22               | 22 <sup>3)</sup>       | 0      | _              | 0                          | 0                       | 1.5                  | 2.1                               | 8                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 313       | 13                 | 0.9        | 22               | 22 <sup>3)</sup>       | 0      | -              | 0                          | 0                       | 1.5                  | 2.1                               | 8                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 314       | 14                 | 0.9        | 22               | 22 <sup>3)</sup>       | 0      | _              | 0                          | 0                       | 1.5                  | 2.1                               | 7                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 316       | 16                 | 0.9        | 22               | 22 <sup>3)</sup>       | 0      | _              | 0                          | 0                       | 1.0                  | 1.5                               | 7                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 318       | 18                 | 0.9        | 22               | 22 <sup>3)</sup>       | 0      | _              | 0                          | 0                       | 1.0                  | 1.5                               | 6                               |
| 4E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 302       | 2                  | 4.0        | 10               | 10                     | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 35                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 303       | 3                  | 3.0        | 10               | 12                     | 0      | _              | 0                          | -                       | 2.1                  | 3.0                               | 25                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 304       | 4                  | 3.0        | 10               | 12                     | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 22                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 305       | 2<br>3             | 3.0<br>2.0 | 10<br>14         | 12<br>16               | 0      | -              | 0                          | -                       | 2.1<br>2.1           | 3.0<br>3.0                        | 22<br>16                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{pmatrix} 1 & O^2 \\ O & O_3 \\ 6 & \bullet \\ 5 & \bullet \\ 5 & \bullet \\ 5 & \bullet \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 $ | 306       | 6                  | 2.0        | 14               | 16                     | 0      | -              | 0                          | -                       | 2.1                  | 3.0                               | 16                              |
|    | $4  \bigcirc  \bigcirc  \bigcirc  \bigcirc  \bigcirc  \bigcirc  \bigcirc  \bigcirc  \bigcirc  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 1 & 0 & 0 \\ 0 & -0 & 4 \\ 7 & 0 & 0 \\ 7 & 0 & 0 \\ 6 & 0 & 5 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 307       | 3<br>4             | 2.0<br>1.3 | 14<br>20         | 16<br>20 <sup>3)</sup> | 0      | -              | 0                          | -                       | 2.1<br>2.1           | 3.0<br>3.0                        | 16<br>13                        |
|    | $ \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 308       | 8                  | 1.3        | 20               | 20 <sup>3)</sup>       | 0      | -              | 0                          | -                       | 2.7                  | 3.9                               | 13                              |
|    | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} 10 \\ 0 \\ 9 \\ 9 \\ 7 \\ 8 \\ 7 \\ 9 \\ 8 \\ 7 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 9 \\ 7 \\ 9 \\ 9 \\ 9 \\ 7 \\ 9 \\ 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 309       | 9                  | 1.3        | 20               | 203)                   | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 12                              |
|    | $\begin{bmatrix} \overline{b} \\ \overline{b} $ | $\begin{pmatrix} O & O \\ \bullet & O \\ \bullet & \bullet \\ 10 & \bullet & \bullet \\ 9 & \bullet & 0 \\ 10 & O & O \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 310       | 10                 | 1.3        | 20               | 203)                   | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 11                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\left(\begin{array}{c} \bigcirc & \_12 \\ \hline 12 \\ \hline 9 \\ 9 \\ \hline 9 \\ 8 \\ \hline \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 312       | 12                 | 1.3        | 20               | 203)                   | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 9                               |

Note: <sup>1)</sup> See calculation method, caution and suggested standard on page 11.

<sup>3)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



|            |                                                                                                                                  |                        |           |                    |            | So               | lder                |        | Conta<br>avail | ct type<br>ability         | 9                       | )1)2)                | ) 2)                              |                                 |
|------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|--------------------|------------|------------------|---------------------|--------|----------------|----------------------------|-------------------------|----------------------|-----------------------------------|---------------------------------|
|            | Male solder contacts                                                                                                             | Female solder contacts | Reference | Number of contacts | ø A (mm)   | AWG max. (solid) | AWG max. (stranded) | Solder | Crimp          | Printed circuit (straight) | Printed circuit (elbow) | Test voltage (kV ms) | Test voltage (kV dc) <sup>1</sup> | Rated current (A) <sup>1)</sup> |
| 4E         |                                                                                                                                  |                        | 314       | 14                 | 1.3        | 20               | 203)                | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 9                               |
|            |                                                                                                                                  |                        | 316       | 16                 | 0.9        | 22               | 22 <sup>3)</sup>    | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 7                               |
|            |                                                                                                                                  |                        | 318       | 18                 | 0.9        | 22               | 22 <sup>3)</sup>    | 0      | -              | 0                          | _                       | 2.1                  | 3.0                               | 7                               |
|            |                                                                                                                                  |                        | 320       | 20                 | 0.9        | 22               | 22 <sup>3)</sup>    | 0      | _              | 0                          | _                       | 2.1                  | 3.0                               | 7                               |
|            |                                                                                                                                  |                        | 322       | 22                 | 0.9        | 22               | 22 <sup>3)</sup>    | 0      | -              | 0                          | _                       | 2.1                  | 3.0                               | 7                               |
|            | 0000000<br>170000013<br>12000018                                                                                                 |                        | 324       | 24                 | 0.9        | 22               | 223)                | 0      | -              | 0                          | _                       | 2.1                  | 3.0                               | 7                               |
| 5 <b>E</b> |                                                                                                                                  |                        | 302       | 2                  | 6.0        | -                | 8                   | 0      | _              | _                          | -                       | 3.7                  | 5.2                               | 50                              |
|            |                                                                                                                                  |                        | 303       | 1<br>2             | 6.0<br>4.0 | -<br>10          | 8<br>10             | 0      | _              | _                          | -                       | 3.7<br>3.7           | 5.2<br>5.2                        | 50<br>35                        |
|            |                                                                                                                                  |                        | 304       | 4                  | 4.0        | 10               | 10                  | 0      | -              | -                          | -                       | 3.7                  | 5.2                               | 35                              |
|            | $ \begin{array}{c} \bullet^2 \\ \hline 3 \bullet & \bullet 1 \\ \hline 4 \circ & \circ^5 \end{array} $                           |                        | 305       | 2<br>3             | 4.0<br>3.0 | 10<br>10         | 10<br>12            | 0      | _              | _                          | _                       | 3.0<br>3.0           | 4.2<br>4.2                        | 35<br>25                        |
|            |                                                                                                                                  |                        | 306       | 6                  | 3.0        | 10               | 12                  | 0      | -              | _                          | -                       | 3.0                  | 4.2                               | 25                              |
|            |                                                                                                                                  |                        | 308       | 8                  | 3.0        | 10               | 12                  | 0      | _              | _                          | _                       | 2.1                  | 3.0                               | 22                              |
|            | $ \begin{bmatrix} 5 & & & & & 2 \\ \hline 6 & & & & & \\ \hline 6 & & & & & \\ \hline 7 & & & & & \\ 7 & & & & & \\ 7 & & & & &$ |                        | 310       | 10                 | 2.0        | 14               | 16                  | 0      | _              | _                          | _                       | 2.1                  | 3.0                               | 18                              |

Note: <sup>1)</sup> See calculation method, caution and suggested standard on page 11.

3) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



|    |                      |                        |           |                    |            | So               | lder                |        | Conta<br>availa | ct type<br>ability         | )                       | 1) 2)                | ) 2)                              |                                 |
|----|----------------------|------------------------|-----------|--------------------|------------|------------------|---------------------|--------|-----------------|----------------------------|-------------------------|----------------------|-----------------------------------|---------------------------------|
|    | Male solder contacts | Female solder contacts | Reference | Number of contacts | ø A (mm)   | AWG max. (solid) | AWG max. (stranded) | Solder | Crimp           | Printed circuit (straight) | Printed circuit (elbow) | Test voltage (kV ms) | Test voltage (kV dc) <sup>1</sup> | Rated current (A) <sup>1)</sup> |
| 5E |                      |                        | 312       | 12                 | 2.0        | 14               | 16                  | 0      | _               | _                          | _                       | 2.1                  | 3.0                               | 18                              |
|    |                      |                        | 314       | 2<br>12            | 3.0<br>2.0 | 10<br>14         | 12<br>16            | 0      | _               | _                          | _                       | 1.8<br>1.8           | 2.4<br>2.4                        | 20<br>15                        |
|    |                      |                        | 316       | 16                 | 2.0        | 14               | 16                  | 0      | _               | _                          | -                       | 1.8                  | 2.4                               | 15                              |
|    |                      |                        | 318       | 2<br>16            | 3.0<br>1.6 | 10<br>16         | 12<br>18            | 0      | _               | _                          | _                       | 1.8<br>1.8           | 2.4<br>2.4                        | 18<br>11                        |
|    |                      |                        | 320       | 20                 | 1.6        | 16               | 18                  | 0      | _               | _                          | -                       | 1.8                  | 2.4                               | 11                              |
|    |                      |                        | 322       | 2<br>20            | 3.0<br>1.6 | 10<br>16         | 12<br>18            | 0      | _               | _                          | _                       | 1.8<br>1.8           | 2.4<br>2.4                        | 16<br>9                         |
|    |                      |                        | 324       | 24                 | 1.6        | 16               | 18                  | 0      | _               | _                          | -                       | 2.7                  | 3.9                               | 9                               |
|    |                      |                        | 330       | 30                 | 1.3        | 20               | 20 <sup>3)</sup>    | 0      | _               | -                          | _                       | 1.8                  | 2.4                               | 8                               |
|    |                      |                        | 336       | 36                 | 1.3        | 20               | 20 <sup>3)</sup>    | 0      | _               | _                          | -                       | 1.8                  | 2.4                               | 7                               |
|    |                      |                        | 340       | 40                 | 1.3        | 20               | 20 <sup>3)</sup>    | 0      | -               | _                          | -                       | 1.2                  | 1.8                               | 7                               |
|    |                      |                        | 344       | 44                 | 1.3        | 20               | 20 <sup>3)</sup>    | 0      | _               | _                          | -                       | 1.2                  | 1.8                               | 6                               |
|    |                      |                        | 348       | 48                 | 1.3        | 20               | 20 <sup>3)</sup>    | 0      | _               | _                          | _                       | 1.2                  | 1.8                               | 6                               |

Note: 1) See calculation method, caution and suggested standard on page 11.
2) Lowest measured value; contact to contact or contact to shell.
3) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than ØC on page 9 (for solder), and page 10 (for crimp).



|    | T1                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                  |      | Sol             | der                |     | Conta<br>availa | ct type<br>ability     | ;                   | )1) 2)            | ) 2)                            |                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|------|-----------------|--------------------|-----|-----------------|------------------------|---------------------|-------------------|---------------------------------|-------------------------------|
|    |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | erence | mber of contacts | (mm) | /G max. (solid) | /G max. (stranded) | der | du              | ted circuit (straight) | ted circuit (elbow) | t voltage (kV rms | tt voltage (kV dc) <sup>1</sup> | ted current (A) <sup>1)</sup> |
|    | Male solder contacts                                                                                                                                                      | Female solder contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ref    | Nu               | Ø    | AM              | AW                 | Sol | Cri             | Prin                   | Prin                | Tes               | Tes                             | Rat                           |
| 6E |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 303    | 3                | 6.0  | -               | 8                  | 0   | -               | _                      | -                   | 3.0               | 4.2                             | 50                            |
|    |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 304    | 4                | 8.0  | _               | 4                  | 0   | _               | _                      | _                   | 3.0               | 4.2                             | 60                            |
|    | $ \begin{array}{c}             4 \\             5 \\           $                                                                                                          | $ \begin{array}{c c} 2 & 3 \\ 1 & 10 \\ 1 & 11 \\ 12 \\ 10 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 8 \\ 7 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9$ | 312    | 12               | 5.0  | _               | 8                  | 0   | _               | _                      | _                   | 2.1               | 3.0                             | 22                            |
|    | $ \begin{array}{c} 3 \\ 4 \\ 11 \\ 12 \\ 9 \\ 15 \\ 13 \\ 14 \\ 15 \\ 8 \\ 6 \\ 7 \end{array} $                                                                           | $ \begin{array}{c} 3 \\ 2 \\ 9 \\ 1 \\ 1 \\ 6 \\ 1 \\ 1 \\ 6 \\ 8 \\ 0 \\ 7 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 316    | 16               | 3.0  | 10              | 12                 | 0   | _               | _                      | -                   | 1.5               | 2.1                             | 14                            |
|    | $ \begin{array}{c} 6 & 5 & 4 & 3 \\ 7 & 6 & 16 & 15 & 2 \\ 17 & 17 & 10 & 11 \\ 8 & 18 & 9 & 19 & 20 & 14 \\ 9 & 19 & 20 & 14 \\ 10 & 11 & 12 \\ 11 & 12 \\ \end{array} $ | $\begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \\ 16 \\ 15 \\ 16 \\ 0 \\ 15 \\ 0 \\ 16 \\ 0 \\ 17 \\ 0 \\ 0 \\ 18 \\ 0 \\ 19 \\ 0 \\ 9 \\ 19 \\ 0 \\ 9 \\ 13 \\ 12 \\ 0 \\ 10 \\ 11 \\ 0 \\ 12 \\ 0 \\ 10 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                           | 320    | 20               | 3.0  | 10              | 12                 | 0   | _               | _                      | _                   | 1.5               | 2.1                             | 14                            |

Note: <sup>1)</sup> See calculation method, caution and suggested standard on page 11. <sup>2)</sup> Lowest measured value; contact to contact or contact to shell.



|    | <b>ح</b> ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                   |            | Sol             | der                   |       | Conta<br>availa | ct type<br>ability       | )                     | )1) 2)              | ) 2)                             |                                |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|------------|-----------------|-----------------------|-------|-----------------|--------------------------|-----------------------|---------------------|----------------------------------|--------------------------------|
|    | Male solder contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Female solder contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | əference | umber of contacts | A (mm)     | WG max. (solid) | WG max. (stranded)    | older | rimp            | inted circuit (straight) | inted circuit (elbow) | sst voltage (kV rms | est voltage (kV dc) <sup>1</sup> | ated current (A) <sup>1)</sup> |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ĕ        | Z                 | Ø          | A               | A                     | Ō     | U<br>U          | ā                        | <u> </u>              | LTE                 | <u>₽</u>                         |                                |
| 6E | $ \begin{array}{c}             6 & 5 & 4 & 3 \\             7 & 0 & 19 & 16 & 2 \\             8 & 2 & 0 & 17 & 1 \\             9 & 21 & 24 & 16 \\             10 & 22 & 23 & 15 \\             11 & 2 & 13 & 14 \\             12 & 13 & 14 \\             14 & 14 & 14 \\             12 & 13 & 14 \\             14 & 14 & 14 \\             11 & 12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 14 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 13 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\             12 & 14 & 14 \\         $ | $\begin{array}{c} 1 \\ 3 \\ 2 \\ 10 \\ 2 \\ 10 \\ 10 \\ 10 \\ 2 \\ 10 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 324      | 24                | 3.0        | 10              | 12                    | 0     | _               | _                        | _                     | 1.2                 | 1.8                              | 12                             |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1 & -0 & -0 \\ 10 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & -0 & -0 & -0 & -0 \\ 10 & $ | 330      | 30                | 2.0        | 14              | 16                    | 0     | _               | _                        | _                     | 2.1                 | 3.0                              | 10                             |
|    | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 332      | 32                | 2.0        | 14              | 16                    | 0     | _               | _                        | _                     | 1.5                 | 2.1                              | 10                             |
|    | $ \begin{array}{c} 5 \\ 11 \\ 0 \\ 0 \\ 0 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 32 \\ 33 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34 \\ 34$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 1 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 336      | 30<br>6           | 1.3<br>5.0 | 20              | 20 <sup>3)</sup><br>8 | 0     | _               | _                        | _                     | 1.5<br>1.5          | 2.1<br>2.1                       | 4<br>22                        |
|    | 2<br>4<br>4<br>4<br>0<br>3<br>4<br>0<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 340      | 40                | 2.0        | 14              | 16                    | 0     | _               | _                        | _                     | 1.5                 | 2.1                              | 8                              |

Note: 1) See calculation method, caution and suggested standard on page 11.
 2) Lowest measured value; contact to contact or contact to shell.
 3) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



|    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                    |          | So               | lder                |        | Conta<br>avail | ct type<br>ability         | 9                       | )1) 2)               | ) 2)                              |                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|----------|------------------|---------------------|--------|----------------|----------------------------|-------------------------|----------------------|-----------------------------------|---------------------------------|
|    | Male solder contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Female solder contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference | Number of contacts | ø A (mm) | AWG max. (solid) | AWG max. (stranded) | Solder | Crimp          | Printed circuit (straight) | Printed circuit (elbow) | Test voltage (kV rms | Test voltage (kV dc) <sup>1</sup> | Rated current (A) <sup>1)</sup> |
| 6E |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 348       | 48                 | 2.0      | 14               | 16                  | 0      | _              | _                          | _                       | 1.5                  | 2.1                               | 7                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 360       | 60                 | 1.6      | 16               | 18                  | 0      | _              | _                          | _                       | 1.5                  | 2.1                               | 5                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 362       | 62                 | 1.6      | 16               | 18                  | 0      | _              | _                          | _                       | 1.5                  | 2.1                               | 5                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 364       | 64                 | 1.3      | 20               | 20 <sup>3)</sup>    | 0      | _              | _                          | _                       | 1.2                  | 1.8                               | 4                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0002<br>0002<br>000000000<br>0000000000<br>00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 372       | 72                 | 1.3      | 20               | 20 <sup>3)</sup>    | 0      | -              | _                          | _                       | 1.2                  | 1.8                               | 4                               |
|    | 20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>20<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | 3<br>10-02<br>10-02<br>10-00-00-00-02<br>10-00-00-00-02<br>10-00-00-00-00-02<br>10-00-00-00-00-02<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00-00<br>10-00<br>10-00-00<br>10-00<br>10-00-00<br>10-00<br>10- | 106       | 106                | 0.9      | 22               | 22 <sup>3)</sup>    | 0      | _              | _                          | _                       | 0.8                  | 1.2                               | 2                               |

Note: 1) See calculation method, caution and suggested standard on page 11.
 2) Lowest measured value; contact to contact or contact to shell.
 3) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



# Mixed Contacts (High Voltage + Low Voltage)

|    |                      |                        |           |                    |                  | Hig               | n vol                  | tage            |                 |                                 |                    |                  | Lo                                   | ow v   | oltage          |                 |                                 |
|----|----------------------|------------------------|-----------|--------------------|------------------|-------------------|------------------------|-----------------|-----------------|---------------------------------|--------------------|------------------|--------------------------------------|--------|-----------------|-----------------|---------------------------------|
|    | Male solder contacts | Female solder contacts | Reference | Number of contacts | Contact ø A (mm) | AWG max. (solder) | Dielectric ø max. (mm) | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/ Solder)          | Solder | Test Voltage AC | Test Voltage DC | Rated current (A) <sup>4)</sup> |
| 2E |                      |                        | 702       | 1                  | 1.3              | 201)              | 1.3                    | 6300            | 9000            | 6                               | 2                  | 2.0              | 16                                   | 0      | 1500            | 2100            | 18                              |
| 3E |                      |                        | 702       | 1                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 2                  | 2.0              | 16                                   | 0      | 1500            | 2100            | 18                              |
|    |                      |                        | 703       | 1                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 2                  | 1.3              | 201)                                 | 0      | 2100            | 3000            | 14                              |
|    |                      |                        | 704       | 1                  | 1.3              | 201)              | 1.3                    | 6300            | 9000            | 6                               | 4                  | 1.3              | 20 <sup>1)</sup>                     | 0      | 1050            | 1500            | 10                              |
|    |                      |                        | 705       | 1                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 5                  | 1.3              | 20 <sup>1)</sup>                     | 0      | 1050            | 1500            | 9                               |
|    |                      |                        | 706       | 1                  | 1.3              | 20 <sup>1</sup> / | 1.3                    | 6300            | 9000            | 6                               | 6<br>7             | 1.3              | 20 <sup>1</sup> /                    | 0      | 1050            | 1500            | 8                               |
|    |                      |                        | 707       | 1                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 4                  | 1.3              | 20 <sup>1)</sup>                     | 0      | 1050            | 1500            | 6                               |
|    |                      |                        | 709       | 1                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 4<br>9             | 0.9<br>0.9       | 22 <sup>1)</sup><br>22 <sup>1)</sup> | 0      | 750             | 1200            | 8                               |
|    |                      |                        | 711       | 1                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 11                 | 0.9              | 22 <sup>1)</sup>                     | 0      | 750             | 1200            | 6                               |
|    |                      |                        | 432       | 2                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | -                  | -                | -                                    | -      | -               | -               | -                               |
|    |                      |                        | 732       | 2                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 2                  | 1.3              | 20 <sup>1)</sup>                     | 0      | 2100            | 3000            | 14                              |
|    |                      |                        | 734       | 2                  | 1.3              | 20 <sup>1)</sup>  | 1.3                    | 6300            | 9000            | 6                               | 4                  | 1.3              | 201)                                 | 0      | 2100            | 3000            | 10                              |
| 4E |                      | 00                     | 702       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 2                  | 3.0              | 12                                   | 0      | 2100            | 3000            | 22                              |
|    |                      |                        | 703       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 3                  | 2.0              | 16                                   | 0      | 2100            | 3000            | 16                              |
|    |                      |                        | 704       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 4                  | 1.3              | 201)                                 | 0      | 2700            | 3900            | 13                              |
|    |                      |                        | 705       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 5                  | 1.3              | 201)                                 | 0      | 2100            | 3000            | 11                              |
|    |                      |                        | 706       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 6                  | 1.3              | 201)                                 | 0      | 2100            | 3000            | 9                               |
|    |                      |                        | 707       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 7                  | 1.3              | 201)                                 | 0      | 2100            | 3000            | 9                               |
|    |                      |                        | 708       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 8                  | 1.3              | 201)                                 | 0      | 2100            | 3000            | 9                               |
|    |                      |                        | 709       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 9                  | 0.9              | 221)                                 | 0      | 2100            | 3000            | 7                               |
|    |                      |                        | 710       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 10                 | 0.9              | 221)                                 | 0      | 2100            | 3000            | 7                               |



# Mixed Contacts (High Voltage + Low Voltage)

|    |                      |                        |           | High voltage       |                  |                   |                        |                 |                 |                                 | Lo                 | ow v             | oltage                      |        |                 |                 |                                 |
|----|----------------------|------------------------|-----------|--------------------|------------------|-------------------|------------------------|-----------------|-----------------|---------------------------------|--------------------|------------------|-----------------------------|--------|-----------------|-----------------|---------------------------------|
|    | Male solder contacts | Female solder contacts | Reference | Number of contacts | Contact ø A (mm) | AWG max. (solder) | Dielectric ø max. (mm) | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/ Solder) | Solder | Test Voltage AC | Test Voltage DC | Rated current (A) <sup>4)</sup> |
| 4E |                      |                        | 712       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 12                 | 0.9              | 221)                        | 0      | 2100            | 3000            | 7                               |
|    |                      |                        | 714       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 14                 | 0.9              | 221)                        | 0      | 2100            | 3000            | 7                               |
|    |                      |                        | 716       | 1                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 16                 | 0.9              | 221)                        | 0      | 1500            | 2100            | 6                               |
|    |                      |                        | 442       | 2                  | 2.0              | 16                | 1.3                    | 10500           | 15000           | 8                               | -                  | -                | -                           | -      | -               | -               | -                               |
|    |                      |                        | 732       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | 8                               | 2                  | 3.0              | 12                          | 0      | 2100            | 3000            | 22                              |
|    |                      |                        | 733       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 3                  | 2.0              | 16                          | 0      | 2700            | 3900            | 16                              |
|    |                      |                        | 734       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 4                  | 1.3              | 201)                        | 0      | 2700            | 3900            | 13                              |
|    |                      |                        | 735       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 5                  | 1.3              | 201)                        | 0      | 2100            | 3000            | 11                              |
|    |                      |                        | 736       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 6                  | 1.3              | 201)                        | 0      | 2100            | 3000            | 9                               |
|    |                      |                        | 737       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 7                  | 1.3              | 201)                        | 0      | 2100            | 3000            | 9                               |
|    |                      |                        | 739       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 9                  | 0.9              | 221)                        | 0      | 2100            | 3000            | 7                               |
|    |                      |                        | 740       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 10                 | 0.9              | 221)                        | 0      | 2100            | 3000            | 7                               |
|    |                      |                        | 742       | 2                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | 12                 | 0.9              | 221)                        | 0      | 2100            | 3000            | 7                               |
|    |                      |                        | 433       | 3                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | -                  | -                | -                           | -      | -               | -               | -                               |
|    |                      |                        | 434       | 4                  | 2.0              | 16                | 2.0                    | 6300            | 9000            | -                               | -                  | -                | -                           | -      | -               | -               | -                               |

Note: <sup>1)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



Mixed Contacts (High Voltage + Low Voltage)



Note: 1) For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than oc on page 9 (for solder), and page 10 (for crimp).

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.

Standard, typically 0-6 weeks delivery for guantities of 250 or less.



