

Overview

The KEMET Organic Capacitor (KO-CAP) is a solid electrolytic capacitor with a conductive polymer cathode capable of delivering very low ESR and improved capacitance retention at high frequencies. KO-CAP combines the low ESR of multilayer ceramic, the high capacitance of aluminum electrolytic and the volumetric efficiency of tantalum into a single surface mount package. Unlike liquid electrolyte-based capacitors, KO-CAP has a very long operational life and high ripple current capabilities.

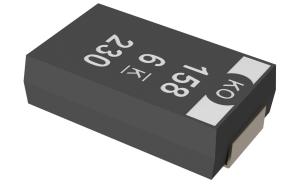
The T545 High Energy Polymer Electrolytic capacitor was developed to deliver the highest energy per CC. As a result, this capacitor is an excellent solution for designs requiring high energy at low voltages in space-constrainted designs, such as data hardening or data vaulting for solid state drives (SSDs). For improved robustness in hold-up applicaitons, the T545 is subjected to 100% thermal shock and voltage aging to ensure long term reliability.

Benefits

- Extremely low ESR
- · High energy delivery capability
- · High frequency capacitance retention
- 100% accelerated steady state aging
- 100% surge current tested
- 100% thermal shock
- · Volumetrically efficient, very high capacitance
- Taped and reeled per EIA 481, EIA standard case sizes
- Halogen-free Epoxy/RoHS Compliant

Applications

Typical applications include hold-up, data hardening or vaulting for enterprise and military SSDs, and high-end desktop modems.


Environmental Compliance

RoHS Compliant (6/6) according to Directive 2002/95/EC when ordered with 100% Sn solder.

K-SIM

For a detailed analysis of specific part numbers, please visit ksim.kemet.com to access KEMET's K-SIM software. KEMET K-SIM is designed to simulate behavior of components with respect to frequency, ambient temperature, and DC bias levels.

One world. One KEMET

Ordering Information

Т	545	Н	108	Μ	006	Α	Т	E055	
Capacitor Class	Series	Case Size	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VDC)	Failure Rate/ Design	Termination Finish	ESR	Packaging (C-Spec)
T = Tantalum	High Energy Polymer Tantalum	H, V, W, X, Y	First two digits represent significant figures. Third digit specifies number of zeros.	M = ±20% K = ±10 %	006 = 6.3 008 = 8 010 = 10 016 = 16 020 = 20	A = N/A	T = 100% Tin (Sn)	ESR in mΩ	Blank = 7" Reel 7280 = 13" Reel

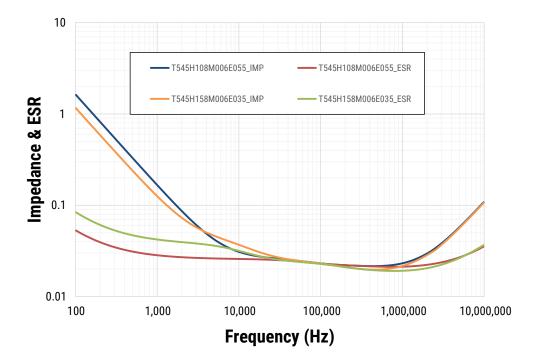
Performance Characteristics

Item	Performance Characteristics
Operating Temperature	-55°C to 125°C
Rated Capacitance Range	47 μF – 1,500 μF at 120 Hz/25°C
Capacitance Tolerance	K Tolerance (10%), M Tolerance (20%)
Rated Voltage Range	6.3 – 20 V
DF (120 Hz)	Refer to Part Number Electrical Specification Table
ESR (100 kHz)	Refer to Part Number Electrical Specification Table
Leakage Current	\leq 0.1 CV (µA) at rated voltage after 5 minutes

