

Current Transducer LA 03 .. 20-PB

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Premi	ırıaı y	y

Electrical data Primary nominal Primary nominal Primary current Primary Conductor Type Diameter current r.m.s. current measuring range (A) $I_{PN}(A)$ $I_{D}(A)$ (mm) 3 3 ± 4.5 0.5 LA 03-PB 3 0.5 5 +75 LA 05-PB 10 5 ± 15 0.65 **LA 10-PB** 7.5 ± 22.5 **LA 15-PB** 15 0.8 20 10 ± 30 1.0 **LA 20-PB V**_C Supply voltage (± 5 %) ± 15 V Current consumption app. 20mA+ $I_{PN}/1200$ mA R.m.s. voltage for AC isolation test, 50/60Hz,1mn 2.5 kV Isolation resistance @ 500 VDC > 500 $M\Omega$ ± 4 Output voltage @ \pm I_{PN}, R_L = 10 k Ω , T_A = 25°C V Load resistance > 10 $k\Omega$

Accuracy-Dynamic performance data						
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$ (without off	< ± 1.5 % of I _{PN}				
e ,	Linearity (0 ± I _{PN})		< ± 1	% of I _{PN}		
V	Electrical offset voltage, $T_A = 25^{\circ}C$		$< \pm 30$	mΫ		
V _{OE} V _{OH}	Hysteresis offset voltage @ I₂ = 0;					
OH	after an excursion of 1 x I _{PN}		< ± 15	mV		
V_{OT}	Thermal drift of V _{OF}	max.	± 1	mV/K		
V _{ot} TC e g	Thermal drift(% of reading)		< 0.04	%/K		
t,	Response time @ 90% of I _P		< 3	μs		
f	Frequency bandwidth (- 1dB) ²⁾		DC 150	0 kHz		

	General data	
T ,	Ambient operating temperature	- 10 + 80 °C
$T_{\rm s}$	Ambient storage temperature	- 15 + 85 °C
m	Mass	< 12 g
		_

Notes: EN 50178 approval pending

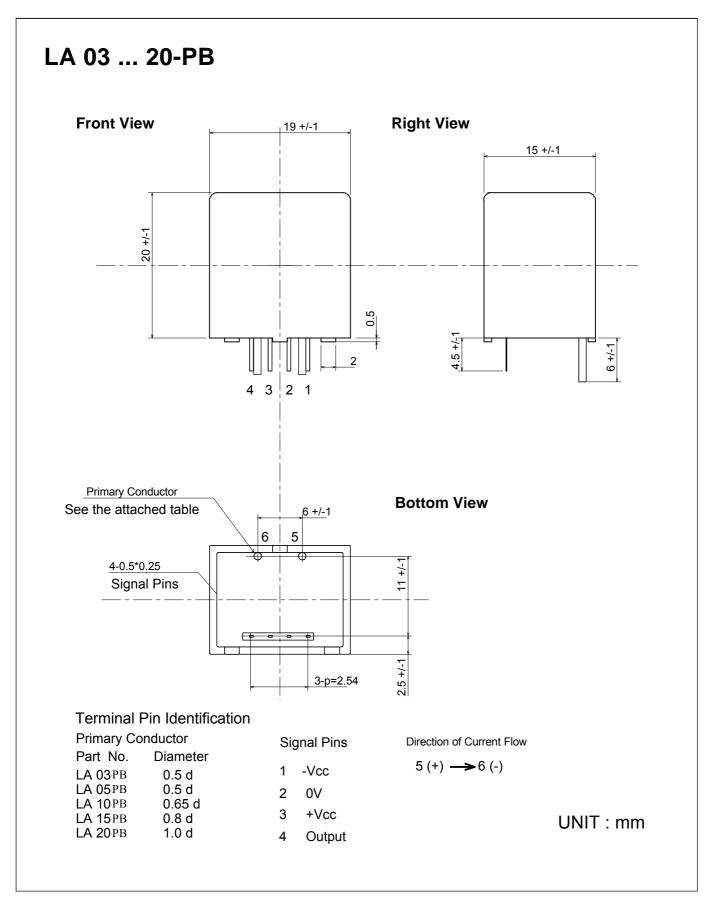
- ¹⁾ Calibration for 4V output is carried out at the primary norminal current.
- ²⁾ Derating is needed to avoid excessive core heating at high frequency.

$I_{PN} = 3..20 A$

Features

- Closed loop (compensation) current transducer using the Hall effect
- Voltage output
- · Printed circuit board mounting

Advantages


- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capacity

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications

010809/3

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.