# Mixed Contacts (High Voltage + Low Voltage)

|    |                      |                        |           | High voltage       |                  |                   |                        |                 |                 |                                 | Low voltage        |                  |                             |        |                 |                 |                                 |  |
|----|----------------------|------------------------|-----------|--------------------|------------------|-------------------|------------------------|-----------------|-----------------|---------------------------------|--------------------|------------------|-----------------------------|--------|-----------------|-----------------|---------------------------------|--|
|    | Male solder contacts | Female solder contacts | Reference | Number of contacts | Contact ø A (mm) | AWG max. (solder) | Dielectric ø max. (mm) | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/ Solder) | Solder | Test Voltage AC | Test Voltage DC | Rated current (A) <sup>4)</sup> |  |
| 5E |                      |                        | 764       | 3                  | 2.0              | 16                | 2.0                    | 10500           | 15000           | -                               | 4                  | 2.0              | 16                          | 0      | 1200            | 1800            | 18                              |  |
|    |                      |                        | 782       | 4                  | 2.0              | 16                | 2.0                    | 10500           | 15000           | -                               | 2                  | 2.0              | 16                          | 0      | 1200            | 1800            | 18                              |  |
|    |                      |                        | 442       | 2                  | 2.0              | 16                | 2.0                    | 10500           | 15000           | -                               | -                  | -                | -                           | -      | -               | -               | -                               |  |
|    |                      |                        | 443       | 3                  | 2.0              | 16                | 2.0                    | 10500           | 15000           | -                               | -                  | -                | -                           | -      | -               | -               | -                               |  |
|    |                      |                        | 444       | 4                  | 2.0              | 16                | 2.0                    | 10500           | 15000           | -                               | -                  | -                | -                           | -      | -               | -               | -                               |  |
|    |                      |                        | 438       | 8                  | 2.0              | 16                | 2.0                    | 10500           | 15000           | -                               | -                  | -                | -                           | -      | -               | -               | -                               |  |



# Mixed Contacts (Coaxial + Low Voltage)

|    |                      |                        |           | Coax               |                            |                  |             |                 |                 |                                 | Low voltage        |                  |                            |                             |                 |                 |                                 |  |
|----|----------------------|------------------------|-----------|--------------------|----------------------------|------------------|-------------|-----------------|-----------------|---------------------------------|--------------------|------------------|----------------------------|-----------------------------|-----------------|-----------------|---------------------------------|--|
|    | Male solder contacts | Female solder contacts | Reference | Number of contacts | Contact type <sup>1)</sup> | Impedance (ohms) | Cable Group | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/Solder) | Solder contact availability | Test voltage AC | Test voltage DC | Rated current (A) <sup>4)</sup> |  |
| 3E |                      | $\bigcirc$             | 801       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 1                  | 1.3              | 201)                       | 0                           | 2700            | 3900            | 14                              |  |
|    |                      |                        | 802       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 2                  | 1.3              | 201)                       | 0                           | 1200            | 1800            | 14                              |  |
|    |                      |                        | 803       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 3                  | 1.3              | 20 <sup>1)</sup>           | 0                           | 2700            | 3900            | 14                              |  |
|    |                      |                        | 804       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 4                  | 1.3              | 20 <sup>1)</sup>           | 0                           | 1200            | 1800            | 10                              |  |
|    |                      |                        | 805       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 5                  | 0.9              | 221)                       | 0                           | 1800            | 2400            | 8                               |  |
|    |                      |                        | 806       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 6                  | 1.3              | 201)                       | 0                           | 750             | 1200            | 8                               |  |
|    |                      |                        | 807       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 7                  | 0.9              | 221)                       | 0                           | 750             | 2100            | 7                               |  |
| 4E |                      | 00                     | 802       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 2                  | 3.0              | 12                         | 0                           | 2100            | 3000            | 22                              |  |
|    |                      |                        | 803       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 3                  | 2.0              | 16                         | 0                           | 2100            | 3000            | 16                              |  |
|    |                      |                        | 804       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 4                  | 1.3              | 201)                       | 0                           | 2700            | 3900            | 13                              |  |
|    |                      |                        | 805       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 5                  | 1.3              | 20 <sup>1)</sup>           | 0                           | 2100            | 3000            | 11                              |  |
|    |                      |                        | 806       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 6                  | 1.3              | 201)                       | 0                           | 2100            | 3000            | 9                               |  |
|    |                      |                        | 807       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 7                  | 1.3              | 201)                       | 0                           | 2100            | 3000            | 8                               |  |
|    |                      |                        | 809       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 9                  | 0.9              | 22 <sup>1)</sup>           | 0                           | 2100            | 3000            | 7                               |  |
|    |                      | $\bigcirc$             | 810       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 10                 | 0.9              | 221)                       | 0                           | 2100            | 3000            | 7                               |  |

Note: <sup>1)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).

Standard, typically 0-6 weeks delivery for quantities of 250 or less.
 Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.


# Mixed Contacts (Coaxial + Low Voltage)

|            |                      |                        |           | Coax               |                            |                  |             | Low voltage     |                 |                                 |                    |                  |                            |                             |                 |                 |                                 |
|------------|----------------------|------------------------|-----------|--------------------|----------------------------|------------------|-------------|-----------------|-----------------|---------------------------------|--------------------|------------------|----------------------------|-----------------------------|-----------------|-----------------|---------------------------------|
|            | Male solder contacts | Female solder contacts | Reference | Number of contacts | Contact type <sup>1)</sup> | Impedance (ohms) | Cable Group | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/Solder) | Solder contact availability | Test voltage AC | Test voltage DC | Rated current (A) <sup>4)</sup> |
| 4E         |                      |                        | 812       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 12                 | 0.9              | 221)                       | 0                           | 2100            | 3000            | 4                               |
|            |                      |                        | 202       | 2                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | -                  | -                | -                          | -                           | -               | -               | -                               |
|            |                      |                        | 832       | 2                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 2                  | 1.3              | 201)                       | 0                           | 2100            | 3000            | 13                              |
|            |                      |                        | 834       | 2                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 4                  | 1.3              | 201)                       | 0                           | 2100            | 3000            | 13                              |
|            |                      |                        | 836       | 2                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 6                  | 0.9              | 221)                       | 0                           | 1800            | 2400            | 7                               |
|            |                      |                        | 838       | 2                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 8                  | 0.9              | 221)                       | 0                           | 1800            | 2400            | 7                               |
|            | 000°                 |                        | 842       | 2                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 12                 | 0.9              | 22 <sup>1)</sup>           | 0                           | 1800            | 2400            | 7                               |
| 5 <b>E</b> |                      |                        | 804       | 1                  | A0                         | 50               | 1,2,6       | 2100            | 2400            | 6                               | 4                  | 3.0              | 12                         | 0                           | 1800            | 2400            | 7                               |
|            |                      |                        | 810       | 1                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 10                 | 1.6              | 18                         | 0                           | 1800            | 2400            | 11                              |
|            |                      |                        | 232       | 2                  | A0                         | 50               | 1,2,6       | 3000            | 4200            | 6                               | -                  | -                | -                          | -                           | -               | -               | -                               |
|            |                      |                        | 282       | 2                  | A1                         | 50               | 6           | 3000            | 4200            | 12                              | -                  | -                | -                          | -                           | -               | -               | -                               |
|            |                      |                        | 292       | 2                  | А                          | 75               | 3,5,7       | 2400            | 3300            | 10                              | -                  | -                | -                          | -                           | -               | -               | -                               |
|            |                      |                        | 832       | 2                  | A0                         | 50               | 1,2,6       | 3000            | 4200            | 6                               | 2                  | 2.0              | 16                         | 0                           | 2100            | 3000            | 18                              |



# Mixed Contacts (Coaxial + Low Voltage)

|    |                      |                             |           | Coax               |                            |                  | Low voltage |                 |                 |                                 |                    |                  |                            |                             |                 |                 |                                 |
|----|----------------------|-----------------------------|-----------|--------------------|----------------------------|------------------|-------------|-----------------|-----------------|---------------------------------|--------------------|------------------|----------------------------|-----------------------------|-----------------|-----------------|---------------------------------|
|    | Male solder contacts | Coax Female solder contacts | Reference | Number of contacts | Contact type <sup>1)</sup> | Impedance (ohms) | Cable Group | Test voltage AC | Test voltage DC | Rated current (A) <sup>1)</sup> | Number of contacts | Contact ø A (mm) | AWG max. (Stranded/Solder) | Solder contact availability | Test voltage AC | Test voltage DC | Rated current (A) <sup>4)</sup> |
| 5E |                      |                             | 834       | 2                  | AO                         | 50               | 1,2,6       | 3000            | 4200            | 6                               | 4                  | 2.0              | 16                         | 0                           | 2100            | 3000            | 18                              |
|    |                      |                             | 838       | 2                  | A0                         | 50               | 1,2,6       | 3000            | 4200            | 6                               | 8                  | 1.6              | 18                         | 0                           | 1700            | 2400            | 12                              |
|    |                      |                             | 842       | 2                  | A0                         | 50               | 1,2,6       | 2100            | 3000            | 6                               | 12                 | 1.3              | 201)                       | 0                           | 1700            | 2400            | 9                               |
|    |                      |                             | 846       | 2                  | A0                         | 50               | 1,2,6       | 3000            | 4200            | 6                               | 16                 | 1.3              | 20 <sup>1)</sup>           | 0                           | 750             | 1200            | 8                               |
|    |                      |                             | 846       | 2                  | А                          | 75               | 3,5,7       | 2400            | 3300            | 10                              | 16                 | 1.3              | 201)                       | 0                           | 750             | 1200            | 8                               |
|    |                      |                             | 850       | 2                  | A0                         | 50               | 1,2,6       | 3000            | 4200            | 6                               | 20                 | 1.3              | 201)                       | 0                           | 750             | 1200            | 7                               |
|    |                      |                             | 854       | 2                  | A0                         | 50               | 1,2,6       | 3000            | 4200            | 6                               | 24                 | 1.3              | 201)                       | 0                           | 750             | 1200            | 6                               |
|    |                      |                             | 234       | 4                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | -                  | -                | -                          | -                           | -               | -               | -                               |
|    |                      |                             | 876       | 4                  | A1                         | 50               | 1,2,3       | 2100            | 3000            | 4                               | 6                  | 1.3              | 20 <sup>1)</sup>           | 0                           | 750             | 1200            | 6                               |

Note: <sup>1)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).





# Mixed Contacts (Coaxial + Low Voltage)



Note: <sup>1)</sup> For a given AWG, the diameter of some stranded conductor designs is larger than the solder cup diameter. Make sure that the maximum conductor diameter is smaller than øC on page 9 (for solder), and page 10 (for crimp).



# Technical Information

Example of high voltage contact construction for mixed high voltage and multi high voltage connectors



The high voltage contact is permanently fixed into the inserts. The conductor is secured by solder.

|           | Component |                | Matarial              | Surface<br>Treatment |    |     |  |
|-----------|-----------|----------------|-----------------------|----------------------|----|-----|--|
| Component |           | Component      | Material              | Cu                   | Ni | Au  |  |
|           | 1         | Insert         | PTFE (ASTM D 1457-83) |                      |    |     |  |
|           | 2         | Male Contact   | Brass (UNS C 385)     | 0.5                  | 3  | 1.5 |  |
|           | 3         | Insert         | PTFE (ASTM D 1457-83) |                      |    |     |  |
|           | 4         | Female Contact | Bronze (UNS C 544)    | 0.5                  | 3  | 2.5 |  |
|           | 5         | Insert Tube    | PTFE (ASTM D 1457-83) |                      |    |     |  |
|           | 6         | Clips          | Brass (UNS C 385)     | 0.5                  | 3  |     |  |

#### Example of coaxial contact construction for mixed coax and multi coax connectors

#### Coaxial type A0, A, A1 and type A3

The coaxial of this type is permanately fixed into the insert. The conductor is secured by solder and the shield by crimping.





|    | Component         | Material             | Surface<br>Treatment |    |     |  |
|----|-------------------|----------------------|----------------------|----|-----|--|
|    |                   | Material             | Cu                   | Ni | Au  |  |
| 1  | Male Sleeve       | Brass (UNS C 385)    | 0.5                  | 3  | 1.5 |  |
| 2  | Insert            | PTFE (UNS D 1457-83) |                      |    |     |  |
| 3  | Male Contact      | Brass (UNS C 385)    | 0.5                  | 3  | 1.5 |  |
| 4  | Female Sleeve     | Bronze (UNS C 544)   | 0.5                  | 3  | 2.0 |  |
| 5  | Insert            | PFTE (UNS D 1457-83) |                      |    |     |  |
| 6  | Female Contact    | Bronze (UNS C 544)   | 0.5                  | 3  | 2.5 |  |
| 7  | Insulating Sleeve | PTFE (UNS D 1457-83) |                      |    |     |  |
| 8  | Grounding Sleeve  | Brass (UNS C 385)    | 0.5                  | 3  |     |  |
| 9  | Collet            | Brass (UNS C 187)    | 0.5                  | 3  |     |  |
| 10 | Ferrule           | Brass (UNS C 385)    | 0.5                  | 3  |     |  |



# Technical characteristics of coax contacts

The coaxial part is permanently fixed in the main insert. The inner conductor of the cable is soldered to the contact while the outer conductor is clamped by the collet.

| Characteristics           | Unit | Coax<br>Type A    |                   | Coax<br>Type A0   | Coax<br>Type A1   | Coax<br>Type A3   |
|---------------------------|------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Impedance                 | Ω    | 50                | 75                | 50                | 50                | 50                |
| Test voltage at 50 Hz     | AC   | 1800              | 2300              | 300               | 800               | 3000              |
| Rated current             | Α    | 12                | 7                 | 7                 | 5                 | 15                |
| Insulating resistance     | Ω    | >10 <sub>12</sub> |
| Contact resistance        | mΩ   | 2.0               | 2.9               | 4.5               | 3.8               | 2.0               |
| Shell to shell resistance | mΩ   | 1.8               | 1.8               | 1.0               | 3.0               | 1.0               |
| VSWR (f = GHz)            |      | 1.01<br>+0.146f   | 1.01<br>+0.019f   | 1.06<br>+0.1f     | 1.01<br>+0.127f   | 1.06<br>+0.5f     |







#### Recommended coaxial and triaxial cable for mixed coax and multicoax connectors

|            | Group 1) |   |   |   |   |   |  |  |  |
|------------|----------|---|---|---|---|---|--|--|--|
| Туре       | 1        | 2 | 3 | 5 | 6 | 7 |  |  |  |
| RG.58 C/U  |          |   |   |   |   |   |  |  |  |
| RG.59 B/U  |          |   |   |   |   |   |  |  |  |
| RG.115 A/U |          |   |   |   |   |   |  |  |  |
| RG.122 /U  |          |   |   |   |   |   |  |  |  |
| RG.142 B/U |          |   |   |   |   |   |  |  |  |
| RG.165 /U  |          |   |   |   |   |   |  |  |  |
| RG.174 A/U |          |   |   |   |   |   |  |  |  |
| RG.178 B/U |          |   |   |   |   |   |  |  |  |

|                     | Group 1) |   |   |   |   |   |  |  |
|---------------------|----------|---|---|---|---|---|--|--|
| Туре                | 1        | 2 | 3 | 5 | 6 | 7 |  |  |
| RG.188 A/U          |          |   |   |   |   |   |  |  |
| RG.196 A/U          |          |   |   |   |   |   |  |  |
| RG.213 /U           |          |   |   |   |   |   |  |  |
| RG.223 /U           |          |   |   |   |   |   |  |  |
| RG.302 /U           |          |   |   |   |   |   |  |  |
| RG.316 /U           |          |   |   |   |   |   |  |  |
| RG.400 /U           |          |   |   |   |   |   |  |  |
| CCE.99.281.505 LEMO |          |   |   |   |   |   |  |  |

<sup>1)</sup> The cable group number corrresponding to the chosen cable must be written in the variant position of the part number.

# Housings

|      |                               | Surface t                  | reatment                            | _    |  |
|------|-------------------------------|----------------------------|-------------------------------------|------|--|
| Ref. | Material                      | Outer shell and collet nut | Latch sleeve<br>and grounding crown | Note |  |
| С    | Brass <sup>1)</sup>           | chrome                     | nickel                              |      |  |
| D    | Brass                         | gold-plated                | nickel                              |      |  |
| Ν    | Brass                         | nickel                     | nickel                              |      |  |
| K    | Brass                         | black chrome               | nickel                              |      |  |
| S    | Stainless steel               | without treatment          | nickel-plated brass                 |      |  |
| Т    | Stainless steel               | without treatment          | stainless steel                     |      |  |
| U    | Stainless steel <sup>2)</sup> | without treatment          | stainless steel                     |      |  |
| L    | Aluminium alloy <sup>3)</sup> | anodized                   | nickel-plated brass                 |      |  |
| В    | POM black <sup>4)</sup>       | without treatment          | nickel-plated brass                 |      |  |
| Н    | PPS/brass <sup>5)</sup>       | without treat./nickel      | nickel                              |      |  |
| G    | PEEK <sup>4)</sup>            | without treatment          | nickel-plated brass                 |      |  |
| Р    | PSU <sup>6)</sup>             | without treatment          | nickel-plated brass                 |      |  |
| R    | PPSU <sup>7)</sup>            | without treatment          | nickel-plated brass                 |      |  |

- Note: 1) In the E series the latch sleeve is chrome-plated.
- <sup>2)</sup> The other metallic components are in stainless steel.
- <sup>3)</sup> The «variant» position of the reference is used to specify the anodized color. See color chart on page 81.
   <sup>4)</sup> Only available for FFP, ERN and PCP models
- of the S series. <sup>5)</sup> For S series EPL and EXP elbow (90°) receptacles for printed circuit.
- <sup>6)</sup> Available only for the FFL model of the S series.
- See colors in «variant» position. 7) Available only for the FFL model of the S series.

Detailed characteristics of these materials are presented on page 5.

First choice alternative Special order alternative

# Insulators

| Ref. | Material or form   | Note |
|------|--------------------|------|
| L    | PEEK               |      |
| Т    | PTFE <sup>1)</sup> |      |
| Т    | FEP <sup>2)</sup>  |      |

First choice alternative Special order alternative

| Ref. | Material or form    | Note |
|------|---------------------|------|
| V    | PI <sup>2)</sup>    |      |
| Ν    | PA6.6 <sup>3)</sup> |      |

#### Note:

 Only for single contact types.
 Only for multicontact types.
 Material for 5E and 6E series multicontact inserts. Detailed characteristics of these materials are presented on page 7.



# • Contacts

#### Contacts for plugs, free or fixed receptacles

| Ref. | Contact type                      |  |  |  |  |  |  |
|------|-----------------------------------|--|--|--|--|--|--|
| Α    | Male solder                       |  |  |  |  |  |  |
| С    | Male crimp <sup>1) 4)</sup>       |  |  |  |  |  |  |
| L    | Female solder                     |  |  |  |  |  |  |
| М    | Female crimp <sup>2) 4)</sup>     |  |  |  |  |  |  |
| Ν    | Female printed circuit (straight) |  |  |  |  |  |  |
| V    | Female printed circuit (elbow)    |  |  |  |  |  |  |

Multicontact connectors are fitted with hermaphroditic inserts including male and female contacts. However, by convention, the letter indicating the contact type in the part number composition will be the male contact (reference A) for plugs and female contact (reference L) for receptacles.

In case of an odd number of contacts, the letter of reference corresponds to the one with the larger number of contacts. For example, a 309 type connector with contact (reference A) will include 5 male and 4 female contacts.

#### Contact configuration for RMA, RAD and SWH fixed couplers

#### Contacts for couplers and plug with receptacle

| Ref. | Contact type              | single<br>contact | multicontact |
|------|---------------------------|-------------------|--------------|
| А    | Male - Female             | 0                 | -            |
| L    | Female - Male             | 0                 |              |
| М    | Female - Female           | •                 | 0            |
| F    | Female - Female - Male 3) |                   |              |

For RAD and SWH fixed couplers, the first contact type mentioned is always the one at the flange end. Contact configuration and receptacles to be used for a connection are explained on the following page.

Note:

 $^{1)}$  For the FFS model of the 00 series and FFA or FFL models of the S series.

<sup>2)</sup> For the PSS model of the 00 series and PCA or PSA models of the S series.

<sup>3)</sup> For the FTA model of the S series.

<sup>4)</sup> For conductor range that can fit with crimp contacts consult page 9.

Connectors can be configured « inverted» i.e. plugs equipped with female contacts (reference L), receptacles with male contacts (reference A). This solution is particularly useful when plugs are mated to a coupler and it is essential to respect contact alignment (see next page).



#### Use of plugs for mating with RAD, RMA and SWH couplers

#### Single contact type:

Reference M For coupling two identical plugs fitted with male contact (contact reference A).

Reference L For coupling a plug fitted with male contacts (contact reference A) at the flange end for RAD and SWH and an inverted plug fitted with female contacts (contact reference L) at the other end.

Reference A For the inverted version of code L.

#### **Multicontact type:**

- Reference L For coupling a standard plug (contact reference A) at the flange end for RAD and SWH and an inverted plug (contact reference as indicated in the above table) at the other end.
- Reference M For coupling two standard plugs (contact type A). Only available for RAD and RMA models.

Note: <sup>1)</sup> This connector combination does not allow for contact numbering. One of the plugs has to be cable mounted in a way to ensure correct signal continuity.



# Collets

C and K type collets

|           |       |          |        | 0    | $\bigcirc$ | B O   |                                    |                                       |                      |         |
|-----------|-------|----------|--------|------|------------|-------|------------------------------------|---------------------------------------|----------------------|---------|
|           |       |          |        |      |            |       | _                                  |                                       |                      |         |
|           | Refer | ence     | Collet |      | Cab        | ole ø | Part number                        | Part number of the                    | Part number          | Avail-  |
|           | Туре  | Ø        | øΑ     | øΒ   | max.       | min.  | of the collet system <sup>1)</sup> | the split center-pieces <sup>2)</sup> | of the collet nut 2) | ability |
|           | С     | 10       | 1.6    | _    | 1.2        | 1.0   | FFA.0E.710.CNS                     | -                                     | FFA.0E.130.LC        | 0       |
| <b>0E</b> | С     | 15       | 1.6    | -    | 1.5        | 1.3   | FFA.0E.715.CNS                     | _                                     | FFA.0E.130.LC        | 0       |
|           | С     | 20       | 2.1    | -    | 2.0        | 1.6   | FFA.0E.720.CNS                     | _                                     | FFA.0E.130.LC        | 0       |
|           | С     | 25       | 3.1    | _    | 2.5        | 2.1   | FFA.0E.725.CNS                     | _                                     | FFA.0E.130.LC        | 0       |
|           | С     | 30       | 3.1    | _    | 3.0        | 2.6   | FFA.0E.730.CNS                     | _                                     | FFA.0E.130.LC        | 0       |
|           | С     | 35       | 4.2    | 4.2  | 3.5        | 3.1   | FFA.0E.735.CNS                     | _                                     | FFA.0E.130.LC        | 0       |
|           | С     | 40       | 4.2    | 4.2  | 4.0        | 3.6   | FFA.0E.740.CNS                     | _                                     | FFA.0E.130.LC        | 0       |
|           | С     | 45       | 5.2    | 5.2  | 4.5        | 4.1   | FFA.0E.745.CNS                     | _                                     | FFA.0E.131.LC        |         |
|           | C     | 50       | 5.2    | 5.2  | 5.0        | 4.6   | FFA.0E.750.CNS                     | _                                     | FFA.0E.131.LC        | •       |
|           | С     | 15       | 1.6    | -    | 1.5        | 1.3   | FFA.1E.715.CNS                     | _                                     | FFA.1E.130.LC        | 0       |
| 1E        | С     | 20       | 2.2    | -    | 2.0        | 1.6   | FFA.1E.720.CNS                     | _                                     | FFA.1E.130.LC        | 0       |
|           | С     | 25       | 3.2    | -    | 2.5        | 2.1   | FFA.1E.725.CNS                     | _                                     | FFA.1E.130.LC        | •       |
|           | С     | 30       | 3.2    | _    | 3.0        | 2.6   | FFA.1E.730.CNS                     | _                                     | FFA.1E.130.LC        | 0       |
|           | С     | 35       | 4.2    | -    | 3.5        | 3.1   | FFA.1E.735.CNS                     | _                                     | FFA.1E.130.LC        | 0       |
|           | C     | 40       | 4.2    | -    | 4.0        | 3.6   | FFA.1E.740.CNS                     | _                                     | FFA.1E.130.LC        | 0       |
|           | C     | 45       | 5.2    | -    | 4.5        | 4.1   | FFA.1E.745.CNS                     | _                                     | FFA.1E.130.LC        |         |
|           | С     | 50       | 5.2    | -    | 5.0        | 4.6   | FFA.1E.750.CNS                     | _                                     | FFA.1E.130.LC        |         |
|           | C     | 55       | 6.2    | 6.2  | 5.5        | 5.1   | FFA.1E.755.CNS                     | _                                     | FFA.1E.130.LC        | •       |
|           | C     | 60       | 6.2    | 6.2  | 6.0        | 5.6   | FFA.1E.760.CNS                     | _                                     | FFA.1E.130.LC        | •       |
|           | C     | 65       | 7.2    | 6.7  | 6.5        | 6.1   | FFA.1E.765.CNS                     | -                                     | FFA.1E.130.LC        | •       |
|           | K     | 70       | 7.2    | -    | 7.0        | 6.6   | FFA.2E.770.CNS                     | FFA.1E.137.LCN                        | FFA.2E.130.LC        | 0       |
|           | K     | /5       | 8.2    | 8.2  | 7.5        | /.1   | FFA.2E.775.CNS                     | FFA.1E.137.LCN                        | FFA.2E.130.LC        | 0       |
|           | ĸ     | 80       | 8.2    | 8.2  | 8.0        | 7.6   | FFA.2E.780.CNS                     | FFA.1E.137.LCN                        | FFA.2E.130.LC        | 0       |
| []        | ĸ     | 85       | 9.2    | 8.6  | 8.5        | 8.1   | FFA.2E.785.CNS                     | FFA.1E.137.LCN                        | FFA.2E.130.LC        | 0       |
| 0         | C     | 15       | 2.2    | _    | 1.5        | 1.3   | FFA.2E.715.CNS                     | _                                     | FFA.2E.130.LC        | 0       |
| 2E        | C     | 20       | 2.2    | _    | 2.0        | 1.6   | FFA.2E.720.CNS                     | -                                     | FFA.2E.130.LC        | 0       |
|           | C     | 25       | 3.2    | -    | 2.5        | 2.1   | FFA.2E.725.CNS                     | -                                     | FFA.2E.130.LC        | 0       |
|           | 0     | 30       | 3.2    | _    | 3.0        | 2.6   | FFA.2E.730.CNS                     |                                       | FFA.2E.130.LC        | 0       |
|           | 0     | 35       | 4.2    | _    | 3.5        | 3.1   | FFA.2E.735.UNS                     | —                                     | FFA.2E.130.LC        |         |
|           | 0     | 40       | 4.2    | _    | 4.0        | 3.0   | FFA.2E.74U.UNO                     | — —                                   | FFA.2E.13U.LU        | 0       |
|           | 0     | 40<br>50 | 5.2    | _    | 4.5        | 4.1   | FFA.2E.743.0NO                     |                                       | FFA.2E.130.LC        | 0       |
|           | 0     | 55       | 6.0    |      | 5.0        | 5.1   | FFA 2E 755 CNQ                     |                                       | FEA 2E 12010         |         |
|           | 0     | 60       | 6.2    | _    | 5.5<br>6.0 | 5.1   | FFA 2E 760 CNS                     |                                       | FFA 2E 130 LC        |         |
|           | C     | 65       | 7.2    | _    | 6.5        | 6.1   | FFΔ 2E 765 CNS                     |                                       | FFA 2F 13010         | 0       |
|           | C C   | 70       | 7.2    | _    | 7.0        | 6.6   | FFA 2E 770 CNS                     |                                       | FFA 2E 130 LC        | 0       |
|           | C     | 75       | 82     | 82   | 7.5        | 7 1   | FFA.2E.775 CNS                     | _                                     | FFA.2E 1301 C        | 0       |
|           | C     | 80       | 8.2    | 8.2  | 8.0        | 7.6   | FFA.2E.780 CNS                     | _                                     | FFA.2E 130 L C       | 0       |
|           | C     | 85       | 9.2    | 8.6  | 8.5        | 81    | FFA.2E.785 CNS                     | _                                     | FFA.2F 130 L C       |         |
|           | K     | 90       | 9.2    | _    | 9.0        | 8.6   | FFA.3E.790 CNS                     | FFA.2E.137.1 CN                       | FFA.3E.130.LC        | 0       |
|           | K     | 95       | 10.2   | 10.2 | 9.5        | 9.1   | FFA.3E.795.CNS                     | FFA.2E.137.LCN                        | FFA.3E.130.LC        | 0       |
|           | K     | 10       | 10.2   | 10.2 | 10.0       | 9.6   | FFA.3E.710.CNS                     | FFA.2E.137.LCN                        | FFA.3E.130.LC        | 0       |
|           | К     | 11       | 11.2   | 10.6 | 11.0       | 10.1  | FFA.3E.711.CNS                     | FFA.2E.137.LCN                        | FFA.3E.130.LC        | 0       |
|           |       |          | L      |      | 1          | 1     | 1                                  | i                                     |                      |         |

Note:
 <sup>1)</sup> For ordering the collet system separately.
 <sup>2)</sup> For ordering a K type collet separately, the oversize collet and the corresponding collet nut should also be ordered. All dimensions are in millimeters.



### C and K type collets

|    |       |          |      | 0     |            |            | v v s                                             |                                                                  |                                                | )                 |
|----|-------|----------|------|-------|------------|------------|---------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|-------------------|
|    | Refer | ence     | C    | ollet | Cab        | le ø       | _                                                 | Part number of the                                               | _                                              | A                 |
|    | Туре  | ø        | ø A  | ø B   | max.       | min.       | Part number<br>of the collet system <sup>1)</sup> | oversize collet and of<br>the split center-pieces <sup>2</sup> ) | Part number<br>of the collet nut <sup>2)</sup> | Avail-<br>ability |
|    | С     | 30       | 3.2  | _     | 3.0        | 2.6        | FFA.3E.730.CNS                                    | _                                                                | FFA.3E.130.LC                                  | 0                 |
| 3E | С     | 35       | 4.2  | _     | 3.5        | 3.1        | FFA.3E.735.CNS                                    | _                                                                | FFA.3E.130.LC                                  | 0                 |
| -  | С     | 40       | 4.2  | _     | 4.0        | 3.6        | FFA.3E.740.CNS                                    | _                                                                | FFA.3E.130.LC                                  | 0                 |
|    | С     | 45       | 5.2  | -     | 4.5        | 4.1        | FFA.3E.745.CNS                                    | —                                                                | FFA.3E.130.LC                                  | 0                 |
|    | C     | 50       | 5.2  | -     | 5.0        | 4.6        | FFA.3E.750.CNS                                    | _                                                                | FFA.3E.130.LC                                  | 0                 |
|    | С     | 55       | 6.2  | -     | 5.5        | 5.1        | FFA.3E.755.CNS                                    | -                                                                | FFA.3E.130.LC                                  | 0                 |
|    | С     | 60       | 6.2  | -     | 6.0        | 5.6        | FFA.3E.760.CNS                                    |                                                                  | FFA.3E.130.LC                                  | 0                 |
|    | C     | 65       | 7.2  | _     | 6.5        | 6.1        | FFA.3E.765.CNS                                    |                                                                  | FFA.3E.130.LC                                  | 0                 |
|    | C     | 70       | 7.2  | -     | 7.0        | 6.6        | FFA.3E.770.CNS                                    |                                                                  | FFA.3E.130.LC                                  | 0                 |
|    | C     | 75       | 8.2  | -     | 7.5        | 7.1        | FFA.3E.775.CNS                                    |                                                                  | FFA.3E.130.LC                                  | 0                 |
|    | C     | 80       | 8.2  | -     | 8.0        | 7.6        | FFA.3E.780.CNS                                    | _                                                                | FFA.3E.130.LC                                  | 0                 |
|    | C     | 85       | 9.2  | -     | 8.5        | 8.1        | FFA.3E.785.CNS                                    |                                                                  | FFA.3E.130.LC                                  | 0                 |
|    | C     | 90       | 9.2  | _     | 9.0        | 8.6        | FFA.3E.790.CNS                                    | _                                                                | FFA.3E.130.LC                                  | 0                 |
|    | C     | 95       | 10.2 | 10.2  | 9.5        | 9.1        | FFA.3E.795.CNS                                    | _                                                                | FFA.3E.130.LC                                  | 0                 |
|    | C     | 10       | 10.2 | 10.2  | 10.0       | 9.6        | FFA.3E.710.CNS                                    | -                                                                | FFA.3E.130.LC                                  | 0                 |
|    | С     | 11       | 11.2 | 11.2  | 10.6       | 10.1       | FFA.3E.711.CNS                                    |                                                                  | FFA.3E.130.LC                                  | 0                 |
|    | K     | 11       | 12.3 | -     | 12.0       | 10.6       | FFA.4E.711.CNS                                    | FFA.3E.137.LCN                                                   | FFA.4E.130.LC                                  | 0                 |
|    | ĸ     | 12       | 13.8 | 13.8  | 12.8       | 12.1       | FFA.4E.712.CNS                                    | FFA.3E.137.LCN                                                   | FFA.4E.130.LC                                  | 0                 |
|    | ĸ     | 13       | 13.8 | 13.8  | 13.5       | 12.9       | FFA.4E.713.CNS                                    | FFA.3E.137.LCN                                                   | FFA.4E.130.LC                                  |                   |
|    | ĸ     | 14       | 15.3 | 15.3  | 14.0       | 13.6       | FFA.4E.714.CNS                                    | FFA.3E.137.LCN                                                   | FFA.4E.130.LC                                  |                   |
|    | r.    | 15       | 15.3 | 15.3  | 15.0       | 14.1       | FFA.4E.715.CNS                                    | FFA.3E.137.LON                                                   | FFA.4E.130.LC                                  |                   |
|    | C     | 50       | 6.3  | -     | 5.0        | 4.6        | FFA.4E.750.CNS                                    | _                                                                | FFA.4E.130.LC                                  | 0                 |
| 4E | 0     | 55       | 6.3  | -     | 5.5        | 5.1        | FFA.4E.755.CNS                                    |                                                                  | FFA.4E.130.LC                                  | 0                 |
|    | 0     | 60       | 6.3  | _     | 6.0        | 5.6        | FFA.4E.760.CNS                                    |                                                                  | FFA.4E.130.LC                                  |                   |
|    |       | 05<br>70 | 7.3  | _     | 0.5        | 6.1        | FFA.4E.765.CNS                                    |                                                                  | FFA.4E.130.LC                                  |                   |
|    |       | 70       | 7.3  | _     | 7.0        | 0.0        | FFA.4E.770.CNS                                    |                                                                  | FFA.4E.130.LC                                  |                   |
|    | C     | 80       | 0.0  |       | 7.0<br>8.0 | 7.1        | FFΔ 4E 780 CNS                                    |                                                                  | FFA 4E 130.LC                                  | 0                 |
|    | 0     | 85       | 0.3  | _     | 8.0        | 7.0<br>    | FFΔ 4E 785 CNG                                    |                                                                  | FFA 4E 130.LC                                  |                   |
|    | C     | 90       | 0.0  | _     | 0.5<br>0.0 | 8.6        | FFA 4F 700 CNS                                    |                                                                  | FFA 4F 13010                                   |                   |
|    | C     | 95       | 10.8 | _     | 9.5        | 0.0<br>0.1 | FFA 4E 795 CNS                                    |                                                                  | FFA 4E 130 L C                                 |                   |
|    | C     | 10       | 10.8 | _     | 10.5       | 9.1        | FFA.4F.710 CNS                                    | _                                                                | FFA.4F 130 LC                                  |                   |
|    | C     | 11       | 12.3 | _     | 12.0       | 10.6       | FFA.4E.711.CNS                                    |                                                                  | FFA.4E.130.LC                                  |                   |
|    | C     | 12       | 13.8 | 13.8  | 12.8       | 12.1       | FFA 4F 712 CNS                                    |                                                                  | FFA 4F 130 LC                                  |                   |
|    | C     | 13       | 13.8 | 13.8  | 13.5       | 12.9       | FFA.4E.713.CNS                                    |                                                                  | FFA.4F.130.LC                                  |                   |
|    | C     | 14       | 15.3 | 15.3  | 14.0       | 13.6       | FFA.4E.714.CNS                                    |                                                                  | FFA.4E.130.LC                                  | 0                 |
|    | C     | 15       | 15.3 | 15.3  | 15.0       | 14.1       | FFA.4E.715.CNS                                    |                                                                  | FFA.4E.130.LC                                  | 0                 |
|    | K     | 16       | 17.8 | _     | 16.5       | 15.6       | FFA.4K.716.CNS                                    | FFA.4E.137.LCN <sup>3)</sup>                                     | FFA.4K.136.LC                                  | 0                 |
|    | K     | 17       | 17.8 | _     | 17.5       | 16.6       | FFA.4K.717.CNS                                    | FFA.4E.137.LCN                                                   | FFA.4K.136.LC                                  | 0                 |
|    | K     | 18       | 19.8 | _     | 18.5       | 17.6       | FFA.4K.718.CNS                                    | FFA.4E.137.LCN                                                   | FFA.4K.136.LC                                  | 0                 |
|    | K     | 19       | 19.8 | _     | 19.5       | 18.6       | FFA.4K.719.CNS                                    | FFA.4E.137.LCN                                                   | FFA.4K.136.LC                                  | 0                 |
|    | K     | 20       | 21.8 | -     | 20.5       | 19.6       | FFA.4K.720.CNS                                    | FFA.4E.137.LCN                                                   | FFA.4K.136.LC                                  | 0                 |
|    | K     | 21       | 21.8 | -     | 21.5       | 20.6       | FFA.4K.721.CNS                                    | FFA.4E.137.LCN                                                   | FFA.4K.136.LC                                  | 0                 |
|    | K     | 22       | 23.8 | 23.8  | 22.5       | 21.6       | FFA.4K.722.CNS                                    | FFA.4E.137.LCN                                                   | FFA.4K.136.LC                                  | 0                 |
|    | K     | 23       | 23.8 | 23.8  | 23.5       | 22.6       | FFA.4K.723.CNS                                    | FFA.4E.137.LCN                                                   | FFA.4K.136.LC                                  | 0                 |

Note:
1) For ordering the collet system separately.
2) For ordering a K type collet separately, the oversize collet and the corresponding collet nut should also be ordered.
3) In 4E series, the center-piece is made of one piece.

All dimensions are in millimeters.



#### C type collets

|           |      |       | Ć    |       |      |                                         |                |                   |         |
|-----------|------|-------|------|-------|------|-----------------------------------------|----------------|-------------------|---------|
|           | Refe | rence | Co   | ollet | Cab  | ole ø                                   | Part number    | Part number       | Avail-  |
|           | Туре | ø     | øΑ   | øΒ    | max. | min. of the collet system <sup>1)</sup> |                | of the collet nut | ability |
|           | С    | 10    | 11.8 | -     | 10.5 | 9.6                                     | FFA.5K.710.CNS | FFA.5K.130.LC     | 0       |
| <b>5E</b> | С    | 11    | 11.8 | -     | 11.5 | 10.6                                    | FFA.5K.711.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 12    | 13.8 | -     | 12.5 | 11.6                                    | FFA.5K.712.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 13    | 13.8 | -     | 13.5 | 12.6                                    | FFA.5K.713.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 14    | 15.8 | -     | 14.5 | 13.6                                    | FFA.5K.714.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 15    | 15.8 | -     | 15.5 | 14.6                                    | FFA.5K.715.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 16    | 17.8 | -     | 16.5 | 15.6                                    | FFA.5K.716.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 17    | 17.8 | -     | 17.5 | 16.6                                    | FFA.5K.717.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 18    | 19.8 | -     | 18.5 | 17.6                                    | FFA.5K.718.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 19    | 19.8 | -     | 19.5 | 18.6                                    | FFA.5K.719.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 20    | 21.8 | -     | 20.5 | 19.6                                    | FFA.5K.720.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 21    | 21.8 | -     | 21.5 | 20.6                                    | FFA.5K.721.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 22    | 23.8 | 23.8  | 22.5 | 21.6                                    | FFA.5K.722.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 23    | 23.8 | 23.8  | 23.5 | 22.6                                    | FFA.5K.723.CNS | FFA.5K.130.LC     | 0       |
|           | С    | 14    | 14.2 | -     | 14.0 | 13.0                                    | FFA.6E.714.CNS | FGG.6E.130.LC     | 0       |
| <b>6E</b> | С    | 15    | 15.2 | -     | 15.0 | 14.1                                    | FFA.6E.715.CNS | FGG.6E.131.LC     | 0       |
|           | С    | 16    | 15.7 | -     | 15.5 | 14.6                                    | FFA.6E.716.CNS | PKG.6E.131.LC     | 0       |
|           | С    | 17    | 16.7 | -     | 16.5 | 15.6                                    | FFA.6E.717.CNS | PKG.6E.132.LC     | 0       |
|           | С    | 18    | 18.2 | -     | 18.0 | 17.1                                    | FFA.6E.718.CNS | FGG.6E.132.LC     | 0       |
|           | С    | 21    | 23.2 | -     | 21.5 | 20.6                                    | FFA.6E.721.CNS | FGG.6E.133.LC     | 0       |
|           | С    | 22    | 23.2 | _     | 22.0 | 21.1                                    | FFA.6E.722.CNS | PKG.6E.133.LC     | 0       |
|           | С    | 23    | 23.2 | -     | 23.0 | 22.1                                    | FFA.6E.723.CNS | FGG.6E.134.LC     | 0       |
|           | С    | 27    | 27.2 | -     | 27.0 | 26.1                                    | FFA.6E.727.CNS | FGG.6E.135.LC     | 0       |
|           | С    | 30    | 30.2 | -     | 30.0 | 29.5                                    | FFA.6E.730.CNS | FGG.6E.136.LC     | 0       |

Note: 1) For ordering the collet system separately.

## Bend relief nut and bend relief

|           | Refe | rence    | Part number       | Rond rolief to be used 1) |
|-----------|------|----------|-------------------|---------------------------|
|           | Туре | Ø        | of the collet nut | Dend relier to be used "  |
| <b>0E</b> | С    | 10 to 50 | FFM.0E.130.LC     | GMA.0B                    |
| 10        | С    | 15 to 65 | FFM.1E.130.LC     | GMA.1B                    |
| IC        | K    | 70 to 85 | FFM.2E.130.LC     | GMA.2B                    |
| DE        | С    | 15 to 85 | FFM.2E.130.LC     | GMA.2B                    |
| 26        | K    | 90 to 11 | FFM.3E.130.LC     | GMA.3B                    |
| 25        | С    | 30 to 10 | FFM.3E.130.LC     | GMA.3B                    |
| JE        | K    | 11 to 15 | FFM.4E.130.LC     | GMA.4B                    |
| <b>4E</b> | С    | 50 to 15 | FFM.4E.130.LC     | GMA.4B                    |

Note:  $^{1)}$  The bend relief is to be ordered separately (see pages 91 and 92). All dimensions are in millimeters.



#### Anodized color

The «variant» position of the reference is used to specify the anodized color according to the table below.

Part number for connector with standard collet nut

| Ref. | Anodized color | Ref. | Anodized color |
|------|----------------|------|----------------|
| Α    | blue           | R    | red            |
| J    | yellow         | Т    | natural        |
| N    | black          | V    | green          |

Part number for connector with bend relief backnut

| Ref. | Anodized color |
|------|----------------|
| L    | black          |
| Х    | natural        |

 $\ensuremath{\textbf{Note:}}$  Other anodizing colors are available for connectors with bend relief backnut. Please consult us.









Avail-

ability

0

0

0

0

0

Ο

0

0

Ο

Ο

0

0

0

0

Ο

Ο

0

0

0

Ο

0

Ο

 $\bigcirc$ 

0

0

0

Ο

0

0

0

0

0

0

Female contact

EGG.3B.408.YL

EGG.3B.409.ML

EGG.3B.410.YL

EGG.3B.412.YL

EGG.3B.414.YL

EGG.3B.416.YL

EGG.3B.418.YL

EGG.3B.420.YL

EGG.3B.422.YL

EGG.3B.424.YL

EGG.3B.426.YL

EGG.3B.430.YL

EGG.4B.404.YL

EGG.4B.406.YL

EGG.4B.407.YL

EGG.4B.410.YL

EGG.4B.412.YL

EGG.4B.416.YL

EGG.4B.420.YL

EGG.4B.424.YL

EGG.4B.430.YL

EGG.4B.440.YL

EGG.5B.404.ML

EGG.5B.410.YL

EGG.5B.414.YL

EGG.5B.416.YL

EGG.5B.420.YL

EGG.5B.430.YL

EGG.5B.440.YL

EGG.5B.448.YL

EGG.5B.450.ML

EGG.5B.454.YL

EGG.5B.464.YL

# Accessories

#### FGG-EGG Insulators for crimp contacts

11

|           | 2    | ô             |                   | ( 58           |                   |           |      |               |                   |             |
|-----------|------|---------------|-------------------|----------------|-------------------|-----------|------|---------------|-------------------|-------------|
|           | male | ,             |                   | female         |                   |           |      |               |                   |             |
|           |      | Ir            | sulator p         | part number    |                   | ] [       |      | Ins           | sulator p         | part number |
|           | Туре | Male contact  | Avail-<br>ability | Female contact | Avail-<br>ability |           | Туре | Male contact  | Avail-<br>ability | Female co   |
|           | 302  | FGG.0B.302.YL | 0                 | EGG.0B.402.YL  | 0                 |           | 308  | FGG.3B.308.YL | 0                 | EGG.3B.4    |
| 0K        | 303  | FGG.0B.303.YL | 0                 | EGG.0B.403.YL  | 0                 | 3K        | 309  | FGG.3B.309.ML | 0                 | EGG.3B.4    |
|           | 304  | FGG.0B.304.YL | 0                 | EGG.0B.404.YL  | 0                 |           | 310  | FGG.3B.310.YL | 0                 | EGG.3B.4    |
|           | 305  | FGG.0B.305.YL | 0                 | EGG.0B.405.YL  | 0                 |           | 312  | FGG.3B.312.YL | 0                 | EGG.3B.4    |
|           | 306  | FGG.0B.306.YL | 0                 | -              |                   | -         | 314  | FGG.3B.314.YL | 0                 | EGG.3B.4    |
|           | 307  | FGG.0B.307.YL | 0                 | -              |                   | -         | 316  | FGG.3B.316.YL | 0                 | EGG.3B.4    |
| <br>      | 309  | FGG.0B.309.YL | 0                 | -              |                   |           | 318  | FGG.3B.318.YL | 0                 | EGG.3B.4    |
|           | 302  | FGG.1B.302.YL | 0                 | EGG.1B.402.YL  | 0                 |           | 320  | FGG.3B.320.YL | 0                 | EGG.3B.4    |
| 1K        | 303  | FGG.1B.303.YL | 0                 | EGG.1B.403.YL  | 0                 | -         | 322  | FGG.3B.322.YL | 0                 | EGG.3B.4    |
|           | 304  | FGG.1B.304.YL | 0                 | EGG.1B.404.YL  | 0                 | -         | 324  | FGG.3B.324.YL | 0                 | EGG.3B.4    |
|           | 305  | FGG.1B.305.YL | 0                 | EGG.1B.405.YL  | 0                 | -         | 326  | FGG.3B.326.YL |                   | EGG.3B.4    |
|           | 306  | FGG.1B.306.YL | 0                 | EGG.1B.406.YL  | 0                 |           | 330  | FGG.3D.330.1L |                   | EGG.3D.4    |
|           | 307  | FGG.1B.307.YL | 0                 | EGG.1B.407.YL  | 0                 |           | 304  | FGG.4B.304.YL | 0                 | EGG.4B.4    |
|           | 308  | FGG.1B.308.YL | 0                 | EGG.1B.408.YL  | 0                 | <b>4K</b> | 306  | FGG.4B.306.YL | 0                 | EGG.4B.4    |
|           | 310  | FGG.1B.310.YL | 0                 | -              |                   |           | 307  | FGG.4B.307.YL | 0                 | EGG.4B.4    |
|           | 314  | FGG.1B.314.YL | 0                 | -              |                   | -         | 310  | FGG.4B.310.YL | 0                 | EGG.4B.4    |
| <br>      | 316  | FGG.1B.316.YL | 0                 | -              |                   |           | 312  | FGG.4B.312.YL | 0                 | EGG.4B.4    |
|           | 302  | FGG.2B.302.YL | 0                 | EGG.2B.402.YL  | 0                 |           | 316  | FGG.4B.316.YL | 0                 | EGG.4B.4    |
| 2K        | 303  | FGG.2B.303.YL | 0                 | EGG.2B.403.YL  | 0                 |           | 320  | FGG.4B.320.YL |                   | EGG.4B.4    |
|           | 304  | FGG.2B.304.YL | 0                 | EGG.2B.404.YL  | 0                 |           | 324  | FGG.4B.324.YL | 0                 | EGG.4B.4    |
|           | 305  | FGG.2B.305.YL | 0                 | EGG.2B.405.YL  | 0                 |           | 330  | FGG.4B.330.YL |                   | EGG.4B.4    |
|           | 306  | FGG.2B.306.YL | 0                 | EGG.2B.406.YL  | 0                 |           | 340  | FGG.4D.340.1L |                   | EGG.4D.4    |
|           | 307  | FGG.2B.307.YL | 0                 | EGG.2B.407.YL  | 0                 |           | 304  | FGG.5B.304.ML | 0                 | EGG.5B.4    |
|           | 308  | FGG.2B.308.YL | 0                 | EGG.2B.408.YL  | 0                 | 5K        | 310  | FGG.5B.310.YL | 0                 | EGG.5B.4    |
|           | 310  | FGG.2B.310.YL | 0                 | EGG.2B.410.YL  | 0                 |           | 314  | FGG.5B.314.YL | 0                 | EGG.5B.4    |
|           | 312  | FGG.2B.312.YL | 0                 | EGG.2B.412.YL  | 0                 |           | 316  | FGG.5B.316.YL | 0                 | EGG.5B.4    |
|           | 314  | FGG.2B.314.YL | 0                 | EGG.2B.414.YL  | 0                 | -         | 320  | FGG.5B.320.YL | 0                 | EGG.5B.4    |
|           | 316  | FGG.2B.316.YL | 0                 | EGG.2B.416.YL  | 0                 | -         | 330  | FGG.5B.330.YL | 0                 | EGG.5B.4    |
|           | 318  | FGG.2B.318.YL | 0                 | EGG.2B.418.YL  | 0                 |           | 340  | FGG.5B.340.YL | 0                 | EGG.5B.4    |
|           | 319  | FGG.2B.319.YL | 0                 | EGG.2B.419.YL  | 0                 |           | 348  | FGG.5B.348.YL | 0                 | EGG.5B.4    |
|           | 326  | FGG.2B.326.YL | 0                 | -              |                   |           | 350  | FGG.5B.350.ML | 0                 | EGG.5B.4    |
| <br>      | 332  | FGG.2B.332.YL | 0                 | -              |                   |           | 354  | FGG.5B.354.YL |                   | EGG.5B.4    |
|           | 302  | FGG.3B.302.YL | 0                 | EGG.3B.402.YL  | 0                 |           | 364  | FGG.5B.364.YL | 0                 | EGG.5B.4    |
| <b>3K</b> | 303  | FGG.3B.303.YL | 0                 | EGG.3B.403.YL  | 0                 |           |      |               |                   |             |
|           | 304  | FGG.3B.304.YL | 0                 | EGG.3B.404.YL  | 0                 |           |      |               |                   |             |
|           | 305  | FGG.3B.305.YL | 0                 | EGG.3B.405.YL  | 0                 |           |      |               |                   |             |
|           | 306  | FGG.3B.306.YL | 0                 | EGG.3B.406.YL  | 0                 |           |      |               |                   |             |
|           | 307  | FGG.3B.307.YL | 0                 | EGG.3B.407.YL  | 0                 | ]         |      |               |                   |             |

Note: Each insulator can be used both for crimp contacts of normal shape (fig. 1) or with reduced solder cups (fig. 2) as shown on page 85 to 87.

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.



## **FGG-EGG** Crimp contacts



Note: See next page for additional style

### Standard Crimp Barrel

|           | T           | um)    | (uu    | Contact part number |                   |                |                   |  |  |  |
|-----------|-------------|--------|--------|---------------------|-------------------|----------------|-------------------|--|--|--|
|           | Types       | ø A (r | ø C (I | Male                | Avail-<br>ability | Female         | Avail-<br>ability |  |  |  |
|           | 302/303     | 0.9    | 1.10   | FGG.0B.560.ZZC •    |                   | EGG.0B.660.ZZM | •                 |  |  |  |
| <b>0K</b> | 304/305     | 0.7    | 0.80   | FGG.0B.555.ZZC      | •                 | EGG.0B.655.ZZM | •                 |  |  |  |
|           | 306/307/309 | 0.5    | 0.45   | FGG.0B.554.ZZC      | 0                 | EGG.0B.654.ZZM | 0                 |  |  |  |
|           | 302/303     | 1.3    | 1.40   | FGG.1B.565.ZZC      |                   | EGG.1B.665.ZZM | 0                 |  |  |  |
| 1K        | 304/305     | 0.9    | 1.10   | FGG.1B.560.ZZC      |                   | EGG.1B.660.ZZM | •                 |  |  |  |
|           | 306/307/308 | 0.7    | 0.80   | FGG.1B.555.ZZC      | •                 | EGG.1B.655.ZZM | •                 |  |  |  |
|           | 310/314/316 | -      | -      | -                   | -                 | -              | -                 |  |  |  |
|           | 702/731     | 1.3    | 1.40   | FGG.1B.565.ZZC      | •                 | EGG.1B.665.ZZM | 0                 |  |  |  |
|           | 302         | 2.0    | 2.40   | FGG.2B.575.ZZC      |                   | EGG.2B.675.ZZM | •                 |  |  |  |
| 2K        | 303         | 1.6    | 1.90   | FGG.2B.570.ZZC      | •                 | EGG.2B.670.ZZM | •                 |  |  |  |
|           | 304/305     | 1.3    | 1.40   | FGG.2B.565.ZZC      | •                 | EGG.2B.665.ZZM | •                 |  |  |  |
|           | 306/307     | 1.3    | 1.40   | FGG.2B.565.ZZC      | •                 | EGG.2B.665.ZZM | •                 |  |  |  |
|           | 308/310     | 0.9    | 1.10   | FGG.2B.560.ZZC      | •                 | EGG.2B.660.ZZM | •                 |  |  |  |
|           | 312/314/316 | 0.7    | 0.80   | FGG.2B.555.ZZC      | •                 | EGG.2B.655.ZZM | •                 |  |  |  |
|           | 318/319     | 0.7    | 0.80   | FGG.2B.555.ZZC      | •                 | EGG.2B.655.ZZM | •                 |  |  |  |
|           | 326/332     | -      | -      | -                   | -                 | -              | -                 |  |  |  |
|           | 704         | 0.7    | 0.80   | FGG.2B.555.ZZC      | •                 | EGG.2B.655.ZZM | •                 |  |  |  |
|           | 706         | 1.3    | 1.40   | FGG.2B.565.ZZC      | ٠                 | EGG.2B.665.ZZM | •                 |  |  |  |
|           | 708         | 0.9    | 1.10   | FGG.2B.560.ZZC      | ٠                 | EGG.2B.660.ZZM | •                 |  |  |  |
|           | 802         | 0.9    | 1.10   | FGG.2B.560.ZZC      | •                 | EGG.2B.660.ZZM | •                 |  |  |  |
|           | 804/806/810 | 0.7    | 0.80   | FGG.2B.555.ZZC      | ٠                 | EGG.2B.655.ZZM | •                 |  |  |  |
|           | 302         | 3.0    | 2.90   | FGG.3B.580.ZZC      | 0                 | EGG.3B.680.ZZM | 0                 |  |  |  |
| 3K        | 303/304/309 | 2.0    | 2.40   | FGG.3B.575.ZZC      | •                 | EGG.3B.675.ZZM | •                 |  |  |  |
|           | 305/306/307 | 1.6    | 1.90   | FGG.3B.570.ZZC      | •                 | EGG.3B.670.ZZM | •                 |  |  |  |
|           | 308/309/310 | 1.3    | 1.40   | FGG.3B.565.ZZC      | •                 | EGG.3B.665.ZZM | •                 |  |  |  |
|           | 312/314     | 0.9    | 1.10   | FGG.3B.560.ZZC      | •                 | EGG.3B.660.ZZM | •                 |  |  |  |
|           | 316/318     | 0.9    | 1.10   | FGG.3B.560.ZZC      | •                 | EGG.3B.660.ZZM |                   |  |  |  |
|           | 320/322/324 | 0.7    | 0.80   | FGG.3B.555.ZZC      | •                 | EGG.3B.655.ZZM |                   |  |  |  |
|           | 326/330     | 0.7    | 0.80   | FGG.3B.555.ZZC      | •                 | EGG.3B.655.ZZM | •                 |  |  |  |
|           | 709         | 0.7    | 0.80   | FGG.3B.555.ZZC      | •                 | EGG.3B.655.ZZM | •                 |  |  |  |
|           | 712         | 0.9    | 1.10   | FGG.3B.560.ZZC      | •                 | EGG.3B.660.ZZM | •                 |  |  |  |
|           | 718/740     | 0.7    | 0.80   | FGG.3B.555.ZZC      | •                 | EGG.3B.655.ZZM | •                 |  |  |  |
|           | 803         | 0.9    | 1.10   | FGG.3B.560.ZZC      | •                 | EGG.3B.660.ZZM | •                 |  |  |  |
|           | 806/809     | 0.7    | 0.80   | FGG.3B.555.ZZC      | •                 | EGG.3B.655.ZZM | •                 |  |  |  |
|           | 812         | 0.9    | 1.10   | FGG.3B.560.ZZC      | •                 | EGG.3B.660.ZZM | •                 |  |  |  |
|           | 813/822     | 0.7    | 0.80   | FGG.3B.555.ZZC      | •                 | EGG.3B.655.ZZM | •                 |  |  |  |
|           | 844/846     | 0.9    | 1.10   | FGG.3B.560.ZZC      | •                 | EGG.3B.660.ZZM | •                 |  |  |  |
|           | 850/856     | 0.7    | 0.80   | FGG.3B.555.ZZC      |                   | EGG.3B.655.ZZM | •                 |  |  |  |
|           | 862         | 0.9    | 1.10   | FGG.3B.560.22C      |                   | EGG.3B.660.ZZM |                   |  |  |  |
|           | 304         | 3.0    | 2.90   | FGG.4B.580.ZZC      | 0                 | EGG.4B.680.ZZM | 0                 |  |  |  |
| 4K        | 306/307     | 2.0    | 2.40   | FGG.4B.575.ZZC      | 0                 | EGG.4B.675.ZZM | 0                 |  |  |  |
| L]        | 310         | 1.6    | 1.90   | FGG.4B.570.ZZC      | 0                 | EGG.4B.670.ZZM | 0                 |  |  |  |
|           | 312         | 1.3    | 1.40   | FGG.4B.565.ZZC      | 0                 | EGG.4B.665.ZZM | 0                 |  |  |  |
|           | 316/320     | 0.9    | 1.10   | FGG.4B.560.ZZC      | 0                 | EGG.4B.660.ZZM | 0                 |  |  |  |
|           | 324/330     | 0.9    | 1.10   | FGG.4B.560.ZZC      | 0                 | EGG.4B.660.ZZM | 0                 |  |  |  |
|           | 340         | 0.7    | 0.80   | FGG.4B.555.ZZC      | 0                 | EGG.4B.655.ZZM | 0                 |  |  |  |





Standard Crimp Barrel

|           | 340         | 0.7 | 0.80 | FGG.4B.555.ZZC | 0 | EGG.4B.655.ZZM | 0 |
|-----------|-------------|-----|------|----------------|---|----------------|---|
| 4K        | 745         | 0.9 | 1.10 | FGG.4B.560.ZZC | 0 | EGG.4B.660.ZZM | 0 |
|           | 802/804/806 | 0.9 | 1.10 | FGG.4B.560.ZZC | 0 | EGG.4B.660.ZZM | 0 |
|           | 822/824/826 | 0.9 | 1.10 | FGG.4B.560.ZZC | 0 | EGG.4B.660.ZZM | 0 |
|           | 842/844/852 | 0.9 | 1.10 | FGG.4B.560.ZZC | 0 | EGG.4B.660.ZZM | 0 |
|           | 856         | 0.9 | 1.10 | FGG.4B.560.ZZC | 0 | EGG.4B.660.ZZM | 0 |
|           | 858/866/879 | 0.7 | 0.80 | FGG.4B.555.ZZC | 0 | EGG.4B.655.ZZM | 0 |
|           | 885         | 0.7 | 0.80 | FGG.4B.555.ZZC | 0 | EGG.4B.655.ZZM | 0 |
|           | 304         | 4.0 | 4.00 | FGG.5B.582.ZZC | 0 | EGG.5B.682.ZZM | 0 |
| <b>5K</b> | 310         | 3.0 | 2.90 | FGG.5B.580.ZZC | 0 | EGG.5B.680.ZZM | 0 |
|           | 314/316     | 2.0 | 2.40 | FGG.5B.575.ZZC | 0 | EGG.5B.675.ZZM | 0 |
|           | 320         | 1.6 | 1.90 | FGG.5B.570.ZZC | 0 | EGG.5B.670.ZZM | 0 |
|           | 330/340/348 | 1.3 | 1.40 | FGG.5B.565.ZZC | 0 | EGG.5B.665.ZZM | 0 |
|           | 350/354/364 | 0.9 | 1.10 | FGG.5B.560.ZZC | 0 | EGG.5B.660.ZZM | 0 |
|           | 752         | 1.3 | 1.40 | FGG.5B.565.ZZC | 0 | EGG.5B.665.ZZM | 0 |
|           | 752         | 1.6 | 1.90 | FGG.5B.570.ZZC | 0 | EGG.5B.670.ZZM | 0 |
|           | 759         | 0.9 | 1.10 | FGG.5B.560.ZZC | 0 | EGG.5B.660.ZZM | 0 |
|           | 850/856     | 0.9 | 1.10 | FGG.5B.560.ZZC | 0 | EGG.5B.660.ZZM | 0 |
|           | 857         | 2.0 | 2.40 | FGG.5B.575.ZZC | 0 | EGG.5B.675.ZZM | 0 |
|           | 857         | 0.9 | 1.10 | FGG.5B.560.ZZC | 0 | EGG.5B.660.ZZM | 0 |
|           | 864         | 1.3 | 1.40 | FGG.5B.565.ZZC | 0 | EGG.5B.665.ZZM | 0 |
|           | 870/876/877 | 0.9 | 1.10 | FGG.5B.560.ZZC | 0 | EGG.5B.660.ZZM | 0 |
|           | 877         | 2.0 | 2.40 | FGG.5B.575.ZZC | 0 | EGG.5B.675.ZZM | 0 |
|           | 892         | 0.9 | 1.10 | FGG.5B.560.ZZC | 0 | EGG.5B.660.ZZM | 0 |
|           | 997         | 1.3 | 1.40 | FGG.5B.565.ZZC | 0 | EGG.5B.665.ZZM | 0 |



**Optional Reduced Crimp Barrel** 

|    | Types       | (mm   | (mm) | Contact part number |                   |                |                   |  |  |  |
|----|-------------|-------|------|---------------------|-------------------|----------------|-------------------|--|--|--|
|    | Typeo       | ø A ( | ø C  | Male                | Avail-<br>ability | Female         | Avail-<br>ability |  |  |  |
|    | 302/303     | 0.9   | 0.80 | FGG.0B.561.ZZC      | 0                 | EGG.0B.661.ZZM | 0                 |  |  |  |
| 0K | 302/303     | 0.9   | 0.45 | FGG.0B.562.ZZC      | 0                 | EGG.0B.662.ZZM | 0                 |  |  |  |
|    | 304/305     | 0.7   | 0.45 | FGG.0B.556.ZZC      | 0                 | EGG.0B.656.ZZM | 0                 |  |  |  |
|    | 302/303     | 1.3   | 1.10 | FGG.1B.566.ZZC      | 0                 | EGG.1B.666.ZZM | 0                 |  |  |  |
| 1K | 304/305     | 0.9   | 0.80 | FGG.1B.561.ZZC      | 0                 | EGG.1B.661.ZZM | 0                 |  |  |  |
|    | 304/305     | 0.9   | 0.45 | FGG.1B.562.ZZC      | 0                 | EGG.1B.662.ZZM | 0                 |  |  |  |
|    | 306/307/308 | 0.7   | 0.45 | FGG.1B.556.ZZC      | 0                 | EGG.1B.656.ZZM | 0                 |  |  |  |
|    | 702/731     | 1.3   | 1.10 | FGG.1B.566.ZZC      | 0                 | EGG.1B.666.ZZM | 0                 |  |  |  |
|    | 302         | 2.0   | 1.90 | FGG.2B.576.ZZC      | 0                 | EGG.2B.676.ZZM | 0                 |  |  |  |
| 2K | 303         | 1.6   | 1.40 | FGG.2B.571.ZZC      | 0                 | EGG.2B.671.ZZM | 0                 |  |  |  |
|    | 304/305     | 1.3   | 1.10 | FGG.2B.566.ZZC      | 0                 | EGG.2B.666.ZZM | 0                 |  |  |  |
|    | 306/307     | 1.3   | 1.10 | FGG.2B.566.ZZC      | 0                 | EGG.2B.666.ZZM | 0                 |  |  |  |
|    | 304/305     | 1.3   | 0.80 | FGG.2B.567.ZZC      | 0                 | EGG.2B.667.ZZM | 0                 |  |  |  |
|    | 306/307     | 1.3   | 0.80 | FGG.2B.567.ZZC      | 0                 | EGG.2B.667.ZZM | 0                 |  |  |  |
|    | 308/310     | 0.9   | 0.80 | FGG.2B.561.ZZC      | 0                 | EGG.2B.661.ZZM | 0                 |  |  |  |
|    | 308/310     | 0.9   | 0.45 | FGG.2B.562.ZZC      | 0                 | EGG.2B.662.ZZM | 0                 |  |  |  |
|    | 312/314/316 | 0.7   | 0.45 | FGG.2B.556.ZZC      | 0                 | EGG.2B.656.ZZM | 0                 |  |  |  |
|    | 318/319     | 0.7   | 0.45 | FGG.2B.556.ZZC      | 0                 | EGG.2B.656.ZZM | 0                 |  |  |  |
|    | 704         | 0.7   | 0.45 | FGG.2B.556.ZZC      | 0                 | EGG.2B.656.ZZM | 0                 |  |  |  |
|    | 706         | 1.3   | 1.10 | FGG.2B.566.ZZC      | 0                 | EGG.2B.666.ZZM | 0                 |  |  |  |
|    | 706         | 1.3   | 0.80 | FGG.2B.567.ZZC      | 0                 | EGG.2B.667.ZZM | 0                 |  |  |  |
|    | 708         | 0.9   | 0.80 | FGG.2B.561.ZZC      | 0                 | EGG.2B.661.ZZM | 0                 |  |  |  |
|    | 708         | 0.9   | 0.45 | FGG.2B.562.ZZC      | 0                 | EGG.2B.662.ZZM | 0                 |  |  |  |
|    | 802         | 0.9   | 0.80 | FGG.2B.561.ZZC      | 0                 | EGG.2B.661.ZZM | 0                 |  |  |  |
|    | 802         | 0.9   | 0.45 | FGG.2B.562.ZZC      | 0                 | EGG.2B.662.ZZM | 0                 |  |  |  |
|    | 804/806/810 | 0.7   | 0.45 | FGG.2B.556.ZZC      | 0                 | EGG.2B.656.ZZM | 0                 |  |  |  |



### **FGG-EGG** Crimp contacts



**Optional Reduced Crimp Barrel** 

|    | Turnee      | (uu    | (mm   | Co                    | ntact part number               |                |                   |  |  |  |
|----|-------------|--------|-------|-----------------------|---------------------------------|----------------|-------------------|--|--|--|
|    | Types       | ø A (I | ø C ( | Male                  | Avail-<br>ability               | Female         | Avail-<br>ability |  |  |  |
|    | 303/304/309 | 2.0    | 1.90  | FGG.3B.576.ZZC        | FGG.3B.576.ZZC O EGG.3B.676.ZZM |                | 0                 |  |  |  |
| 3K | 305/306/307 | 1.6    | 1.40  | FGG.3B.571.ZZC O EGG. |                                 | EGG.3B.671.ZZM | 0                 |  |  |  |
|    | 308/309/310 | 1.3    | 1.10  | FGG.3B.566.ZZC        | 0                               | EGG.3B.666.ZZM | 0                 |  |  |  |
|    | 312/314     | 0.9    | 0.80  | FGG.3B.561.ZZC        | 0                               | EGG.3B.661.ZZM | 0                 |  |  |  |
|    | 316/318     | 0.9    | 0.80  | FGG.3B.561.ZZC        | 0                               | EGG.3B.661.ZZM | 0                 |  |  |  |
|    | 320/322/324 | 0.7    | 0.45  | FGG.3B.556.ZZC        | 0                               | EGG.3B.656.ZZM | 0                 |  |  |  |
|    | 326/330     | 0.7    | 0.45  | FGG.3B.556.ZZC        | 0                               | EGG.3B.656.ZZM | 0                 |  |  |  |
|    | 709         | 0.7    | 0.45  | FGG.3B.556.ZZC        | 0                               | EGG.3B.656.ZZM | 0                 |  |  |  |
|    | 712         | 0.9    | 0.80  | FGG.3B.561.ZZC        | 0                               | EGG.3B.661.ZZM | 0                 |  |  |  |
|    | 718/740     | 0.7    | 0.45  | FGG.3B.556.ZZC        | 0                               | EGG.3B.656.ZZM | 0                 |  |  |  |
|    | 803         | 0.9    | 0.80  | FGG.3B.561.ZZC        | 0                               | EGG.3B.661.ZZM | 0                 |  |  |  |
|    | 806/809     | 0.7    | 0.45  | FGG.3B.556.ZZC        | 0                               | EGG.3B.656.ZZM | 0                 |  |  |  |
|    | 812         | 0.9    | 0.80  | FGG.3B.561.ZZC        | 0                               | EGG.3B.661.ZZM | 0                 |  |  |  |
|    | 813/822     | 0.7    | 0.45  | FGG.3B.556.ZZC        | 0                               | EGG.3B.656.ZZM | 0                 |  |  |  |
|    | 844/846     | 0.9    | 0.80  | FGG.3B.561.ZZC        | 0                               | EGG.3B.661.ZZM | 0                 |  |  |  |
|    | 850/856     | 0.7    | 0.45  | FGG.3B.556.ZZC        | 0                               | EGG.3B.656.ZZM | 0                 |  |  |  |
|    | 862         | 0.9    | 0.80  | FGG.3B.561.ZZC        | 0                               | EGG.3B.661.ZZM | 0                 |  |  |  |
|    | 306/307     | 2.0    | 1.90  | FGG.4B.576.ZZC        | 0                               | EGG.4B.676.ZZM | 0                 |  |  |  |
| 4K | 310         | 1.6    | 1.40  | FGG.4B.571.ZZC        | 0                               | EGG.4B.671.ZZM | 0                 |  |  |  |
|    | 312         | 1.3    | 1.10  | FGG.4B.566.ZZC        | 0                               | EGG.4B.666.ZZM | 0                 |  |  |  |
|    | 316/320     | 0.9    | 0.80  | FGG.4B.561.ZZC        | 0                               | EGG.4B.661.ZZM | 0                 |  |  |  |
|    | 324/330     | 0.9    | 0.80  | FGG.4B.561.ZZC        | 0                               | EGG.4B.661.ZZM | 0                 |  |  |  |
|    | 340         | 0.7    | 0.45  | FGG.4B.556.ZZC        | 0                               | EGG.4B.656.ZZM | 0                 |  |  |  |
|    | 745         | 0.9    | 0.80  | FGG.4B.561.ZZC        | 0                               | EGG.4B.661.ZZM | 0                 |  |  |  |
|    | 802/804/806 | 0.9    | 0.80  | FGG.4B.561.ZZC        | 0                               | EGG.4B.661.ZZM | 0                 |  |  |  |
|    | 822/824/826 | 0.9    | 0.80  | FGG.4B.561.ZZC        | 0                               | EGG.4B.661.ZZM | 0                 |  |  |  |
|    | 842/844/852 | 0.9    | 0.80  | FGG.4B.561.ZZC        | 0                               | EGG.4B.661.ZZM | 0                 |  |  |  |
|    | 856         | 0.9    | 0.80  | FGG.4B.561.ZZC        | 0                               | EGG.4B.661.ZZM | 0                 |  |  |  |
|    | 858/866/879 | 0.7    | 0.45  | FGG.4B.556.ZZC        | 0                               | EGG.4B.656.ZZM | 0                 |  |  |  |
|    | 885         | 0.7    | 0.45  | FGG.4B.556.ZZC        | 0                               | EGG.4B.656.ZZM | 0                 |  |  |  |
|    | 314/316     | 2.0    | 1.90  | FGG.5B.576.ZZC        | 0                               | EGG.5B.676.ZZM | 0                 |  |  |  |
| 5K | 320         | 1.6    | 1.40  | FGG.5B.571.ZZC        | 0                               | EGG.5B.671.ZZM | 0                 |  |  |  |
|    | 330/340/348 | 1.3    | 1.10  | FGG.5B.566.ZZC        | 0                               | EGG.5B.666.ZZM | 0                 |  |  |  |
|    | 350/354/364 | 0.9    | 0.80  | FGG.5B.561.ZZC        | 0                               | EGG.5B.661.ZZM | 0                 |  |  |  |
|    | 752         | 1.3    | 1.10  | FGG.5B.566.ZZC        | 0                               | EGG.5B.666.ZZM | 0                 |  |  |  |
|    | 752         | 1.6    | 1.40  | FGG.5B.571.ZZC        | 0                               | EGG.5B.671.ZZM | 0                 |  |  |  |
|    | 759         | 0.9    | 0.80  | FGG.5B.561.ZZC        | 0                               | EGG.5B.661.ZZM | 0                 |  |  |  |
|    | 850/856/857 | 0.9    | 0.80  | FGG.5B.561.ZZC        | 0                               | EGG.5B.661.ZZM | 0                 |  |  |  |
|    | 857         | 2.0    | 1.90  | FGG.5B.576.ZZC        | 0                               | EGG.5B.676.ZZM | 0                 |  |  |  |
|    | 864         | 1.3    | 1.10  | FGG.5B.566.ZZC        | 0                               | EGG.5B.666.ZZM | 0                 |  |  |  |
|    | 870/876/877 | 0.9    | 0.80  | FGG.5B.561.ZZC        | 0                               | EGG.5B.661.ZZM | 0                 |  |  |  |
|    | 877         | 2.0    | 1.90  | FGG.5B.576.ZZC        | 0                               | EGG.5B.676.ZZM | 0                 |  |  |  |
|    | 892         | 0.9    | 0.80  | FGG.5B.561.ZZC        | 0                               | EGG.5B.661.ZZM | 0                 |  |  |  |
|    | 997         | 1.3    | 1.10  | FGG.5B.566.ZZC        | 0                               | EGG.5B.666.ZZM | 0                 |  |  |  |





- Body material: Nickel-plated brass (Ni 3µm)
- Lanyard material: Stainless steel
- Ò Crimp ferrule material: Nickel-plated brass + polyolefin
- O-ring material: Silicone rubber or FPM
- Maximum operating temperature: 275° F Watertightness: IP68 according to IEC 60529 for E series



- Body material: Nickel-plated brass (Ni 3µm)
- Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass + polyolefin
- O-ring material: Silicone rubber or FPM
- Maximum operating temperature: 275° F Watertightness: IP68 according to IEC 60529 for E and K series



- ŏ
- Body material: Nickel-plated brass (Ni 3µm) Lanyard material: Stainless steel Crimp ferrule material: Nickel-plated brass + polyolefin O-ring material: Silicone rubber or FPM Maximum operating temperature: 275° F Watertightness: IP68 according to IEC 60529 for E and K series

#### **BFA** Plug caps

| Port number    | Cariaa | Dir  | Avail- |      |     |         |
|----------------|--------|------|--------|------|-----|---------|
| Fait number    | Series | А    | В      | L    | Ν   | ability |
| BFA.0E.100.NAS | 0E     | 14.0 | 6      | 15.0 | 85  | 0       |
| BFA.1E.100.NAS | 1E     | 16.0 | 6      | 18.0 | 85  | 0       |
| BFA.2E.100.NAS | 2E     | 19.5 | 6      | 20.0 | 85  | 0       |
| BFA.3E.100.NAS | 3E     | 23.0 | 6      | 24.0 | 120 | 0       |
| BFA.4E.100.NAS | 4E     | 29.0 | 10     | 24.5 | 120 | 0       |
| BFA.5E.100.NAS | 5E     | 44.0 | 10     | 29.0 | 150 | 0       |

Note: The last letter «S» of the part number stands for the material of the O-ring (silicone rubber). O-rings made from FPM are also available; if required, replace the letter «S» by «V».

#### BFG Plug caps with key (G)

| Dort number    | Cariaa | Dir  | nensio | ons (mi | m)  | Avail-  |
|----------------|--------|------|--------|---------|-----|---------|
| Fait number    | Series | Α    | В      | L       | Ν   | ability |
| BFG.0K.100.NAS | 0K     | 14.0 | 6      | 15.0    | 85  | 0       |
| BFG.1K.100.NAS | 1K     | 16.0 | 6      | 18.0    | 85  | 0       |
| BFG.2K.100.NAS | 2K     | 19.5 | 6      | 20.0    | 85  | 0       |
| BFG.3K.100.NAS | ЗK     | 23.0 | 6      | 24.0    | 120 | 0       |
| BFG.4K.100.NAS | 4K     | 29.0 | 10     | 24.5    | 120 | 0       |
| BFG.5K.100.NAS | 5K     | 44.0 | 10     | 29.0    | 150 | 0       |
| BFG.6E.100.NAS | 6E     | 54.0 | 10     | 34.0    | 150 | 0       |

Note: This cap is available only with an alignment key (G). The last letter "S" of the part number stands for the material of the O-ring (silicone rubber). O-rings made from FPM are also available; if required, replace the letter «S» by «V».

#### BHG Plug caps, nut fixing or flange

| Port number    | Cariaa | Dir  | nensio | ons (mi | m)  | Avail-  |
|----------------|--------|------|--------|---------|-----|---------|
| Fait number    | Series | А    | В      | L       | Ν   | ability |
| BHG.0K.100.NAS | 0K     | 14.0 | 6      | 15.0    | 85  | 0       |
| BHG.1K.100.NAS | 1K     | 16.0 | 6      | 18.0    | 85  | 0       |
| BHG.2K.100.NAS | 2K     | 19.5 | 6      | 20.0    | 85  | 0       |
| BHG.3K.100.NAS | ЗK     | 23.0 | 6      | 24.0    | 120 | 0       |
| BHG.4K.100.NAS | 4K     | 29.0 | 10     | 24.5    | 120 | 0       |
| BHG.5K.100.NAS | 5K     | 44.0 | 10     | 29.0    | 150 | 0       |
| BHG.6E.100.NAS | 6E     | 54.0 | 10     | 34.0    | 150 | 0       |

**Note:** This cap is available only with an alignment key (G). The last letter  ${}^{\times}S{}^{\times}$  of the part number stands for the material of the O-ring (silicone rubber). O-rings made from FPM are also available; if required, replace the letter «S» by «V».

Standard, typically 0-6 weeks delivery for guantities of 250 or less.

Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.







- Body material: Nickel-plated brass (Ni 3 µm)
- Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass + polyolefin O-ring material: Silicone rubber or FPM
- Maximum operating temperature: 275° F Watertightness: IP61 according to IEC 60529



- Body material: Nickel-plated brass (Ni 3 µm)
- Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass + polyolefin
- O-ring material: Silicone rubber or FPM
- Maximum operating temperature: 275° F Watertightness: IP68 according to IEC 60529



### **BFA** Plug cap

| Port number      | Corioo | Dii | mensic | ons (m | m) |    | Avail-  |
|------------------|--------|-----|--------|--------|----|----|---------|
| Part number      | Series | А   | В      | С      | Н  | L  | ability |
| BFA.3K.170.800EN | 3K-3E  | 24  | 28     | 10     | 80 | 27 | 0       |

Material: black EPDM

Maximum operating temperature: 250° F

Note: These caps are suitable for use with any alignment key configuration.

#### BRE Blanking caps for fixed and free receptacles

| Dart number    | Sorioo |    | Avail- |      |      |     |         |
|----------------|--------|----|--------|------|------|-----|---------|
| Part number    | Series | А  | В      | L    | М    | Ν   | ability |
| BRE.6E.200.NAS | 6E     | 57 | 24.0   | 31.5 | 14.0 | 150 | 0       |

**Note:** These caps are suitable for use with any alignment key configuration. The last letter «S» of the part number stands for the O-ring material (silicone rubber). O-rings made from FPM are also available; if required, replace the letter «S» by «V».

#### BRE Blanking caps for fixed and free receptacles

| Part number    | Cariaa |      | Dime | nsions | (mm) |     | Avail-  |
|----------------|--------|------|------|--------|------|-----|---------|
| Fait number    | Series | А    | В    | L      | М    | Ν   | ability |
| BRE.0K.200.NAS | 0K-0E  | 15.0 | 10   | 15.0   | 4    | 85  | 0       |
| BRE.1K.200.NAS | 1K-1E  | 17.0 | 12   | 20.0   | 6    | 85  | 0       |
| BRE.2K.200.NAS | 2K-2E  | 20.5 | 14   | 24.0   | 8    | 85  | 0       |
| BRE.3K.200.NAS | 3K-3E  | 24.0 | 14   | 28.0   | 8    | 120 | 0       |
| BRE.4K.200.NAS | 4K-4E  | 30.0 | 20   | 30.5   | 10   | 120 | 0       |
| BRE.5K.200.NAS | 5K-5E  | 44.0 | 22   | 37.0   | 12   | 150 | 0       |

Note: These caps are suitable for use with any alignment key configuration. The last letter «S» of the part number stands for the O-ring material (silicone rubber). O-rings made from FPM are also available; if required, replace the letter «S» by «V».

#### BRA Blanking cap for fixed and free receptacles

| Part number      | Cariaa | Dime | Avail- |    |         |
|------------------|--------|------|--------|----|---------|
| Fait number      | Series | Α    | Н      | L  | ability |
| BRA.3K.100.715EN | 3K-3E  | 24   | 80     | 25 | 0       |

Material: black EPDM

Maximum operating temperature: 250° F

Note: These caps are suitable for use with any alignment key configuration.

Standard, typically 0-6 weeks delivery for quantities of 250 or less.

 Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less. Non-standard product is defined as any product which contains one or more components which are not standard.



# Accessories



- Body material: Nickel-plated brass (Ni 3 µm)
- Lanyard material: Stainless steel
- Crimp ferrule material: Nickel-plated brass + polyolefin
- O-ring material: Silicone rubber or FPM



#### **BRF** Blanking caps for free receptacles

| Dort number    | Cariaa |      | Dime | nsions | (mm) |     | Avail-  |
|----------------|--------|------|------|--------|------|-----|---------|
| Part number    | Series | Α    | В    | L      | М    | N   | ability |
| BRF.0K.200.NAS | 0K-0E  | 15.0 | 10   | 15.0   | 4    | 85  | 0       |
| BRF.1K.200.NAS | 1K-1E  | 17.0 | 12   | 20.0   | 6    | 85  | 0       |
| BRF.2K.200.NAS | 2K-2E  | 20.5 | 14   | 24.0   | 8    | 85  | 0       |
| BRF.3K.200.NAS | 3K-3E  | 24.0 | 14   | 28.0   | 8    | 120 | 0       |
| BRF.4K.200.NAS | 4K-4E  | 30.0 | 20   | 30.5   | 10   | 120 | 0       |
| BRF.5K.200.NAS | 5K-5E  | 44.0 | 22   | 37.0   | 12   | 150 | 0       |

Note: These caps are suitable for use with any alignment key configuration. The last letter  ${\rm ~s}S{\rm ~s}$  of the part number stands for the O-ring material (silicone rubber). O-rings made from FPM are also available; if required, replace the letter «S» by «V».

- Maximum operating temperature: 275° F Watertightness: IP68 according to IEC 60529
- ŏ

#### BRD Blanking caps for free receptacles

| Port number      | Cariaa |    | Avail- |    |    |    |         |
|------------------|--------|----|--------|----|----|----|---------|
| Part number      | Series | А  | В      | С  | Н  | L  | ability |
| BRD.3K.170.800EN | 3K-3E  | 24 | 28     | 10 | 80 | 25 | 0       |

Material: black EPDM

Maximum operating temperature: 250°  $\rm F$ 

Note: These caps are suitable for use with any alignment key configuration.

#### BRR Spring loaded dust caps for ERA, ERN and EG• receptacles or PSA and PK• fixed receptacles

| Port number     | Cariaa |      | Dimensions (mm) |      |     |     |     |      |         |  |
|-----------------|--------|------|-----------------|------|-----|-----|-----|------|---------|--|
| Fait number     | Series | А    | В               | С    | Е   | L   | Μ   | Ν    | ability |  |
| BRR.3K.200.PZSG | 3K     | 29.0 | 27.5            | 23.0 | 9.0 | 7.7 | 3.0 | 29.2 | 0       |  |

Note: On request, this cap is available in black. If so replace the last letter «G» of the part number by «N».

Spring material: Stainless steel

Maximum operating temperature: 212° F

- Watertightness: IP61 according to IEC 60529
- Body material: Polyoxymethylene (POM) gray (or black)
- Gasket material: Silicone rubber



Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less.
 Non-standard product is defined as any product which contains one or more components which are not standard.





#### Main characteristics

- Material: Polyurethane elastomer
- Temperature range in dry atmosphere: -40° F to +176° F

#### **GM**• Bend relief (Polyurethane)

A bend relief made from thermoplastic polyurethane elastomer (Desmopan 786) can be fitted over LEMO plugs and receptacles that are supplied with a specially fitted nut.

Use the part numbers shown below to order this accessory separately.



|               | Dir  | nensi  | ons (m | m)   |        | Part number        |      | Avail-   |
|---------------|------|--------|--------|------|--------|--------------------|------|----------|
| Part number   | Bend | relief | Cab    | le ø | Series | of nut for fitting | Note | ability  |
|               | Α    | L      | max.   | min. |        | the bend relief    |      | c.c.inty |
| GMA.0B.025.DG | 2.5  | 24     | 2.9    | 2.5  |        |                    |      |          |
| GMA.0B.030.DG | 3.0  | 24     | 3.4    | 3.0  |        |                    |      |          |
| GMA.0B.035.DG | 3.5  | 24     | 3.9    | 3.5  | 0E-0K  | FFM.0E.130.LC      |      |          |
| GMA.0B.040.DG | 4.0  | 24     | 4.4    | 4.0  |        |                    |      | •        |
| GMA.0B.045.DG | 4.5  | 24     | 5.2    | 4.5  |        |                    |      |          |
| GMA.1B.025.DG | 2.5  | 30     | 2.9    | 2.5  |        |                    |      | 0        |
| GMA.1B.030.DG | 3.0  | 30     | 3.4    | 3.0  |        |                    |      |          |
| GMA.1B.035.DG | 3.5  | 30     | 3.9    | 3.5  |        |                    |      |          |
| GMA.1B.040.DG | 4.0  | 30     | 4.4    | 4.0  | 1E-1K  | FFM.1E.130.LC      |      |          |
| GMA.1B.045.DG | 4.5  | 30     | 4.9    | 4.5  |        |                    |      | •        |
| GMA.1B.054.DG | 5.4  | 30     | 6.0    | 5.4  |        |                    |      |          |
| GMA.1B.065.DG | 6.5  | 30     | 7.0    | 6.5  |        |                    |      | •        |
| GMA.2B.040.DG | 4.0  | 36     | 4.5    | 4.0  |        |                    |      | 0        |
| GMA.2B.045.DG | 4.5  | 36     | 5.0    | 4.5  |        |                    |      |          |
| GMA.2B.050.DG | 5.0  | 36     | 5.5    | 5.0  |        |                    |      |          |
| GMA.2B.060.DG | 6.0  | 36     | 6.5    | 6.0  | 2E-2K  | FFM.2E.130.LC      |      |          |
| GMA.2B.070.DG | 7.0  | 36     | 7.7    | 7.0  |        |                    |      | •        |
| GMA.2B.080.DG | 7.8  | 36     | 8.8    | 7.8  |        |                    |      | •        |
| GMA.3B.050.DG | 4.5  | 42     | 5.2    | 4.5  |        |                    |      |          |
| GMA.3B.070.DG | 7.0  | 42     | 7.9    | 7.0  |        |                    |      |          |
| GMA.3B.080.DG | 8.0  | 42     | 8.9    | 8.0  | 3E-3K  | FFM.3E.130.LC      |      |          |
| GMA.3B.090.DG | 9.0  | 42     | 10.0   | 9.0  |        |                    |      |          |
| GMA.4B.080.DG | 8.0  | 60     | 9.0    | 8.0  |        |                    |      | 0        |
| GMA.4B.010.DG | 10.0 | 60     | 10.9   | 10.0 |        |                    |      | 0        |
| GMA.4B.011.DG | 11.0 | 60     | 11.9   | 11.0 | 4E-4K  | FFM.4E.130.LC      |      | 0        |
| GMA.4B.012.DG | 12.0 | 60     | 13.0   | 12.0 |        |                    |      | 0        |
| GMA.4B.013.DG | 13.5 | 60     | 14.5   | 13.5 |        |                    |      | 0        |

**Note:** The last letter «G» of the part number indicates the gray color of the bend relief. For ordering a bend relief with another color, see table on page 92 and replace the letter «G» by the letter of the required color

See also detailed information for each series: K series on page 41; E series on page 80.





#### Main characteristics

- Material: Silicone elastomer VMQ
- Temperature range in dry atmosphere: -106° F to +392° F
- Temperature range in water steam: +284° F
- Inflammability: not flammable (no UL classification)

|               | Dii  | mensio | ons (m | m)   |        | Part number        | Avoil  |
|---------------|------|--------|--------|------|--------|--------------------|--------|
| Part number   | Bend | relief | Cab    | le ø | Series | of nut for fitting | Avail- |
|               | Α    | L      | max.   | min. |        | the bend relief    | aonity |
| GMA.0B.025.RG | 2.5  | 27     | 2.9    | 2.5  |        |                    | 0      |
| GMA.0B.030.RG | 3.0  | 27     | 3.4    | 3.0  |        |                    | 0      |
| GMA.0B.035.RG | 3.5  | 27     | 3.9    | 3.5  | 0E-0K  | FFM.0E.130.LC      | 0      |
| GMA.0B.040.RG | 4.0  | 27     | 4.4    | 4.0  |        |                    | 0      |
| GMA.0B.045.RG | 4.5  | 27     | 5.2    | 4.5  |        |                    | 0      |
| GMA.1B.025.RG | 2.5  | 34     | 2.9    | 2.5  |        |                    | 0      |
| GMA.1B.030.RG | 3.0  | 34     | 3.4    | 3.0  |        |                    | 0      |
| GMA.1B.035.RG | 3.5  | 34     | 3.9    | 3.5  |        |                    | 0      |
| GMA.1B.040.RG | 4.0  | 34     | 4.4    | 4.0  | 1E     | FFM.1E.130.LC      | 0      |
| GMA.1B.045.RG | 4.5  | 34     | 5.0    | 4.5  |        |                    | 0      |
| GMA.1B.051.RG | 5.1  | 34     | 5.6    | 5.1  |        |                    | 0      |
| GMA.1B.057.RG | 5.7  | 34     | 6.2    | 5.7  |        |                    | 0      |
| GMA.1B.063.RG | 6.3  | 34     | 7.0    | 6.3  |        |                    | 0      |
| GMA.2B.040.RG | 4.0  | 41     | 4.4    | 4.0  |        |                    | 0      |
| GMA.2B.045.RG | 4.5  | 41     | 5.0    | 4.5  |        |                    | 0      |
| GMA.2B.051.RG | 5.1  | 41     | 5.6    | 5.1  |        |                    | 0      |
| GMA.2B.057.RG | 5.7  | 41     | 6.2    | 5.7  | 2E-2K  | FFM.2E.130.LC      | 0      |
| GMA.2B.063.RG | 6.3  | 41     | 7.0    | 6.3  |        |                    | 0      |
| GMA.2B.071.RG | 7.1  | 41     | 7.9    | 7.1  |        |                    | 0      |
| GMA.2B.080.RG | 8.0  | 41     | 9.0    | 8.0  |        |                    | 0      |

Note: The last letter «G» of the part number indicates the gray color of the bend relief. For ordering a bend relief with another color, see table below and replace the letter «G» by the letter of the required color. See also detailed information for each series: K series on page 41; E series on page 80.

Note: The selection of pigments, which should remain stable at high temperature, is limited by new regulations. For this reason, some colors will be a shade different from those used for Desmopan bend reliefs. The selected solutions represent the best possible compromise.

| Ref. | Color  | Ref. | Color  |
|------|--------|------|--------|
| А    | blue   | Ν    | black  |
| В    | white  | R    | red    |
| G    | gray   | S    | orange |
| J    | yellow | V    | green  |
| М    | brown  |      |        |

**GMA** Bend relief (Silicone)

A bend relief has been designed for connectors used in applications at high temperature or requiring vapor sterilization.

These bend reliefs are different from previous ones; their material, a silicone elastomer, is noted for its retention of flexibility over a wide temperature range. They are available in nine colors.

Use the part numbers shown below to order this accessory separately.

Standard, typically 0-6 weeks delivery for guantities of 250 or less.





**GBA** Locking washers

| Part number   | Sorioo | Dimensions (mm) |      |     |  |  |
|---------------|--------|-----------------|------|-----|--|--|
| Fait number   | Selles | А               | С    | L   |  |  |
| GBA.1E.250.FN | 1E-1K  | 21.8            | 16.1 | 1.2 |  |  |

Note: To order this accessory separately, use the above part numbers.

• Material: Nickel-plated bronze (3 μm)



### **GEA** Hexagonal nuts

| Port number   | Sorioo |    | Dimen | sions (mm) |     |
|---------------|--------|----|-------|------------|-----|
| Fait number   | Series | А  | В     | е          | L   |
| GEA.0E.240.LN | 0E-0K  | 17 | 19.2  | M14 x 1.00 | 2.5 |
| GEA.1E.240.LN | 1E-1K  | 19 | 21.5  | M16 x 1.00 | 3.0 |
| GEA.2E.240.LN | 2E-2K  | 24 | 27.0  | M20 x 1.00 | 4.0 |
| GEA.3E.240.LN | 3E-3K  | 30 | 34.0  | M24 x 1.00 | 5.0 |
| GEA.4E.240.LN | 4E-4K  | 36 | 40.5  | M30 x 1.00 | 7.0 |

**Note:** To order this part separately, use the above part numbers. The last letters "LN" of the part number refer to the nut material and treatment. If a nut in aluminium alloy or stainless steel is desired, replace the last letters of the part number by "PT" or "AZ" respectively.

- Material: Nickel-plated brass (3 µm) Natural anodized aluminium alloy Stainless steel



## **GEG** Notched nut

| Port number   | Madal |      | Dim | ensions (mn | n)  |
|---------------|-------|------|-----|-------------|-----|
| Fait number   | woder | Α    | В   | е           | L   |
| GEG.0S.240.LC | 1     | 10.5 | 12  | M9 x 0.6    | 2.5 |
| GEG.0E.240.LC | 1     | 15.8 | 18  | M14 x 1.0   | 3.5 |
| GEG.1S.240.LC | 1     | 14.0 | 16  | M12 x 1.0   | 3.5 |
| GEG.1E.240.LC | 2     | 17.5 | 20  | M16 x 1.0   | 3.5 |
| GEG.1S.242.LC | 1     | 12.1 | 14  | M11 x 0.5   | 3.5 |
| GEG.2S.240.LC | 2     | 17.5 | 20  | M15 x 1.0   | 3.5 |
| GEG.2S.241.LC | 2     | 20.5 | 24  | M19 x 1.0   | 3.5 |
| GEG.2E.240.LC | 2     | 22.5 | 25  | M20 x 1.0   | 3.5 |

Material: Chrome-plated brass (Ni 3 μm + Cr 0.3 μm)





Material: Chrome-plated brass (Ni 3 μm + Cr 0.3 μm)

Note: 3K, 3E, 4K, 4E, 5K, 5E, and 6E series fixed and free receptacles for back panel mounting are always delivered with a conical nut. To order this accessory separately, use the part numbers in the adjacent table.



Material: Nickel-plated brass (3 µm)

Note: 5K, 5E, and 6E series receptacles are always supplied with model 2 round nuts. To order this accessory separately, use the part numbers in the adjacent table.



Material: CuSnZn plated brass (2 μm)

#### **GEC** Conical nuts

| Dimensions (mm) |                                                                                       |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| А               | В                                                                                     | е                                                                                                                                                                                                                                                                                                                                   | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 10              | 12.0                                                                                  | M9 x 0.6                                                                                                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 16              | 18.0                                                                                  | M14 x 1.0                                                                                                                                                                                                                                                                                                                           | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 13              | 16.0                                                                                  | M12 x 1.0                                                                                                                                                                                                                                                                                                                           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 17              | 20.0                                                                                  | M16 x 1.0                                                                                                                                                                                                                                                                                                                           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 12              | 14.0                                                                                  | M11 x 0.5                                                                                                                                                                                                                                                                                                                           | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 17              | 20.0                                                                                  | M15 x 1.0                                                                                                                                                                                                                                                                                                                           | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 20              | 24.0                                                                                  | M19 x 1.0                                                                                                                                                                                                                                                                                                                           | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 22              | 25.0                                                                                  | M20 x 1.0                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 20              | 24.0                                                                                  | M18 x 1.0                                                                                                                                                                                                                                                                                                                           | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 27              | 30.0                                                                                  | M24 x 1.0                                                                                                                                                                                                                                                                                                                           | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 27              | 30.0                                                                                  | M25 x 1.0                                                                                                                                                                                                                                                                                                                           | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 32              | 35.5                                                                                  | M30 x 1.0                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 37              | 41.0                                                                                  | M35 x 1.0                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                 | A<br>10<br>16<br>13<br>17<br>12<br>17<br>20<br>22<br>20<br>27<br>27<br>27<br>32<br>37 | A         B           10         12.0           16         18.0           13         16.0           17         20.0           12         14.0           17         20.0           20         24.0           22         25.0           20         24.0           27         30.0           32         35.5           37         41.0 | Dimensions (m           A         B         e           10         12.0         M9 x 0.6           16         18.0         M14 x 1.0           13         16.0         M12 x 1.0           17         20.0         M16 x 1.0           12         14.0         M11 x 0.5           17         20.0         M15 x 1.0           20         24.0         M19 x 1.0           21         25.0         M20 x 1.0           20         24.0         M18 x 1.0           20         24.0         M18 x 1.0           21         30.0         M24 x 1.0           22         35.5         M30 x 1.0           32         35.5         M30 x 1.0           37         41.0         M35 x 1.0 | A         B         e         L           10         12.0         M9 x 0.6         2.5           16         18.0         M14 x 1.0         3.0           13         16.0         M12 x 1.0         3.2           17         20.0         M16 x 1.0         4.0           12         14.0         M11 x 0.5         3.2           17         20.0         M15 x 1.0         3.8           20         24.0         M19 x 1.0         5.0           22         25.0         M20 x 1.0         5.0           20         24.0         M18 x 1.0         4.5           27         30.0         M24 x 1.0         4.5           27         30.0         M25 x 1.0         5.0           32         35.5         M30 x 1.0         5.0           37         41.0         M35 x 1.0         5.0 |  |  |  |  |

#### **GEB** Round nuts

| Port number   | Model | Dimensions (n |            |     |
|---------------|-------|---------------|------------|-----|
| Fait number   | woder | А             | е          | L   |
| GEB.0S.240.LN | 1     | 11.0          | M9 x 0.60  | 4.0 |
| GEB.0E.240.LN | 1     | 18.0          | M14 x 1.00 | 5.0 |
| GEB.1S.240.LN | 1     | 14.0          | M12 x 1.00 | 5.0 |
| GEB.1E.240.LN | 1     | 20.0          | M16 x 1.00 | 5.0 |
| GEB.2S.240.LN | 1     | 18.0          | M15 x 1.00 | 5.5 |
| GEB.2B.240.LN | 2     | 17.5          | M15 x 0.75 | 2.5 |
| GEB.3S.240.LN | 1     | 22.0          | M18 x 1.00 | 5.5 |
| GEB.4S.240.LN | 1     | 28.0          | M25 x 1.00 | 6.0 |
| GEB.5S.240.LN | 2     | 40.0          | M35 x 1.00 | 8.0 |
| GEB.5E.240.LN | 2     | 54.0          | M45 x 1.50 | 8.0 |
| GEB.6S.241.LN | 2     | 54.0          | M48 x 1.50 | 8.0 |
| GEB.6E.240.LN | 2     | 65.0          | M55 x 2.00 | 9.0 |

#### **GCA** Grounding lug

| Part number   | Sorios | Series Dimensions (mi |      |     |      |  |
|---------------|--------|-----------------------|------|-----|------|--|
| Fait number   | Selles | А                     | В    | L   | Ν    |  |
| GCA.0E.255.LT | 0E-0K  | 17                    | 14.1 | 0.5 | 27.5 |  |
| GCA.1E.255.LT | 1E-1K  | 20                    | 16.2 | 0.5 | 32.0 |  |
| GCA.2E.255.LT | 2E-2K  | 25                    | 20.2 | 0.5 | 39.0 |  |
| GCA.4E.255.LT | 4E-4K  | 35                    | 30.6 | 0.6 | 50.0 |  |



# Tooling



## **DCG** Wrench for hexagonal nuts

| Port number    | Dime | nsions | (mm) | Part number   |  |
|----------------|------|--------|------|---------------|--|
| Fait number    | В    | L      | Ν    | of the nut    |  |
| DCG.91.161.1TN | 16   | 45     | 52   | GEA.0S.240.LN |  |
| DCG.91.201.4TN | 20   | 52     | 65   | GEA.1S.240.LN |  |
| DCG.91.231.7TN | 23   | 62     | 68   | GEA.2S.240.LN |  |
| DCG.91.282.2TN | 28   | 76     | 73   | GEA.3S.240.LN |  |

Material: blackened steel

# DCA Wrench for hexagonal nuts, with alignment of the receptacles by the flats

| Port number    | Dime | nsions | (mm) | Part number   |  |
|----------------|------|--------|------|---------------|--|
| Part number    | В    | L      | Ν    | of the nut    |  |
| DCA.91.161.1TN | 16   | 73     | 52   | GEA.0S.240.LN |  |
| DCA.91.201.4TN | 20   | 85     | 65   | GEA.1S.240.LN |  |
| DCA.91.231.7TN | 23   | 100    | 68   | GEA.2S.240.LN |  |
| DCA.91.282.2TN | 28   | 120    | 73   | GEA.3S.240.LN |  |

Material: blackened steel

- may

# DCB Spanner type wrench for model 1 round nuts

| Dartnumber     | Dime | nsions | (mm) | Part number   |  |
|----------------|------|--------|------|---------------|--|
| Part number    | В    | L      | Ν    | of the nut    |  |
| DCB.91.131.1TN | 13   | 45     | 50   | GEB.0S.240.LN |  |
| DCB.91.161.4TN | 16   | 52     | 65   | GEB.1S.240.LN |  |
| DCB.91.201.8TN | 20   | 62     | 65   | GEB.2S.240.LN |  |
| DCB.91.242.2TN | 24   | 76     | 70   | GEB.3S.240.LN |  |

• Material: blackened steel

#### **DCH** Wrench for conical nut

| Part number   | Di   | mensio | ons (m | Part number |               |  |
|---------------|------|--------|--------|-------------|---------------|--|
| Fait number   | Α    | В      | L      | Ν           | of the nut    |  |
| DCH.91.121.PN | 12.1 | 14.8   | 124    | 49.3        | GEC.0S.240.LC |  |
| DCH.91.161.PN | 16.1 | 21.0   | 124    | 51.9        | GEC.1S.240.LC |  |
| DCH.91.201.PN | 20.1 | 22.8   | 129    | 53.5        | GEC.2S.240.LC |  |

Material: Dark gray polyurethane

<del>-</del>øB-N → øB →







### **DCP** Flat wrench for collet nut

| Dort number   | Dimensions (mm) |   |      |     |  |  |
|---------------|-----------------|---|------|-----|--|--|
| Part number   | L               | М | Ν    | S1  |  |  |
| DCP.99.045.TC | 70              | 2 | 10.5 | 4.5 |  |  |
| DCP.99.050.TC | 78              | 2 | 12.6 | 5.0 |  |  |
| DCP.99.055.TC | 78              | 2 | 12.6 | 5.5 |  |  |
| DCP.99.060.TC | 78              | 2 | 12.6 | 6.0 |  |  |

• Material: chrome-plated steel

## **DCH** Wrench for notched nuts

| Dort number   | Di   | mensio | nsions (mm) Part number |      |               |  |  |
|---------------|------|--------|-------------------------|------|---------------|--|--|
| Part number   | Α    | В      | L                       | N    | of the nut    |  |  |
| DCH.91.121.PA | 12.1 | 14.8   | 124                     | 49.3 | GEG.0S.240.LC |  |  |
| DCH.91.181.PA | 18.1 | 22.8   | 129                     | 53.1 | GEG.0E.240.LC |  |  |
| DCH.91.161.PA | 16.1 | 21.0   | 124                     | 51.2 | GEG.1S.240.LC |  |  |
| DCH.91.201.PA | 20.1 | 22.8   | 129                     | 53.5 | GEG.1E.240.LC |  |  |
| DCH.91.141.PA | 14.1 | 18.6   | 124                     | 51.2 | GEG.1S.242.LC |  |  |
| DCH.91.201.PA | 20.1 | 22.8   | 129                     | 53.5 | GEG.2S.240.LC |  |  |
| DCH.91.241.PA | 24.1 | 30.8   | 134                     | 52.6 | GEG.2S.241.LC |  |  |
| DCH.91.251.PA | 25.1 | 32.8   | 134                     | 55.5 | GEG.2E.240.LC |  |  |

Material: Blue polyurethane

### **DCP** Wrench for tightening backnut

| Dort number     | Sorioo | Dimensions (mm) |     |    |      |      |  |  |
|-----------------|--------|-----------------|-----|----|------|------|--|--|
| Part number     | Selles | L               | М   | N  | S1   | S2   |  |  |
| DCP 91 023 TN   | 2K     | 115             | 3.0 | 30 | 13.1 | 12.1 |  |  |
| DOI 1011020.111 | ЗK     | 115             | 3.0 | 35 | 15.1 | 14.1 |  |  |

• Material: blackened steel













**DPF** Pliers for assembling plugs (series K and E)

# Example for use

The plug end must be held in the pliers while the nut is tightened with the wrench.







# Manual crimping tools

|          | Part number                           |                               |                               |  |  |  |  |
|----------|---------------------------------------|-------------------------------|-------------------------------|--|--|--|--|
| Supplier | contact ø 0.5-0.7<br>0.9-1.3 (Fig. 1) | contact ø 1.6-2.0<br>(Fig. 2) | contact ø 3.0-4.0<br>(Fig. 2) |  |  |  |  |
| LEMO     | DPC.91.701.V1)                        | DPC.91.101.A <sup>2)</sup>    | DPC.91.102.V                  |  |  |  |  |
| DANIELS  | MH860 <sup>1)</sup>                   | AF8 <sup>2)</sup>             | M300BT                        |  |  |  |  |
| BALMAR   | 23-000                                | 55-000                        | 55-000                        |  |  |  |  |
| BUCHANAN | 616336 <sup>1)</sup>                  | 615708 <sup>2)</sup>          | 615708                        |  |  |  |  |

 $^{1)}$  According to specification MIL-C-22520/7-01.  $^{2)}$  According to specification MIL-C-22520/1-01.

#### **DPE** Manual crimp tool for coax contacts

|    | Co          | nnector        |                 |               |  |
|----|-------------|----------------|-----------------|---------------|--|
|    | Туре        | Coax<br>Groups | Cable<br>Groups | Part Number   |  |
|    | 810         | С              | 1,3             | DPE.99.103.8K |  |
| 2K | 810         | С              | 2               | DPE.99.103.1K |  |
|    | 242/243     | С              | 1,3             | DPE.99.103.8K |  |
| 3K | 242/243     | С              | 2               | DPE.99.103.1K |  |
|    | 822/844/846 | С              | 1,3             | DPE.99.103.8K |  |
|    | 822/844/846 | С              | 2               | DPE.99.103.1K |  |
|    | 850/856/862 | С              | 1,3             | DPE.99.103.8K |  |
|    | 850/856/862 | С              | 2               | DPE.99.103.1K |  |
|    | 244         | С              | 1,3             | DPE.99.103.8K |  |
| 4K | 244         | С              | 2               | DPE.99.103.1K |  |
|    | 852/856/858 | С              | 1,3             | DPE.99.103.8K |  |
|    | 852/856/858 | С              | 2               | DPE.99.103.1K |  |
|    | 866/879/885 |                | 1,3             | DPE.99.103.8K |  |
|    | 866/879/885 | С              | 2               | DPE.99.103.1K |  |
|    | 240         | С              | 1,3             | DPE.99.103.8K |  |
| 5K | 240         | С              | 2               | DPE.99.123.1K |  |
|    | 260         | D              | 1,3             | DPE.99.006.2K |  |
|    | 260         | D              | 2               | DPE.99.006.2K |  |
|    | 273/274     | В              | 5               | DPE.99.127.0K |  |
|    | 273/274     | В              | 3               | DPE.99.123.8K |  |
|    | 273/274     | В              | 0               | DPE.99.178.5K |  |
|    | 850/856/857 | В              | 1               | DPE.99.173.8K |  |
|    | 850/856/857 | В              | 2               | DPE.99.123.1K |  |
|    | 850/856/857 | В              | 6               | DPE.99.176.2K |  |
|    | 864/870/876 | В              | 3               | DPE.99.123.8K |  |
|    | 864/870/876 | В              | 5               | DPE.99.127.0K |  |
|    | 877         | В              | 3               | DPE.99.123.8K |  |
|    | 877         | В              | 5               | DPE.99.127.0K |  |
|    | 892         | D              | 1,3             | DPE.99.006.2K |  |
|    | 892         | D              | 2               | DPE.99.006.2K |  |



#### Pneumatic crimping tools

| Supplier | Part number  |
|----------|--------------|
| LEMO     | DPC.91.701.C |
| BALMAR   | 85230        |
| BUCHANAN | 621101       |

According to specification MIL-C-22520/7-01. For LEMO contacts ø 0.5-0.7-0.9-1.3 mm



contact



These positioners are suitable for use with both manual and pneumatic crimping tools according to the MIL-C-22520/7-01 standard.



Note: A wide variation of strand number and diameter combinations are quoted as being AWG, some of which do not have a large enough cross section to guarantee a crimp as per either MIL-C-22520/1-01 or /7-01. Our technical department is at your disposal to study and propose a solution to all your applications.

Note: See table on page 85 to 87 for contact selection.

Connector + Contact Positioners part number Conductor For female For male C Туре ⊲ Ë. AWG contact Ø Ø 0.9 1.10 1 20,22,24 DCE.91.090.BVC DCE.91.090.BVM 302 **0K** 0.9 0.80 2 22,24,26 303 0.9 0.45 2 28,30,32 DCE.91.090.AVC DCE.91.090.AVM 0.7 0.80 1 22,24,26 304/305 DCE.91.070.BVC DCE.91.070.BVM 0.7 0.45 2 28,30,32 306/307 DCE.91.050.BVM 0.5 0.45 1 28.30.32 DCE.91.050.BVC 309 302 1.3 1.40 1 18,20 **1K** DCE.91.131.BVC DCE.91.131.BVM 303 1.3 1.10 2 20,22,24 304 0.9 1.10 1 20,22,24 DCE.91.091.BVC DCE.91.091.BVM 305 2 0.9 0.80 22,24,26 DCE.91.091.AVC DCE.91.091.AVM 0.9 0.45 2 28,30,32 306/307 0.7 0.80 1 22,24,26 DCE.91.071.BVC DCE.91.071.BVM 308 0.7 0.45 2 28,30,32 1.3 1.40 1 18,20 DCE.91.131.BVC DCE.91.131.BVM 702/731 1.3 1.10 2 20,22,24 1.3 1.40 1 18,20 304/305 DCE.91.132.BVC DCE.91.132.BVM 2K 2 1.3 1.10 20,22,24 306 307 DCE.91.132.CVC DCE.91.132.CVM 1.3 0.80 2 22,24,26 0.9 1.10 1 20,22,24 DCE.91.092.BVC DCE.91.092.BVM 308/310 0.9 0.80 2 22.24.26 0.9 0.45 DCE.91.092.AVC DCE.91.092.AVM 2 28,30,32 0.7 0.80 1 22,24,26 312/314 DCE.91.072.BVC DCE.91.072.BVM 316/318 319 0.7 0.45 2 28,30,32 0.7 0.80 1 22,24,26 704 DCE.91.072.BVC DCE.91.072.BVM 0.45 2 28,30,32 0.7 1.40 18,20 1.3 1 DCE.91.132.BVC DCE.91.132.BVM 2 706 1.3 1.10 20,22,24 DCE.91.132.CVM 2 DCF 91 132 CVC 1.3 0.80 22,24,26 0.9 1.10 1 20,22,24 DCE.91.092.BVC DCF 91 092 BVM 2 708 0.9 0.80 22,24,26 DCE.91.092.AVC DCE.91.092.AVM 0.9 0.45 2 28,30,32 0.9 1.10 1 20,22,24 DCE.91.092.BVC DCE.91.092.BVM 802 0.9 0.80 2 22,24,26 0.9 0.45 2 28,30,32 DCE.91.092.AVC DCE.91.092.AVM 804/806 0.7 0.80 1 22,24,26 DCE.91.072.BVC DCE.91.072.BVM 810 0.7 0.45 2 28,30,32 1.40 1.3 1 18,20 308/309 DCE.91.133.BVC DCE.91.133.BVM 310 1.3 1.10 2 20,22,24 **3K** 312/314 0.9 1 1.10 20.22.24 DCE.91.093.BVC DCE.91.093.BVM 316/318 0.9 0.80 2 22,24,26 320/322 0.7 0.80 1 22.24.26 DCE.91.073.BVC DCF.91.073.BVM 324/326 328/330 0.7 0.45 2 28,30,32 0.7 0.80 1 22,24,26

709

712

803

718/740

806/809

0.7 0.45 2

0.9 1.10 1

0.9 0.80 2

0.7 0.80 1

0.7

0.9 1.10 1

0.9 0.80 2

0.7 0.80 1

0.7 0.45 2

0.45 2

DCE Positioners for crimp contacts ø 0.5-0.7-0.9 and 1.3 mm

Standard, typically 0-6 weeks delivery for quantities of 250 or less.

 Non-standard product, contact LEMO USA, typically 6-12 weeks delivery for quantities of 250 or less. Non-standard product is defined as any product which contains one or more components which are not standard. DCE.91.073.BVM

DCE.91.093.BVM

DCE.91.073.BVM

DCE.91.093.BVM

DCE.91.073.BVM

DCE.91.073.BVC

DCE.91.093.BVC

DCE.91.073.BVC

DCE.91.093.BVC

DCE.91.073.BVC

28,30,32

20,22,24

22,24,26

22,24,26

28,30,32

20,22,24

22,24,26

22,24,26

28,30,32





These positioners are suitable for use with both manual and pneumatic crimping tools according to the MIL-C-22520/7-01 standard.

# DCE Positioners for crimp contacts 0.5-0.7-0.9 and 1.3 mm diameter

| 812  | 0.9                                                 | 1.10 | 1    | 20,22,24 | DCE.91.093.BVC | DCE.91.093 BVM  |                  |  |
|------|-----------------------------------------------------|------|------|----------|----------------|-----------------|------------------|--|
| 3K   |                                                     | 0.9  | 0.80 | 2        | 22,24,26       | 202.01.000.270  | D02.01.000.D1    |  |
|      | 813/822                                             | 0.7  | 0.80 | 1        | 22,24,26       | DCE.91.073.BVC  | DCE.91.073.BVM   |  |
|      |                                                     | 0.7  | 0.45 | 2        | 28,30,32       |                 |                  |  |
|      | 844/846                                             | 0.9  | 1.10 | 1        | 20,22,24       | DCF 91 093 BVC  | DCF 91 093 BVM   |  |
|      |                                                     | 0.9  | 0.80 | 2        | 22,24,26       | 202.01.000.010  | D02.01.000.D111  |  |
|      | 850/856                                             | 0.7  | 0.80 | 1        | 22,24,26       | DCE 91 073 BVC  | DCE 91 073 BVM   |  |
|      |                                                     | 0.7  | 0.45 | 2        | 28,30,32       | B02.01.070.BV0  | DOL:01:070.DVIII |  |
|      | 862                                                 | 0.9  | 1.10 | 1        | 20,22,24       | DCE 91 093 BVC  | DCE 91 093 BVM   |  |
|      |                                                     | 0.9  | 0.80 | 2        | 22,24,26       | DOE:01:000.DV0  | DOE.01.000.DVIM  |  |
|      | 312                                                 | 1.3  | 1.40 | 1        | 18,20          | DCE 91 134 BVC  | DCE 91 134 BVM   |  |
| 4K   | 012                                                 | 1.3  | 1.10 | 2        | 20,22,24       | DOE.01.104.DVO  | DOC.01.104.DVW   |  |
|      | 316/320                                             | 0.9  | 1.10 | 1        | 20,22,24       | DCE 91 094 BVC  |                  |  |
|      | 324/330                                             | 0.9  | 0.80 | 2        | 22,24,26       | DOL.91.094.DVO  | DOC.91.094.DVIVI |  |
|      | 340                                                 | 0.7  | 0.80 | 1        | 22,24,26       | DCE 91 074 BVC  | DCE 91 074 BVM   |  |
|      | 340                                                 |      | 0.45 | 2        | 28,30,32       | DOE.01.074.DVO  | 000.01.074.000   |  |
|      | 745                                                 | 0.9  | 1.10 | 1        | 20,22,24       |                 |                  |  |
|      | 740                                                 |      | 0.80 | 2        | 22,24,26       | DOL.91.094.DVO  | DOC.91.094.DVW   |  |
|      | 802/804<br>806/822<br>824/826<br>842/844<br>852/856 |      | 1.10 | 1        | 20,22,24       | DCE.91.094.BVC  | DCE.91.094.BVM   |  |
|      |                                                     |      | 0.80 | 2        | 22,24,26       |                 |                  |  |
|      | 858/866                                             | 0.7  | 0.80 | 1        | 22,24,26       | DCF 91 074 BVC  | DCF 91 074 BVM   |  |
|      | 879/885                                             | 0.7  | 0.45 | 2        | 28,30,32       | 502.01.07 1.570 |                  |  |
|      | 330/340                                             | 1.3  | 1.40 | 1        | 18,20          |                 |                  |  |
| 5K   | 348                                                 | 1.3  | 1.10 | 2        | 20,22,24       | DCE.91.135.BVC  | DCE.91.135.BVW   |  |
| •••• | 350/354                                             | 0.9  | 1.10 | 1        | 20,22,24       |                 |                  |  |
|      | 364                                                 | 0.9  | 0.80 | 2        | 22,24,26       | DCE.91.095.DVC  | DCE.91.095.DVIVI |  |
|      | 750                                                 | 1.3  | 1.40 | 1        | 18,20          |                 |                  |  |
|      | 152                                                 | 1.3  | 1.10 | 2        | 20,22,24       | DCE.91.135.DVC  | DCE.91.135.DVIVI |  |
|      | 759/850                                             | 0.9  | 1.10 | 1        | 20,22,24       |                 |                  |  |
|      | 856/857                                             | 0.9  | 0.80 | 2        | 22,24,26       | DCE.91.095.DVC  | DCE.91.095.DVIVI |  |
|      | 964                                                 | 1.3  | 1.40 | 1        | 18,20          |                 |                  |  |
|      | 004                                                 | 1.3  | 1.10 | 2        | 20,22,24       | DCE.91.135.BVC  | DCE.91.135.BVM   |  |
|      | 870/876                                             | 0.9  | 1.10 | 1        | 20,22,24       |                 |                  |  |
|      | 877/892                                             | 0.9  | 0.80 | 2        | 22,24,26       | DCE.91.095.BVC  | DCE.91.095.6VIM  |  |
|      | 007                                                 | 1.3  | 1.40 | 1        | 18,20          |                 |                  |  |
| 997  |                                                     | 1.3  | 1.10 | 2        | 20.22.24       | DOE.91.135.BVC  | DOE 91.135.BVIVI |  |





**Note:** These turrets can be used with manual crimping tool according to MIL-C-22520/1-01 standard.

#### Connector + Contact Positioners Conductor C Fig. Part number Туре ∢ AWG ø Ø 2.0 2.4 1 12,14,16 302 DCE.91.202.BVCM **2K** 2.0 1.9 2 14,16,18 1.9 1 1.6 14,16,18 303 DCE.91.162.BVCM 1.6 1.4 2 18,20,22 302 3.0 2.9 1 10,12,14 DCE.91.303.BVCM **3K** 303/304 2.0 2.4 1 12,14,16 DCE.91.203.BVCM 309 2.0 1.9 2 14,16,18 305/306 1.6 1.9 1 14,16,18 DCE.91.163.BVCM 307 1.6 1.4 2 18,20,22 304 3.0 2.9 1 10,12,14 DCE.91.304.BVCM **4K** 1 2.0 2.4 12,14,16 306/307 DCE.91.204.BVCM 2.0 1.9 2 14,16,18 1.6 1.9 1 14,16,18 310 DCE.91.164.BVCM 1.6 1.4 2 18,20,22 304 4.0 4.0 1 8,10,12 DCE.91.405.BVCM **5K** 310 3.0 2.9 1 10,12,14 DCE.91.305.BVCM 2.0 2.4 1 12,14,16 314/316 DCE.91.205.BVCM 2.0 1.9 2 14,16,18 1.6 1.9 1 14,16,18 320 DCE.91.165.BVCM 1.6 1.4 2 18,20,22 1 1.6 1.9 14,16,18 DCE.91.165.BVCM 752 1.6 1.4 2 18,20,22 2.0 2.4 1 12,14,16 857/877 DCE.91.205.BVCM 2.0 1.9 2 14,16,18

DCE Turret for crimp contacts 1.6-2.0-3.0 and 4.0 mm diameter





Note: This model is used for male and female contacts.

# **DCF** Extraction tools for crimp contacts

|    | Connector           | Extractors     |                |
|----|---------------------|----------------|----------------|
|    | Туре                | Contact<br>ø A | Part number    |
|    | 302/303             | 0.9            | DCF.91.090.2LT |
| UK | 304/305             | 0.7            | DCF.91.070.2LT |
|    | 306/307/309         | 0.5            | DCF.91.050.2LT |
|    | 302/303             | 1.3            | DCF.91.131.2LT |
| 1K | 304/305             | 0.9            | DCF.91.090.2LT |
|    | 306/307/308         | 0.7            | DCF.91.070.2LT |
|    | 702/731             | 1.3            | DCF.91.131.2LT |
|    | 302                 | 2.0            | DCF.91.202.2LT |
| 2K | 303                 | 1.6            | DCF.91.162.2LT |
|    | 304/305/306/307     | 1.3            | DCF.91.131.2LT |
|    | 308/310             | 0.9            | DCF.91.090.2LT |
|    | 312/314/316/318/319 | 0.7            | DCF.91.070.2LT |
|    | 704                 | 0.7            | DCF.91.070.2LT |
|    | 706                 | 1.3            | DCF.91.131.2LT |
|    | 708                 | 0.9            | DCF.91.090.2LT |
|    | 802                 | 0.9            | DCF.91.090.2LT |
|    | 804/806/810         | 0.7            | DCF.91.070.2LT |
|    | 302                 | 3.0            | DCF.91.303.5LT |
| 3K | 303/304/309         | 2.0            | DCF.91.203.5LT |
|    | 305/306/307         | 1.6            | DCF.91.163.5LT |
|    | 308/309/310         | 1.3            | DCF.91.133.5LT |
|    | 312/314/316/318     | 0.9            | DCF.91.093.5LT |
|    | 320/322/324/326/330 | 0.7            | DCF.91.073.5LT |
|    | 709                 | 0.7            | DCF.91.073.5LT |
|    | 712                 | 0.9            | DCF.91.093.5LT |
|    | 718/740             | 0.7            | DCF.91.073.5LT |
|    | 803                 | 0.9            | DCF.91.093.5LT |
|    | 806/809             | 0.7            | DCF.91.073.5LT |
|    | 812                 | 0.9            | DCF.91.093.5LT |
|    | 813/822             | 0.7            | DCF.91.073.5LT |
|    | 844/846             | 0.9            | DCF.91.093.5LT |
|    | 850/856             | 0.7            | DCF.91.073.5LT |
|    | 862                 | 0.9            | DCF.91.093.5LT |
| AK | 304                 | 3.0            | DCF.91.303.5LT |
| 41 | 306/307             | 2.0            | DCF.91.203.5LT |
|    | 310                 | 1.6            | DCF.91.163.5LT |
|    | 312                 | 1.3            | DCF.91.133.5LT |
|    | 316/320/324/330     | 0.9            | DCF.91.093.5LT |
|    | 340                 | 0.7            | DCF.91.073.5LT |
|    | 745                 | 0.9            | DCF.91.093.5LT |
|    | 802/804/806/822/824 | 0.9            | DCF.91.093.5LT |
|    | 826/842/844/852/856 | 0.9            | DCF.91.093.5LT |
|    | 858/866/879/885     | 0.7            | DCF.91.073.5LT |

102 Data Subject to Change





## **DCF** Extraction tools for crimp contacts

|    | Connector   | Extractors     |                |
|----|-------------|----------------|----------------|
|    | Туре        | Contact<br>ø A | Part number    |
| БИ | 304         | 4.0            | DCF.91.405.5LT |
| JN | 310         | 3.0            | DCF.91.303.5LT |
|    | 314/316     | 2.0            | DCF.91.203.5LT |
|    | 320         | 1.6            | DCF.91.163.5LT |
|    | 330/340/348 | 1.3            | DCF.91.133.5LT |
|    | 350/354/364 | 0.9            | DCF.91.093.5LT |
|    | 752         | 1.3            | DCF.91.133.5LT |
|    | 752         | 1.6            | DCF.91.163.5LT |
|    | 759         | 0.9            | DCF.91.093.5LT |
|    | 850/856/857 | 0.9            | DCF.91.093.5LT |
|    | 857         | 2.0            | DCF.91.203.5LT |
|    | 864         | 1.3            | DCF.91.133.5LT |
|    | 870/876/877 | 0.9            | DCF.91.093.5LT |
|    | 877         | 2.0            | DCF.91.203.5LT |
|    | 892         | 0.9            | DCF.91.093.5LT |
|    | 997         | 1.3            | DCF.91.133.5LT |

# **DCC** Extraction tools for coax contacts

|           | Connector       | Extractors   |                |
|-----------|-----------------|--------------|----------------|
|           | Туре            | Соах<br>Туре | Part number    |
| <b>2B</b> | 810             | С            | DCC.91.384.5LA |
|           | 242/243         | С            | DCC.91.384.5LA |
| <b>3B</b> | 822/844/846     | С            | DCC.91.384.5LA |
|           | 856/862         | С            | DCC.91.384.5LA |
|           | 244             | С            | DCC.91.384.5LA |
| <b>4B</b> | 852/856/858/866 | С            | DCC.91.384.5LA |
|           | 879/885         | С            | DCC.91.384.5LA |
|           | 240             | С            | DCC.91.384.5LA |
| <b>5B</b> | 260             | D            | DCB.91.685.BTN |
|           | 273/274         | В            | DCC.91.804.5LA |
|           | 850/856/857/864 | В            | DCC.91.804.5LA |
|           | 870/876/877     | В            | DCC.91.804.5LA |
|           | 892             | D            | DCB.91.685.BTN |



| Contract | Test<br>force (F) | Testing tool     | part number        |
|----------|-------------------|------------------|--------------------|
| ø A      |                   | For male contact | For female contact |
| 0.5      | 8                 | DCK.91.050.8LRC  | DCK.91.050.8LRM    |
| 0.7      | 14                | DCK.91.071.4LRC  | DCK.91.071.4LRM    |
| 0.9      | 14                | DCK.91.091.4LRC  | DCK.91.091.4LRM    |
| 1.3      | 25                | DCK.91.132.5LRC  | DCK.91.132.5LRM    |







#### **Panel Cut-outs**



## K series

| Sorios | P1   |      |      | P6  |      |      | P7  |      |      |
|--------|------|------|------|-----|------|------|-----|------|------|
| Selles | øΑ   | В    | L    | øΑ  | В    | Н    | øΑ  | В    | Н    |
| 0K     | 14.1 | 12.6 | 20.5 | -   | _    | -    | _   | _    | _    |
| 1K     | 16.1 | 14.6 | 22.5 | -   | -    | -    | -   | -    | -    |
| 2K     | 20.2 | 18.6 | 29.0 | -   | -    | -    | -   | -    | -    |
| ЗK     | 24.2 | 22.6 | 35.5 | 3.5 | 22.6 | 20.6 | 3.5 | 23.1 | 23.0 |
| 4K     | 30.2 | 28.6 | 43.0 | 3.5 | 28.6 | 27.0 | 3.5 | 30.1 | 29.0 |
| 5K     | 45.2 | 42.6 | 57.0 | 4.5 | 42.6 | 38.0 | 4.5 | 45.1 | 44.0 |

### Cut-out types

| Model | Туре             | Model | Туре |   | Model |
|-------|------------------|-------|------|---|-------|
| EBG   | P7               | ENG   | P1   |   | PBG   |
| EDG   | P7 <sup>2)</sup> | EVG   | P1   |   | PEG   |
| EEG   | P1               | FAG   | P1   |   | PKG   |
| EGG   | P1               | FXG   | P6   |   | See   |
| EHG   | P1               | HEG   | P1   |   |       |
| EMG   | P1               | HGG   | P1   | 1 |       |

## Mounting nut torque

| Series | Torque<br>(Nm) |                |
|--------|----------------|----------------|
| 0K     | 5              |                |
| 1K     | 7              |                |
| 2K     | 9              |                |
| ЗK     | 12             |                |
| 4K     | 17             |                |
| 5K     | 22             | 1 N = 0.102 ka |
|        | -              |                |

Note: <sup>2)</sup> For this model dimension B = 18.1. <sup>3)</sup> For this model dimension B = 19.1.

Type P7<sup>3)</sup> P1 P1 P1

#### **E** series

| Sorios |      | P1   |      | P6  |      |           |
|--------|------|------|------|-----|------|-----------|
| Selles | øΑ   | В    | L    | øΑ  | В    | Н         |
| 0E     | 14.1 | 12.6 | 20.5 | -   | _    | _         |
| 1E     | 16.1 | 14.6 | 22.5 | -   | -    | -         |
| 2E     | 20.2 | 18.6 | 29.0 | 2.9 | 19.1 | 11.8x20.4 |
| 3E     | 24.2 | 22.6 | 35.5 | -   | -    | -         |
| 4E     | 30.2 | 28.6 | 43.0 | -   | -    | -         |
| 5E     | 45.2 | 42.6 | 57.0 | -   | -    | -         |
| 6E     | 55.3 | 52.1 | 68.0 | _   | _    | _         |

## **Cut-out types**

| Model | Туре | Model | Туре | Model | Туре |
|-------|------|-------|------|-------|------|
| EBR   | P6   | ERB   | P1   | PSA   | P1   |
| EEP   | P1   | ERC   | P1   | PSP   | P1   |
| EHP   | P1   | FAA   | P1   | SWH   | P1   |
| ERA   | P1   | HGP   | P1   |       |      |

## Mounting nut torque

| Series | Torque<br>(Nm) |     |
|--------|----------------|-----|
| 0E     | 5              |     |
| 1E     | 7              |     |
| 2E     | 9              |     |
| 3E     | 12             |     |
| 4E     | 17             |     |
| 5E     | 22             |     |
| 6E     | 27             | 1 N |



# **PCB Drilling Pattern**

### Fixed receptacle with straight printed circuit contact (K series) P15



øΒ

302

304

306

307

308

| Cariaa | Dimensions |     |  |
|--------|------------|-----|--|
| Series | Α          | В   |  |
| 0K     | 0.8        | 2.2 |  |
| 1K     | 0.8        | 2.8 |  |
| 2K     | 0.8        | 4.4 |  |

| Sorioo | Dimensions |     |     |  |  |
|--------|------------|-----|-----|--|--|
| Selles | A          | В   | С   |  |  |
| 0K     | 0.6        | 2.5 | 45° |  |  |
| 1K     | 0.8        | 3.1 | 45° |  |  |
| 2K     | 0.8        | 5.0 | 45° |  |  |
| ЗK     | 0.8        | 6.2 | 45° |  |  |
|        |            |     |     |  |  |

| Sorioo | Dimensions |     |     |  |  |
|--------|------------|-----|-----|--|--|
| Series | Α          | В   | С   |  |  |
| 0K     | 0.6        | 3.0 | 60° |  |  |
| 1K     | 0.8        | 3.7 | 60° |  |  |
|        |            |     |     |  |  |

| Sorioo | Dimensions |     |     |  |  |  |
|--------|------------|-----|-----|--|--|--|
| Series | А          | В   | С   |  |  |  |
| 0K     | 0.6        | 3.0 | 60° |  |  |  |
| 1K     | 0.8        | 3.7 | 60° |  |  |  |
| 2K     | 0.8        | 5.8 | 60° |  |  |  |

| Sorioo | Dimensions |     |     |  |  |  |
|--------|------------|-----|-----|--|--|--|
| Series | Α          | В   | С   |  |  |  |
| 2K     | 0.8        | 6.4 | 45° |  |  |  |
| 3K     | 0.8        | 7.5 | 45° |  |  |  |
|        |            |     |     |  |  |  |

| Sorioo | Dimensions |      |     |        |      |  |
|--------|------------|------|-----|--------|------|--|
| Series | Α          | В    | D   | Н      |      |  |
| 1K     | 0.6        | 3.95 | 45° | 22°30' | 1.40 |  |
| 2K     | 0.8        | 6.20 | 45° | 22°30' | 2.15 |  |
| 3K     | 0.8        | 7.90 | 45° | 22°30' | 2.80 |  |

| Cariaa | Dimensions |     |     |      |      |  |
|--------|------------|-----|-----|------|------|--|
| Series | Α          | В   | С   | Н    | Ι    |  |
| 1K     | 0.6        | 4.4 | 90° | 1.90 | 1.80 |  |
| 2K     | 0.8        | 6.5 | 90° | 2.65 | 2.65 |  |
| 3K     | 0.8        | 8.2 | 90° | 3.40 | 3.40 |  |

| Cariaa | Dimensions |      |        |        |      |
|--------|------------|------|--------|--------|------|
| Series | Α          | В    | D      | Е      | Н    |
| 2K     | 0.8        | 6.6  | 32°44' | 16°22' | 3.10 |
| ЗK     | 0.8        | 8.4  | 32°44' | 16°22' | 3.86 |
| 4K     | 0.6        | 10.5 | 32°44' | 16°22' | 5.00 |
|        |            |      | -      | -      |      |





306

| Cariaa | Dimensions |      |      |  |  |  |
|--------|------------|------|------|--|--|--|
| Series | Α          | В    | С    |  |  |  |
| 0K     | 0.8        | 2.30 | 120° |  |  |  |
| 1K     | 0.8        | 3.00 | 120° |  |  |  |
| 2K     | 0.8        | 4.60 | 120° |  |  |  |
| ЗK     | 0.8        | 5.60 | 120° |  |  |  |

| Sorioo | Dimensions |     |     |  |  |
|--------|------------|-----|-----|--|--|
| Series | Α          | В   | С   |  |  |
| 0K     | 0.6        | 2.8 | 72° |  |  |
| 1K     | 0.8        | 3.4 | 72° |  |  |
| 2K     | 0.8        | 5.2 | 72° |  |  |

| Series | Dimensions |     |     |  |
|--------|------------|-----|-----|--|
|        | Α          | В   | С   |  |
| 2K     | 0.8        | 5.6 | 72° |  |

| Series | Dimensions |     |        |  |
|--------|------------|-----|--------|--|
|        | Α          | В   | С      |  |
| 1K     | 0.8        | 3.8 | 51°26' |  |

| Series | Dimensions |     |     |  |
|--------|------------|-----|-----|--|
|        | Α          | В   | С   |  |
| 3K     | 0.8        | 7.5 | 45° |  |

| Carias | Dimensions |      |     |        |      |  |
|--------|------------|------|-----|--------|------|--|
| Series | А          | В    | С   | D      | Н    |  |
| 2K     | 0.8        | 6.50 | 45° | 22°30' | 2.80 |  |
| ЗK     | 0.8        | 8.20 | 45° | 22°30' | 3.40 |  |

| Series | Dimensions |     |        |      |  |  |
|--------|------------|-----|--------|------|--|--|
|        | Α          | В   | D      | Н    |  |  |
| 1K     | 0.6        | 4.4 | 32°44' | 2.00 |  |  |

| Series | Dimensions |     |     |     |     |      |
|--------|------------|-----|-----|-----|-----|------|
|        | А          | В   | С   | D   | Е   | Н    |
| 2K     | 0.8        | 6.7 | 60° | 30° | 15° | 3.50 |
| ЗK     | 0.8        | 8.4 | 60° | 30° | 15° | 4.34 |

Data Subject to Change

105



ø B





Note: All views are from the side of the receptacle.















### Length of straight printed circuit contacts (for receptacle E...)

|    | Туре                        |     | Dimensions |  |
|----|-----------------------------|-----|------------|--|
|    |                             |     | L          |  |
| ov | 302/303                     | 0.7 | 3.0        |  |
| UN | 304/305                     | 0.5 | 3.0        |  |
|    | 306/307                     | 0.5 | 3.0        |  |
| 11 | 302/303/304/305             | 0.7 | 3.0        |  |
| IR | 306/307/308                 | 0.7 | 3.0        |  |
|    | 310/314/316                 | 0.5 | 3.0        |  |
| ok | 302                         | 0.7 | 3.0        |  |
| 21 | 303/304/305/306/307/308/310 | 0.7 | 5.0        |  |
|    | 312/314/316/318/319         | 0.7 | 6.0        |  |
|    | 326                         | 0.5 | 3.0        |  |
| 3K | 303/304/308/309/310         | 0.7 | 3.0        |  |
| JK | 312/314/316/318             | 0.7 | 3.0        |  |
|    | 320/322/324/326/328/330     | 0.5 | 4.5        |  |
|    | 316/320                     | 0.5 | 5.0        |  |
| 41 | 324/330                     | 0.5 | 5.0        |  |
|    | 340                         | 0.5 | 5.0        |  |
| 5K | 350                         | 0.5 | 5.0        |  |
| JK | 354                         | 0.5 | 5.0        |  |
|    | 364                         | 0.5 | 5.0        |  |


### Fixed receptacle with elbow printed circuit contact (K series) P17







# Fixed receptacle with straight printed circuit contact (E series) P21



304

306

Dimensions Series А В 0E 0.6 2.2 1E 0.8 3.0

| Cariaa | Dimensions |     |     |  |  |  |
|--------|------------|-----|-----|--|--|--|
| Series | Α          | В   | С   |  |  |  |
| 0E     | 0.6        | 2.8 | 45° |  |  |  |
| 1E     | 0.8        | 3.5 | 45° |  |  |  |
| 2E     | 0.8        | 5.0 | 45° |  |  |  |

| Series | Dimensions |     |     |  |  |  |  |
|--------|------------|-----|-----|--|--|--|--|
|        | Α          | В   | С   |  |  |  |  |
| 1E     | 0.8        | 3.5 | 60° |  |  |  |  |
| 2E     | 0.8        | 5.5 | 60° |  |  |  |  |
| 3F     | 0.8        | 6.5 | 60° |  |  |  |  |

| 303 |         |
|-----|---------|
| 000 | C° 🖛 🖛  |
|     |         |
|     |         |
|     |         |
|     |         |
|     | Ψ       |
|     |         |
|     | → ø B → |
|     |         |

305 ø B D

| 307      | D°         |          |
|----------|------------|----------|
| °<br>V ° | <u>∩</u> + | щ        |
| , 8      |            | <b>+</b> |
|          | ø 0.       | шÎ       |

| Corioo | Dimensions |     |     |  |  |  |  |
|--------|------------|-----|-----|--|--|--|--|
| Series | Α          | В   | С   |  |  |  |  |
| 0E     | 0.6        | 2.8 | 45° |  |  |  |  |
| 1E     | 0.8        | 3.5 | 45° |  |  |  |  |
| 2E     | 0.8        | 5.5 | 60° |  |  |  |  |
|        |            |     |     |  |  |  |  |

| Dimensions |                 |                                                                 |                                                                                                   |  |  |  |
|------------|-----------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
| А          | В               | С                                                               | D                                                                                                 |  |  |  |
| 0.8        | 3.5             | 60°                                                             | 45°                                                                                               |  |  |  |
| 0.8        | 5.5             | 60°                                                             | 60°                                                                                               |  |  |  |
|            | A<br>0.8<br>0.8 | A         B           0.8         3.5           0.8         5.5 | A         B         C           0.8         3.5         60°           0.8         5.5         60° |  |  |  |

| Carias | Dimensions |        |      |      |  |  |
|--------|------------|--------|------|------|--|--|
| Series | С          | D      | Е    | F    |  |  |
| 2E     | 45°        | 22°30' | 2.75 | 3.25 |  |  |
| 3E     | 45°        | 22°30' | 3.25 | 3.90 |  |  |

Note: All views are from the side of the receptacle.

ø B

2E 3E





Length of straight printed circuit contacts (for receptacle E...)



 $\oplus \oplus \oplus$ 

 $\oplus \oplus \oplus$ 

⊕

⊕

Ð

Ā

|           | Туре                |     | Dimensions |  |  |
|-----------|---------------------|-----|------------|--|--|
|           | Туре                | øΟ  | L          |  |  |
|           | 302                 | 0.7 | 3.0        |  |  |
| <b>0E</b> | 303                 | 0.5 | 3.0        |  |  |
|           | 304                 | 0.5 | 3.0        |  |  |
| 1E        | 302                 | 0.7 | 3.0        |  |  |
|           | 303/304/305         | 0.7 | 3.0        |  |  |
|           | 305/306             | 0.5 | 3.0        |  |  |
|           | 303/304/305         | 0.8 | 3.0        |  |  |
| 2E        | 306/307             | 0.8 | 3.0        |  |  |
|           | 307/308/310         | 0.7 | 3.0        |  |  |
|           | 305/306/307/308/310 | 0.7 | 3.0        |  |  |
| 3E        | 312/313/314         | 0.7 | 3.0        |  |  |
|           | 316/318             | 0.7 | 3.0        |  |  |

Note: This table does not apply for HGP and EHP receptacles and for FAA plugs.



### Fixed receptacle with elbow printed circuit contact (E series) P24









# Cable fixing

Cables are fixed into LEMO connectors with cable collet systems. These collets with latches have a design which is very similar to those used for tool machines. This solution guarantees excellent cable retention and ensures perfectly symmetrical deformation of the cable.

### Material and treatment

|                |                           | Surface treatment (µm) |    |      |    |     |
|----------------|---------------------------|------------------------|----|------|----|-----|
| Component      | Material (standard)       | Nickel                 |    | Gold |    |     |
|                |                           | Cu                     | Ni | Cu   | Ni | Au  |
| Center piece   | Brass (UNS C 38500)       | 0.5                    | 3  | _    | _  | _   |
| Collet         | Brass (UNS C 38500)       | 0.5                    | 3  | -    | -  | -   |
| Crimp ferrule  | Copper (UNS C 18700)      | 0.5                    | 3  | 0.5  | 3  | 0.5 |
| Reducer        | Brass (UNS C 38500)       | 0.5                    | 3  | -    | -  | -   |
| Reducing cone  | Brass (UNS C 38500)       | 0.5                    | 3  | -    | -  | -   |
| Grounding cone | Brass (UNS C 38500)       | 0.5                    | 3  | _    | -  | -   |
| Metal washer   | Brass (UNS C 38500)       | 0.5                    | 3  | -    | -  | -   |
| Gaskat         | Silicone MQ/MVQ           |                        |    |      |    |     |
| Gaskel         | FPM (Viton <sup>®</sup> ) | _                      |    |      |    |     |

**Notes:** Standards for surface treatment are as follows: Nickel-plated: FS QQ-N-290A.

# Cable clamping

# Type C cable clamping (E series)

In standard watertight series (0E to 5E), C type clamping is completed by a flexible gasket (6) providing for watertightness on the cable end, by a metal washer (5) which prevents the gasket from rotating during the clamping; and by a grounding cone  $\overline{O}$  which tightens the screen onto the grounding center-piece (3) or (4).



# Type K cable clamping (E series)

In standard watertight series (E series), the K type clamping type is completed by the flexible gasket 6 providing for watertightness on the cable end, by the metal washer 5 which prevents the gasket from rotating during the clamping 1 and the grounding cone 7 of the next series size up which clamps the shield onto the longer split center-pieces 4.





#### Type C cable clamping (K series)

In the watertight series (K series), the C type clamping system is completed by a flexible gasket (6) providing for watertightness on the cable end, by a metal washer (5) preventing the gasket from rotating when the collet nut is clamped and a grounding cone  $\mathcal{O}$  which clamps the shield onto the split insert carrier (4).



### Type K cable clamping (K series)

In the watertight keyed series (K series), the clamping system provides for using screened or unscreened cables, with a diameter larger than the maximum specified for each series. The shell is completed by an oversize collet housing @. The collet @ and watertightness on the cable end are identical to type C cable clamping but are of the next series size up. The grounding cone @ clamps the shield onto the longer split center-pieces @.



### Maximum metal collet nut tightening torque

#### Watertight series

|             | Series |     |    |    |    |    |    |
|-------------|--------|-----|----|----|----|----|----|
|             | 0E     | 1E  | 2E | 3E | 4E | 5E | 6E |
| Torque (Nm) | 0.7    | 0.8 | 2  | 3  | 5  | 8  | 12 |

#### Watertight keyed series

|             |                  | Series |   |   |   |   |  |
|-------------|------------------|--------|---|---|---|---|--|
|             | 0K 1K 2K 3K 4K 5 |        |   |   |   |   |  |
| Torque (Nm) | 0.7              | 0.8    | 2 | 3 | 5 | 8 |  |

1N = 0.102 kg

Note: See page 97 for correct torque procedure.

# • Technical Tables

# Table of Wire Gauges

|                  | Constr       | uction         | ø wire | e max Wire se |                    | ection                 |
|------------------|--------------|----------------|--------|---------------|--------------------|------------------------|
| AWG              | Strand<br>nb | AWG/<br>strand | (mm)   | (in)          | (mm <sup>2</sup> ) | (sq in)                |
| 4                | 133          | 25             | 6.9596 | 0.274         | 21.5925            | 0.0335                 |
| 6                | 133          | 27             | 5.5118 | 0.217         | 13.5885            | 0.0211                 |
| 8                | 168          | 30             | 4.4450 | 0.175         | 8.5127             | 0.0132                 |
| 8                | 133          | 29             | 4.3942 | 0.173         | 8.6053             | 0.0133                 |
| 10               | 105          | 30             | 3.3020 | 0.13          | 5.3204             | 0.0082                 |
| 10               | 37           | 26             | 2.9210 | 0.115         | 4.7397             | 0.0073                 |
| 10               | 1            | 10             | 2.6162 | 0.103         | 5.2614             | 0.0082                 |
| 12               | 65           | 30             | 2.5146 | 0.099         | 3.2936             | 0.0051                 |
| 12               | 37           | 28             | 2.3114 | 0.091         | 2.9765             | 0.0046                 |
| 12               | 19           | 25             | 2.3622 | 0.093         | 3.0847             | 0.0048                 |
| 12 <sup>1)</sup> | 7            | 20             | 2.5400 | 0.1           | 3.6321             | 0.0056                 |
| 12               | 1            | 12             | 2.0828 | 0.082         | 3.3081             | 0.0051                 |
| 14               | 41           | 30             | 2.0574 | 0.081         | 2.0775             | 0.0032                 |
| 14               | 19           | 27             | 1.8542 | 0.073         | 1.9413             | 0.0030                 |
| 14 <sup>1)</sup> | 7            | 22             | 2.0828 | 0.082         | 2.2704             | 0.0035                 |
| 14               | 1            | 14             | 1.6510 | 0.065         | 2.0820             | 0.0032                 |
| 16 <sup>1)</sup> | 65           | 34             | 1.5748 | 0.062         | 1.3072             | 0.0020                 |
| 16               | 26           | 30             | 1.5748 | 0.062         | 1.3174             | 0.0020                 |
| 16               | 19           | 29             | 1.4986 | 0.059         | 1.2293             | 0.0019                 |
| 16 <sup>1)</sup> | 7            | 24             | 1.5494 | 0.061         | 1.4330             | 0.0022                 |
| 16               | 1            | 16             | 1.3208 | 0.052         | 1.3076             | 0.0020                 |
| 18 <sup>1)</sup> | 65           | 36             | 1.2700 | 0.05          | 0.8234             | 0.0013                 |
| 18 <sup>1)</sup> | 42           | 34             | 1.2700 | 0.05          | 0.8447             | 0.0013                 |
| 18               | 19           | 30             | 1.3208 | 0.052         | 0.9627             | 0.0015                 |
| 18               | 16           | 30             | 1.2954 | 0.051         | 0.8107             | 0.0013                 |
| 18               | 7            | 26             | 1.2700 | 0.05          | 0.8967             | 0.0014                 |
| 18               | 1            | 18             | 1.0414 | 0.041         | 0.8229             | 0.0013                 |
| 20 1)            | 42           | 36             | 1.0160 | 0.04          | 0.5320             | 8.2 x 10 <sup>-4</sup> |
| 20               | 19           | 32             | 1.0414 | 0.041         | 0.6162             | 0.0010                 |
| 20               | 10           | 30             | 1.0160 | 0.04          | 0.5067             | 7.9 x 10 <sup>-4</sup> |
| 20               | 7            | 28             | 0.9906 | 0.039         | 0.5631             | 8.7 x 10 <sup>-4</sup> |
| 20               | 1            | 20             | 0.8382 | 0.033         | 0.5189             | 8.0 x 10 <sup>-4</sup> |
| 22               | 19           | 34             | 0.8382 | 0.033         | 0.3821             | 5.9 x 10 <sup>-4</sup> |
| 22               | 7            | 30             | 0.7874 | 0.031         | 0.3547             | 5.5 x 10 <sup>-4</sup> |
| 22               | 1            | 22             | 0.6604 | 0.026         | 0.3243             | 5.0 x 10 <sup>-4</sup> |
| 24 1)            | 42           | 40             | 0.6604 | 0.026         | 0.2045             | 3.2 x 10 <sup>-4</sup> |
| 24               | 19           | 36             | 0.6858 | 0.027         | 0.2407             | 3.7 x 10 <sup>-4</sup> |
| 24               | 7            | 32             | 0.6350 | 0.025         | 0.2270             | 3.5 x 10 <sup>-4</sup> |
| 24               | 1            | 24             | 0.5588 | 0.022         | 0.2047             | 3.2 x 10 <sup>-4</sup> |
| 26               | 19           | 38             | 0.5588 | 0.022         | 0.1540             | 2.4 x 10 <sup>-4</sup> |
| 26               | 7            | 34             | 0.5080 | 0.02          | 0.1408             | 2.2 x 10 <sup>-4</sup> |
| 26               | 1            | 26             | 0.4318 | 0.017         | 0.1281             | 2.0 x 10 <sup>-4</sup> |
| 28 1)            | 19           | 40             | 0.4318 | 0.017         | 0.0925             | 1.4 x 10 <sup>-4</sup> |
| 28               | 7            | 36             | 0.4064 | 0.016         | 0.0887             | 1.4 x 10 <sup>-4</sup> |
| 28               |              | 28             | 0.3302 | 0.013         | 0.0804             | 1.2 X 10 <sup>-4</sup> |
| 30               | 7            | 38             | 0.3302 | 0.013         | 0.0568             | 8.8 x 10 <sup>-5</sup> |
| 30               |              | 30             | 0.2794 | 0.011         | 0.0507             | 7.9 x 10 <sup>-5</sup> |
| 32               | 7            | 40             | 0.2794 | 0.011         | 0.0341             | 5.3 X 10 <sup>-5</sup> |
| 32               |              | 32             | 0.2286 | 0.009         | 0.0324             | 5.0 X 10 <sup>-5</sup> |
| 34               |              | 34             | 0.1693 | 0.007         | 0.0201             | 3.1 X 10 <sup>-5</sup> |
| 36               | 1            | 36             | 0.127  | 0.005         | 0.0127             | 2.0 X 10 <sup>-5</sup> |
| 38               | 1            | 38             | 0.1016 | 0.004         | 0.0081             | 1.3 X 10 <sup>-5</sup> |
| 40               | 1            | 40             | 0.078  | 0.003         | 0.0049             | 7.5 x 10 <sup>-6</sup> |



# Table of wire gauges according to IEC-228 standard

| Conductor no<br>x Ø (mm) | Max Ø<br>(mm) | Max Ø<br>(in) | Section<br>(mm <sup>2</sup> ) | Section<br>(sq in)     |
|--------------------------|---------------|---------------|-------------------------------|------------------------|
| 196 x 0.40               | 7.50          | 0.295         | 25.00                         | 0.0387                 |
| 7 x 2.14                 | 6.10          | 0.240         | 25.00                         | 0.0387                 |
| 125 x 0.40               | 6.00          | 0.236         | 16.00                         | 0.0248                 |
| 7 x 1.72                 | 4.90          | 0.192         | 16.00                         | 0.0248                 |
| 1 x 4.50                 | 4.50          | 0.177         | 16.00                         | 0.0248                 |
| 80 x 0.40                | 4.70          | 0.155         | 10.00                         | 0.0155                 |
| 7 x 1.38                 | 3.95          | 0.155         | 10.00                         | 0.0155                 |
| 1 x 3.60                 | 3.60          | 0.141         | 10.00                         | 0.0155                 |
| 84 x 0.30                | 3.70          | 0.145         | 6.00                          | 0.0093                 |
| 7 x 1.50                 | 3.15          | 0.124         | 6.00                          | 0.0093                 |
| 1 x 2.76                 | 2.76          | 0.108         | 6.00                          | 0.0093                 |
| 56 x 0.30                | 2.80          | 0.110         | 4.00                          | 0.0062                 |
| 7 x 0.86                 | 2.58          | 0.098         | 4.00                          | 0.0062                 |
| 1 x 2.25                 | 2.25          | 0.082         | 4.00                          | 0.0062                 |
| 50 x 0.25                | 2.15          | 0.084         | 2.50                          | 0.0038                 |
| 7 x 0.68                 | 2.04          | 0.080         | 2.50                          | 0.0038                 |
| 1 x 1.78                 | 1.78          | 0.070         | 2.50                          | 0.0038                 |
| 30 x 0.25                | 1.60          | 0.062         | 1.50                          | 0.0023                 |
| 7 x 0.52                 | 1.56          | 0.061         | 1.50                          | 0.0023                 |
| 1 x 1.14                 | 1.40          | 0.055         | 1.50                          | 0.0023                 |
| 32 x 0.20                | 1.35          | 0.053         | 1.00                          | 0.0015                 |
| 7 x 0.43                 | 1.29          | 0.050         | 1.00                          | 0.0015                 |
| 1 x 1.15                 | 1.15          | 0.045         | 1.00                          | 0.0015                 |
| 42 x 0.15                | 1.20          | 0.047         | 0.75                          | 0.0011                 |
| 28 x 0.20                | 1.15          | 0.045         | 0.75                          | 0.0011                 |
| 1 x 1.0                  | 1.00          | 0.039         | 0.75                          | 0.0011                 |
| 28 x 0.15                | 0.95          | 0.037         | 0.50                          | 7.7 x 10 <sup>-4</sup> |
| 16 x 0.20                | 0.90          | 0.035         | 0.50                          | 7.7 x 10 <sup>-4</sup> |
| 1 x 0.80                 | 0.80          | 0.031         | 0.50                          | 7.7 x 10 <sup>-4</sup> |
| 7 x 0.25                 | 0.75          | 0.029         | 0.34                          | 5.2 x 10 <sup>-4</sup> |
| 1 x 0.60                 | 0.60          | 0.023         | 0.28                          | 4.3 x 10 <sup>-4</sup> |
| 14 x 0.15                | 0.75          | 0.029         | 0.25                          | 3.8 x 10 <sup>-4</sup> |
| 7 x 0.20                 | 0.65          | 0.023         | 0.22                          | 3.4 x 10 <sup>-4</sup> |
| 18 x 0.10                | 0.50          | 0.019         | 0.14                          | 2.1 x 10 <sup>-4</sup> |
| 14 x 0.10                | 0.40          | 0.015         | 0.11                          | 1.7 x 10 <sup>-4</sup> |
| 21 x 0.07                | 0.40          | 0.015         | 0.09                          | 1.3 x 10 <sup>-4</sup> |
| 14 x 0.10                | 0.40          | 0.015         | 0.09                          | 1.3 x 10 <sup>-4</sup> |

Note: 1) Not included in the standard



# • Conversion Tables — millimeters/inches

| (mm) | (in)   | (mm) | (in)   | (mm) | (in)   | (mm)  | (in)   | (mm)  | (in)   | (mm)   | (in)   |
|------|--------|------|--------|------|--------|-------|--------|-------|--------|--------|--------|
| 0.02 | 0.0007 | 1.37 | 0.0539 | 3.90 | 0.1535 | 8.90  | 0.3504 | 16.00 | 0.6299 | 29.50  | 1.1614 |
| 0.03 | 0.0011 | 1.40 | 0.0551 | 4.00 | 0.1575 | 9.00  | 0.3543 | 16.10 | 0.6338 | 30.00  | 1.1811 |
| 0.10 | 0.0039 | 1.50 | 0.0590 | 4.36 | 0.1716 | 9.40  | 0.3701 | 17.00 | 0.6693 | 30.80  | 1.2125 |
| 0.16 | 0.0062 | 1.52 | 0.0598 | 4.50 | 0.1771 | 9.50  | 0.3740 | 17.50 | 0.6889 | 31.00  | 1.2204 |
| 0.18 | 0.0071 | 1.60 | 0.0629 | 5.00 | 0.1968 | 9.60  | 0.3779 | 17.80 | 0.7007 | 31.80  | 1.2519 |
| 0.20 | 0.0078 | 1.70 | 0.0669 | 5.08 | 0.1999 | 9.70  | 0.3818 | 18.00 | 0.7086 | 32.00  | 1.2598 |
| 0.30 | 0.0118 | 1.71 | 0.0673 | 5.20 | 0.2047 | 10.00 | 0.3937 | 18.20 | 0.7165 | 33.00  | 1.2992 |
| 0.40 | 0.0157 | 1.80 | 0.0708 | 5.37 | 0.2114 | 10.30 | 0.4055 | 18.50 | 0.7283 | 33.50  | 1.3188 |
| 0.48 | 0.0188 | 2.00 | 0.0787 | 5.50 | 0.2165 | 10.40 | 0.4094 | 19.00 | 0.7480 | 34.00  | 1.3385 |
| 0.50 | 0.0196 | 2.10 | 0.0826 | 5.80 | 0.2283 | 10.50 | 0.4134 | 19.50 | 0.7677 | 34.50  | 1.3582 |
| 0.51 | 0.0201 | 2.20 | 0.0866 | 6.00 | 0.2362 | 10.70 | 0.4212 | 20.00 | 0.7874 | 35.70  | 1.4055 |
| 0.54 | 0.0212 | 2.42 | 0.0953 | 6.20 | 0.2441 | 10.80 | 0.4252 | 20.50 | 0.8071 | 36.00  | 1.4173 |
| 0.60 | 0.0236 | 2.50 | 0.0984 | 6.30 | 0.2480 | 11.00 | 0.4331 | 20.60 | 0.8110 | 40.00  | 1.5748 |
| 0.70 | 0.0275 | 2.60 | 0.1023 | 6.40 | 0.2519 | 11.50 | 0.4527 | 21.00 | 0.8267 | 41.00  | 1.6141 |
| 0.80 | 0.0315 | 2.70 | 0.1063 | 6.50 | 0.2559 | 11.70 | 0.4606 | 21.50 | 0.8464 | 42.00  | 1.6535 |
| 0.86 | 0.0338 | 2.80 | 0.1102 | 6.80 | 0.2677 | 12.00 | 0.4724 | 21.80 | 0.8582 | 43.00  | 1.6929 |
| 0.87 | 0.0342 | 2.95 | 0.1161 | 7.00 | 0.2755 | 12.60 | 0.4961 | 22.00 | 0.8661 | 45.00  | 1.7716 |
| 0.90 | 0.0354 | 3.00 | 0.1181 | 7.10 | 0.2795 | 12.90 | 0.5078 | 23.00 | 0.9055 | 45.50  | 1.7913 |
| 0.91 | 0.0358 | 3.05 | 0.1201 | 7.40 | 0.2913 | 13.00 | 0.5118 | 23.80 | 0.9370 | 46.50  | 1.8307 |
| 0.95 | 0.0374 | 3.10 | 0.1220 | 7.50 | 0.2952 | 13.70 | 0.5393 | 24.00 | 0.9448 | 50.00  | 1.9685 |
| 1.00 | 0.0393 | 3.20 | 0.1259 | 8.00 | 0.3149 | 14.00 | 0.5512 | 25.00 | 0.9842 | 60.00  | 2.3622 |
| 1.21 | 0.0476 | 3.30 | 0.1299 | 8.30 | 0.3267 | 14.30 | 0.5629 | 25.50 | 1.0039 | 65.00  | 2.5590 |
| 1.29 | 0.0507 | 3.50 | 0.1378 | 8.60 | 0.3385 | 14.50 | 0.5708 | 26.00 | 1.0236 | 70.00  | 2.7559 |
| 1.30 | 0.0512 | 3.78 | 0.1488 | 8.70 | 0.3425 | 15.00 | 0.5905 | 28.00 | 1.1023 | 78.00  | 3.0708 |
| 1.32 | 0.0519 | 3.80 | 0.1496 | 8.80 | 0.3464 | 15.50 | 0.6102 | 28.50 | 1.1220 | 150.00 | 5.9055 |



# Terms and Conditions

- 1. Acceptance: THE ACCEPTANCE OF BUYER'S ORDER IS EXPRESSLY MADE CONDITIONAL ON BUYER'S ASSENT TO ALL OF THE TERMS AND CONDITIONS SET FORTH HEREIN, AND LEMO USA AGREES TO FURNISH THE MATE-RIALS, PRODUCTS AND SERVICES COVERED THEREBY ONLY UPON THESE TERMS AND CONDITIONS. These Terms & Conditions contain the entire agreement of the parties and there are no other promises or conditions in any other agreements whether oral or written. This document supersedes any prior written or oral agreements between the parties. The terms and conditions of this Agreement shall prevail, notwithstanding the fact Buyer's order may contain written, printed or stamped provisions or conditions inconsistent with and/or in addition to the written, printed or stamped provisions of this Agreement. Buyer shall contact LEMO USA within 10 days of receipt of LEMO USA Terms and Conditions, or prior to shipment of goods, whichever shall occur first, if any objection is raised. Failure of Buyer to timely object shall be deemed an acceptance by Buyer of LEMO USA's Terms and Conditions. If a timely objection is raised by the Buyer to the LEMO USA Terms and Conditions, the order(s) will not be entered until agreement in writing is reached. All orders are subject to acceptance by Lemo USA.
- 2. Pricing and payment: All prices are F.O.B. Rohnert Park, California. Payment is due within 30 days of invoice date. All invoices are delinquent at 30 days past invoice date and will be subject to 1% per month finance charge. Overdue accounts may be placed on credit hold and shipments held. Buyer agrees to pay all reasonable collection charges, including attorney fees, in the event his account is delinquent more than 30 days. Buyer will be charged any direct additional cost to which Lemo USA is put by reason of any interruption of production due to Buyer's request, act or default.
- 3. Payment of Taxes: In the event any sales tax, manufacturer's tax, or other tax is applicable to any shipment made by the Buyer on Buyer's order, such tax shall be added to the selling price and shall be paid by the Buyer. In the event Lemo USA is required to pay any such tax, Buyer shall reimburse Lemo USA therefore.
- 4. Title/Risk of Loss: All sales are complete, and all Lemo USA's obligations hereunder are completed when Lemo USA delivers the items purchased, properly consigned, to a common carrier. Lemo USA's delivery to such carrier shall constitute delivery thereof to the Buyer, and all risk of loss or damage of goods in transit shall be borne by Buyer.
- 5. Security Interest: Lemo USA shall retain a security interest in goods delivered hereunder, and in proceeds from the sale, exchange, collection, or disposition thereof, until Buyer has made payment in full for such goods. Buyer shall, upon request by Lemo USA, provide all information and signatures required by Lemo USA to perfect such security interest. Lemo USA reserves all rights granted to a secured creditor under the California Uniform Commercial Code, including the right to repossess upon default by Buyer. To simplify such repossession, Lemo USA may require the Buyer to assemble the collateral and make it available to Lemo USA at a place reasonably convenient to both parties and designated by Lemo USA.
- 6. Returns: All NON-CANCELABLE/NON-RETURNABLE products shall not be returned. If Buyer intends to return standard product, a return authorization number is required prior to return shipment and the product may be subjected to a restocking fee. Lemo USA reserves the right not to issue a return authorization. Product must be returned (with shipping costs prepaid) in original packaging and in original condition as when purchased, undamaged, not reconfigured, not obsolete, fit for use, and shall not have been previously shipped from Lemo USA to Buyer or its customer more than one year prior to the date of return. Lemo USA reserves the right to not accept damaged product for credit, replacement, or substitution. If damaged product is accepted by Lemo USA for credit, and damage is caused by the negligence of the Buyer, the Buyer will pay all costs for refurbishment of damaged product. Discovery of product defect and return of product shall be made in the period of time following delivery as provided in the applicable sections of the Uniform Commercial Code. In the event of a return, Lemo USA shall have the right, in its sole discretion, to replace, substitute, or issue a credit to Buyer.
- 7. Buyer's Liability upon Default: In the event Buyer cancels the contract embodied by Buyer's Purchase Order and this acceptance thereof, in whole or in part, or such contract is canceled by Lemo USA because of default by the Buyer, the Buyer shall pay Lemo USA by reason of such cancellation or default for reasonable direct costs sustained, including costs associated with completed units, shipped or unshipped, labor and materials on work in process, and raw materials on hand and/or specific to Buyer's Order and all other reasonable direct costs, for lead time specified in advance of requested date of cancellation, at the current price applicable to the total quantity ordered at the time of default. Notwithstanding the foregoing, if item or items ordered are NON-CANCELABLE/NON-RETURNABLE, the Buyer shall purchase 100% of quantity ordered.

In the event Lemo USA does not meet the confirmed delivery date agreed to with the Buyer as evidenced in writing, Lemo USA shall be allowed one opportunity to reschedule the delivery and Buyer shall not be entitled to cancel this contract for such reason. In the event Lemo USA does not meet said rescheduled delivery, Buyer may cancel this contact and not be in default hereunder, including the terms of this Section 7.

8. Indemnity: Buyer hereby specifically agrees to defend Lemo USA, to save Lemo USA harmless and to indemnify Lemo USA against all claims for damage or profits and for all costs and attorney fees incurred by Lemo USA resulting from any suit or suits arising from alleged infringements of patents, design copyrights, or trademarks with respect to all goods manufactured, either in whole or in part, to Buyer's specifications. Lemo USA, at its expense, will defend Buyer and its customer against any reasonable and good faith claim based on an allegation that an unaltered LEMO USA product infringes a U.S. patent, trademark or copyright of another; provided however, that no such obligation shall apply to (i) any LEMO USA product manufactured to Buyer's specifications and/or designs or (ii) any product that has been modified, or altered by Buyer or a third party. Lemo USA shall pay any reasonable resulting costs (including reasonable attorney's fees), and damages finally awarded against Buyer or its customer that are attributable to such claim or will pay the part of any settlement that is attributable to control the defense or settlement of the claim; and (c) Buyer and its customer cooperate reasonably in such defense or settlement. In the event any such product sold by LEMO USA is





held to constitute an infringement of any such US patent, trademark or copyright, and the use of such product by Buyer is enjoined, LEMO USA shall, at its own expense and option, either procure for Buyer the right to continue using said product, replace same with a non-infringing product, modify it so it becomes a non-infringing product, or have the product returned, and refund the purchase price to Buyer. In no event shall Lemo USA's total liability to Buyer under or as a result of compliance with the provisions of this paragraph exceed the aggregate sum paid by Buyer for the allegedly infringing product. The foregoing states the entire liability of LEMO USA for infringement by said products or by any part thereof, either alone or in combination with other devices or elements.

THE FOREGOING PROVISION IS STATED IN LIEU OF ANY OTHER EXPRESS, IMPLIED, OR STATUTORY WARRAN-TY AGAINST INFRINGEMENT AND SHALL BE THE SOLE AND EXCLUSIVE REMEDY FOR INFRINGEMENT OF ANY KIND.

9. Warranties: Lemo USA warrants to Buyer that the goods will conform to the applicable drawings or design standards, and shall be free from defects in material and workmanship. The foregoing warranty shall apply for a period of one year from the date of shipment of product to Buyer. Lemo USA's sole responsibility shall be to replace any such nonconforming goods or repair such nonconforming goods without charge to Buyer. The express warranties set forth in this agreement are exclusive and are in lieu of all other express or implied warranties, but not limited to, warranties of merchantability and fitness for a particular purpose, and do not apply to products that have been modified, altered, misused, or damaged during shipment or by Buyer.

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, LEMO USA DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES, WARRANTIES OF MERCHANTABIL-ITY AND WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

- **10. License:** The submission of a quotation or order acknowledgment does not grant or imply a license under any patents now owned or controlled by Lemo USA, or which may become owned or controlled by Lemo USA.
- 11. Applicable Law: This Agreement shall be subject to the applicable provisions of the Uniform Commercial Code, under the laws of the State of California.
- 12. Disputes and Resolution; Attorney's Fees: The parties agree that any disputes or questions arising hereunder including the construction or application of these Terms and Conditions shall be settled in the State of California, according to the laws of the State of California. Any action based on this Agreement must be commenced within one (1) year after the cause of action arises. The parties hereto hereby consent to jurisdiction and venue in the Superior Court of Sonoma County, California, and in the Federal District Court for the Northern District of California, with respect to all disputes or disagreements under these Terms and Conditions and agree that any action with respect to any of the foregoing shall be brought and maintained only in such courts sitting in the Northern District of California or Sonoma County, as appropriate. In any court action at law or in equity, which is brought by one of the parties to enforce or interpret the provisions of these Terms and Conditions, the prevailing party will be entitled to costs and reasonable attorney's fees, in addition to any other relief to which that party may be entitled.
- 13. Confidentiality: Both parties acknowledge that during the course of business, each may obtain confidential information regarding the other party's business. Both parties agree to treat all such information as confidential and to take all reasonable precautions against disclosure of such information to unauthorized third parties during and for five (5) years after the term of all orders. Upon request by an owner, all documents relating to the confidential information will be returned to such owner.
- 14. Assignment: It is agreed by the parties that there will be no assignment or transfer of any order or any interest in any orders. Action by a party in violation of this provision will dismiss the other party from any further obligations arising from any orders.
- **15. Amendment:** These Terms & Conditions may be modified or amended if the amendment is made in writing and is signed by both parties.
- 16. Severability: If any provision of these Terms & Conditions shall be held to be invalid or unenforceable for any reason, the remaining provisions shall continue to be valid and enforceable. If a court finds that any provision is invalid or unenforceable, but that by limiting such provision it would become valid and enforceable, then such provision shall be deemed to be written, construed and enforced as so limited.
- 17. Waiver of Contractual Right: The failure of either party to enforce any provision of these Terms & Conditions shall not be construed as a waiver or limitation of that party's right to subsequently enforce and compel strict compliance with every provision of this Contract.
- 18. Limitation on Damages: Buyer's consequential or incidental damages for any Lemo USA breach of the contract, except for Lemo USA's gross negligence or willful misconduct, will be limited to the purchase price. Subject to Section 8 hereof, Lemo USA will have no liability to Buyer for any damages, losses, liabilities, injuries, claims, demands or expenses arising out of or directly or indirectly connected with the use of the product. Lemo USA shall not be liable for any exemplary, indirect, incidental, or consequential damages sustained or incurred in connection with the use of the product regardless of the form of action, whether in contract, tort (including negligence) or strict liability.

LEMO USA SHALL NOT BE LIABLE FOR ANY DAMAGES DUE TO CAUSES BEYOND THE REASONABLE CONTROL OF LEMO USA OR ATTRIBUTABLE TO ANY SERVICE, PRODUCTS, OR ACTIONS OF ANY PERSON OTHER THAN LEMO USA REGARDLESS OF THE FORM OF ACTION AND WHETHER OR NOT SUCH DAMAGES ARE FORESEE-ABLE.

**19. Force Majeure:** NEITHER PARTY SHALL BE LIABLE IN ANY WAY TO THE OTHER PARTY FOR DELAYS, FAILURE IN PER-FORMANCE, OR LOSS OR DAMAGE DUE TO FORCE MAJEURE CONDITIONS SUCH AS: FIRE; LIGHTENING; STRIKE; EMBARGO; EXPLOSION; POWER SURGE OR FAILURE; ACTS OF GOD; WAR; TERRORIST ATTACKS; LABOR DISPUTES; CIVIL DISTURBANCES; ACTS OF CIVIL OR MILITARY AUTHORITY; INABILITY TO SECURE MATERIALS, FUEL, PRODUCTS OR TRANSPORTATION FACILITIES; ACTS OR OMISSIONS OF SUPPLIERS, OR ANY OTHER CAUSES BEYOND ITS REASONABLE CONTROL, WHETHER OR NOT SIMILAR TO THE FOREGOING.



# Product Safety Notice

PLEASE READ AND FOLLOW ALL INSTRUCTIONS CAREFULLY AND CONSULT ALL RELEVANT NATIONAL AND INTERNA-TIONAL SAFETY REGULATIONS FOR YOUR APPLICATION. IMPROPER HANDLING, CABLE ASSEMBLY, OR USE OF CON-NECTORS CAN RESULT IN HAZARDOUS SITUATIONS.

#### 1. SHOCK AND FIRE HAZARD

Incorrect wiring, the use of damaged components, foreign objects (such as metal debris), and / or the presence of residue (such as cleaning fluids), can result in short circuits, overheating, and / or risk of electric shock. Mated components should never be disconnected while live as this may result in an exposed electric arc and local overheating, resulting in possible damage to components.

#### 2. HANDLING

Connectors and their components should be visually inspected for damage prior to installation and assembly. Suspect components should be rejected or returned to the factory for verification. Connector assembly and installation should only be carried out by properly trained personnel. Proper tools must be used during installation and / or assembly in order to obtain safe and reliable performance.

#### 3. USE

Connectors with exposed contacts should never be live (or on the current supply side of a circuit). Under general conditions voltages above 30 VAC and 42 VDC are considered hazardous and proper measures should be taken to eliminate all risk of transmission of such voltages to any exposed metal part of the connector.

#### 4. TEST AND OPERATING VOLTAGES

The maximum admissible operating voltage depends upon the national or international standards in force for the application in question. Air and creepage distances impact the operating voltage; reference values are indicated in the catalog however these may be influenced by PC board design and / or wiring harnesses. The test voltage indicated in the catalog is 75% of the mean breakdown voltage; the test is applied at 500 V/s and the test duration is 1 minute.

#### 5. CE MARKING

CE Marking is applied to a complete product or device, and implies that the device complies with one or several European safety directives. CE Marking can NOT be applied to electromechanical components such as connectors.

#### 6. PRODUCT IMPROVEMENTS

The LEMO Group reserves the right to modify and improve to our products or specifications without providing prior notification.





# Design Engineering Services

DATE:

# LEMO creates custom designs to fit your unique application, ranging from connector to multi-component assemblies.

- Custom Connectors Precision designs tested to your specifications
- Cable Assembly Electronic and hybrid fiber optic cable assemblies to meet a wide variety of demanding applications
- Cable Assembly Integration Consultation on routing of cable and connections within your product
- Rapid Prototyping Onsite engineering and rapid prototyping capabilities to assist in the high demands of product development
- **Pro/ENGINEER**<sup>®</sup> 3D solid CAD models available

# **Manufacturing Services**

Outsource your manufacturing challenges. LEMO's capable engineering staff can create solutions for your cable assembly or component sub-assembly designs.

- Cable Assembly Expertise in both electronic and fiber optic connector termination
- Overmolding Design and Manufacture Custom overmold designs to enhance aesthetics while providing durability and strength
- · Sub-Assembly Build Combine our connectors and cable assemblies with your sub-assemblies to provide a tested and proven module

| am interested in:                                                               | l am i |
|---------------------------------------------------------------------------------|--------|
| <ul> <li>Design Engineering Services</li> <li>Manufacturing Services</li> </ul> |        |
| lease send me information on:                                                   | Please |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |
|                                                                                 |        |

| Name         | Rep. Name |           |     |
|--------------|-----------|-----------|-----|
| Title        |           | Telephone | Fax |
| Company Name | Email     |           |     |
| Street       |           |           |     |
| City         | State     | Zip       |     |

Please detach and fax directly to LEMO at (707) 578-0869, or mail to LEMO USA, Attn.: Engineering, P.O. Box 2408, Rohnert Park, CA 94927-2408



| Cable Assembly Request                               | E Form<br>BUY                        | □ BUD               | GETARY       |  |
|------------------------------------------------------|--------------------------------------|---------------------|--------------|--|
|                                                      |                                      |                     |              |  |
| Name                                                 |                                      | Rep. Name           |              |  |
| Title                                                |                                      | Telephone           | Fax          |  |
| Company Name                                         |                                      | Email               |              |  |
| Street                                               |                                      |                     |              |  |
| City Stat                                            | ie                                   | Zip                 |              |  |
| ASSEMBLY QUANTITIES                                  |                                      | LENGTH (TIP TO TIP) |              |  |
| CONNECTORS:                                          |                                      | ,                   |              |  |
| end<br>  Strain Relief: □ NO □ Yes if Yes, specify   | ) #1<br>COLOR                        | END #2              |              |  |
| OVERMOLDING: □ NO □ YES IF YES, PROVIDE              | END #1<br>DETAILED DRAWING AND MATEF | RIAL SPECIFICATION  | END #2       |  |
| ΜΗΑΤ Ις ΥΩΙΙΒ ΑΡΡΙ ΙΩΑΤΙΩΝ2                          |                                      |                     |              |  |
|                                                      |                                      |                     |              |  |
|                                                      |                                      |                     |              |  |
| IF NO, DO YOU REQUIRE CABLE SELECTION ASSISTAN       |                                      |                     |              |  |
| IF NO, PLEASE PROVIDE PART NUMBER AND MANUFA         | CTURER OF CABLE YOU WISH LE          | :MO TO USE:         |              |  |
| IF YES, PLEASE FILL IN THE INFORMATION BELOW:        |                                      |                     |              |  |
| NUMBER OF CONDUCTORS                                 | TWISTED PAIR                         | IS: 🗆 NO 🗆 YES      | WIRE GAUGE:  |  |
| Shielding: $\Box$ NO $\Box$ Yes if yes, please s     | PECIFY TYPE:                         |                     |              |  |
| JACKET MATERIALS / JACKET COLOR (GREY IS STAND       | JARD)                                |                     |              |  |
|                                                      |                                      |                     |              |  |
|                                                      | CURRENT: T                           | EMPERATURE RANGE:   | HIGH: LOW: _ |  |
|                                                      |                                      |                     |              |  |
| □ CLEAN □ WASH DOWN OR SPLASH □ SALI WATE            | R SPRAY 🗋 DIRI 📋 OTHER               |                     |              |  |
| STERILIZATION: $\Box$ NO $\Box$ YES IF YES, NUMBER ( | OF CYCLES:                           |                     |              |  |
| □ AUTOCLAVING:                                       | 🗆 RADIATION: T                       | YPE:                |              |  |
| □ FLUIDS: TYPE:                                      |                                      | TYPE:               |              |  |
| □ GASES: TYPE:                                       |                                      |                     |              |  |
| PROTOTYPE ORDER QUANTITY:                            | EXPECTE                              | D DELIVERY DATE:    |              |  |
| PRODUCTION ORDER QUANTITY:                           | EXPECTE                              | D DELIVERY DATE:    |              |  |
| FAII:                                                |                                      | TARGE               | T PRICING \$ |  |
|                                                      |                                      |                     |              |  |
| LLASE AT IAUTED DRAWING IF PUSSIBLE                  |                                      |                     |              |  |

Please detach and fax directly to LEMO at (707) 578-0869, or mail to LEMO USA, Attn.: Cable Assembly, P.O. Box 2408, Rohnert Park, CA 94927-2408



#### -.... ٠ **. .**

| <ul> <li>Custon</li> </ul>                                   | n Connector De                                               | esign Request F               | orm <sup>DATE:</sup>     |             |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|--------------------------|-------------|--|--|--|
|                                                              |                                                              |                               | 1                        |             |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |
| Name                                                         |                                                              |                               |                          | Rep. Name   |  |  |  |
| Title                                                        |                                                              | Telephone                     | Fax                      | Email       |  |  |  |
| <u> </u>                                                     |                                                              |                               |                          |             |  |  |  |
| Company Name                                                 |                                                              |                               |                          |             |  |  |  |
| Street                                                       |                                                              |                               |                          |             |  |  |  |
|                                                              |                                                              | Ctoto                         | Zin                      |             |  |  |  |
| Gity                                                         |                                                              | State                         | Zip                      |             |  |  |  |
| Quetomer Drofil                                              | -                                                            |                               |                          |             |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |
| RUDGET IS THE F                                              |                                                              | ΝΟ ΕΧΡΙ ΔΝΔΤΙΟΝ·              |                          |             |  |  |  |
| SECOND SOURCE: 1                                             | DOES THE CUSTOMER REQUIRE A                                  | SECOND SOURCE?                | VO                       |             |  |  |  |
| WHY IS LEMO BEIN                                             | G CONSIDERED? DOES LEMO HAV                                  | E A COMPETITIVE ADVANTAGE ACK | NOWLEDGED BY THE CUSTOME | R?          |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |
| Connector Desc                                               | ription                                                      |                               |                          |             |  |  |  |
| SHELL CONFIGURAT                                             | ΓΙΟΝ:                                                        | NUMBE                         | R OF CONTACTS:           |             |  |  |  |
| SERIES/SIZE:                                                 |                                                              | IS BENI                       | RELIEF REQUIRED:         | 🗆 YES 🗆 NO  |  |  |  |
| TYPE OF TERMINAT                                             |                                                              | CRIMP  PRINTED CIRCUI         | T 🗆 OTHER                |             |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |
| CUNDUCTOR DIAWETER OF THE CABLE (AWG) [] IF CUAX, CABLE TYPE |                                                              |                               |                          |             |  |  |  |
| Electrical Chara                                             | ntariatina                                                   |                               |                          |             |  |  |  |
|                                                              |                                                              | DEV.<br>Γ                     | CURRENT (AMPS)           |             |  |  |  |
| IMPEDANCE (OHMS                                              | ;):                                                          | F LAN                         | MAXIMUM VSWR AT MAX. F   | REQUENCY:   |  |  |  |
| WORKING FREQUEN                                              | ICY: NORMAL                                                  |                               |                          |             |  |  |  |
| NUMBER OF INSER                                              | TION CYCLES (1 CYCLE = 1 INSERT                              | TON = 1 WITHDRAWL):           |                          |             |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |
| Environment                                                  |                                                              |                               |                          |             |  |  |  |
| OPERATING TEMPE                                              | RATURES:                                                     |                               |                          |             |  |  |  |
| ENVIRONMENT:                                                 | CLEAN                                                        | U WASH DOWN OR SPLASH         | SALT WATER SPRAY         | UNDERWATER  |  |  |  |
|                                                              | DIRT                                                         | □ FLUIDS□                     | DUST                     | GASES       |  |  |  |
|                                                              | CHEMICALS                                                    | □ IP RATING □                 | EXPLOSIVES               | □ RADIATION |  |  |  |
| STERILIZATION:                                               | □ YES □ NO                                                   | METHOD                        | CYCLES                   | TEMP        |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |
| Purchase Projec                                              | ctions                                                       |                               |                          |             |  |  |  |
| PROTOTYPE ORDER                                              | PROTOTYPE ORDER QUANTITY (3 OR LESS):EXPECTED DELIVERY DATE: |                               |                          |             |  |  |  |
| PRODUCTION ORDE                                              | PRODUCTION ORDER QUANTITY:EXPECTED DELIVERY DATE:            |                               |                          |             |  |  |  |
| PREPRODUCTION O                                              | PREPRODUCTION ORDER QUANTITY:EXPECTED DELIVERY DATE:         |                               |                          |             |  |  |  |
|                                                              |                                                              |                               |                          | ICING: \$   |  |  |  |
|                                                              | ARDO. 🗋 UL<br>AWING IE POSSIBI E OB NECESSAI                 |                               |                          |             |  |  |  |
|                                                              |                                                              |                               |                          |             |  |  |  |

Please detach and fax directly to LEMO at (707) 578-0869, or mail to LEMO USA, Attn.: Engineering, P.O. Box 2408, Rohnert Park, CA 94927-2408



Located 50 miles north of San Francisco, LEMO USA offers a nationwide network of product specialists, sales consultants and distributors, who work closely with customers in offering sales and technical support.



635 Park Court, Rohnert Park, CA 94928 P.O. Box 2408, Rohnert Park, CA 94927-2408 (800) 444-5366 • (707) 578-8811 • fax: (707) 578-0869 www.lemousa.com • e-mail: info@lemousa.com