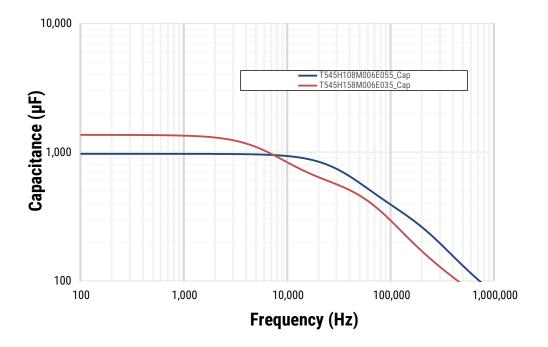
Qualification

Test	Condition			Charact	teristics			
			ΔC/C	Within -20/+	10 of initial va	lue		
[Fadurance		DF	Within initial	Within initial limits				
Endurance	85°C at rated voltage, 2,000 hours**		DCL	Within 1.25 x	Within 1.25 x initial limit			
			ESR	Within 2.0 x	initial limit			
			Δ C/C	Within -20/+	10 of initial va	lue		
Otovoro Life			DF	Within initial	limits			
Storage Life	85°C at 0 volts, 2,000 hours**		DCL	Within 1.25 x	cinitial limit			
			ESR	Within 2.0 x	initial limit			
			ΔC/C	Within -5%/+	+35% of initial	value		
11		DF	Within initial	Within initial limits				
Humidity	60°C, 90% RH, 500 hours, No Load	DCL	Within 5.0 x	initial limit				
			ESR	Within 2.0 x	initial limit			
			+25°C	-55°C	+85°C	+105/125°C		
Tama anatura Otabilitu	Extreme temperature exposure at a succession of continuous steps	ΔC/C	IL*	+/-20%	+/-20%	+/-30%		
Temperature Stability	at +25°C, -55°C, +25°C, +85°C,	DF	IL	IL	1.2 x IL	1.5 x IL		
	+105º/125ºC***+25º C	DCL	IL	N/A	10 x IL	10 x IL		
			ΔC/C	Within -20/+	10 of initial va	lue		
Curre Maltana			DF	Within initial	Within initial limits			
Surge Voltage	85°C, 1.32 x rated voltage, 1,000 cycle	S	DCL	Within initial	Within initial limits			
			ESR	Within initial limits				
	MIL-STD-202, Method 213, Condition	Ι,	ΔC/C	Within ±10 of	Within ±10 of initial value			
Mechanical Shock/	100 G peak MIL-STD-202, Method 204, Condition	D	DF	Within initial	limits			
Vibration	10 Hz to 2,000 Hz, 20 G peak	2,	DCL	Within initial limits				

*IL = Initial limit


**Minimum temperature test condition 85°C

*** Refer to part number specifications for individual temperature classification.



Electrical Characteristics

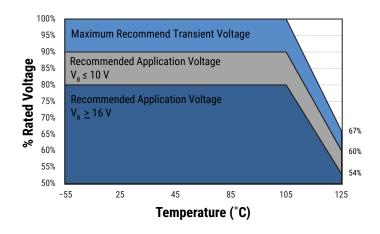
ESR vs. Frequency

Capacitance vs. Frequency

Dimensions – Millimeters

Case	Size	Component Dimensions										Total Weight	
KEMET	EIA	L	W	Н	F ±0.1 ±(0.004)	S ±0.3 ±(0.012)	B ±0.15 (Ref) ±0.006	X (Ref)	P (Ref)	R (Ref)	T (Ref)	A (Min)	(mg)
н	7360-20	7.3±0.3 (0.287±0.012)	6.0±0.3 (0.236±0.012)	1.9±0.1 (0.075±0.004)	4.1 (0.161)	1.3 (0.051)	N/A	0.10±0.10 (0.004±0.004)	N/A	N/A	0.13 (0.005)	3.3 (0.130)	366.62
V	7343-20	7.3±0.3 (0.287±0.012)	4.3±0.3 (0.169±0.012)	1.9±0.1 (0.075±0.004)	2.4 (0.094)	1.3 (0.051)	N/A	0.05 (0.002)	N/A	N/A	0.13 (0.005)	3.8 (0.150)	262.90
W	7343-15	7.3±0.3 (0.287±0.012)	4.3±0.3 (0.169±0.012)	1.4±0.1 (0.055±0.004)	2.4 (0.094)	1.3 (0.051)	N/A	0.05 (0.002)	N/A	N/A	0.13 (0.005)	3.8 (0.150)	222.94
Х	7343-43	7.3±0.3 (0.287±0.012)	4.3±0.3 (0.169±0.012)	4.0±0.3 (0.157±0.012)	2.4 (0.094)	1.3 (0.051)	0.5 (0.020)	0.10±0.10 (0.004±0.004)	1.7 (0.067)	1.0 (0.039)	0.13 (0.005)	3.8 (0.150)	588.16
Y	7343-40	7.3±0.3 (0.287±0.012)	4.3±0.3 (0.169±0.012)	3.8±0.2 (0.150±0.008)	2.4 (0.094)	1.3 (0.051)	0.5 (0.020)	0.10±0.10 (0.004±0.004)	1.7 (0.067)	1.0 (0.039)	0.13 (0.005)	3.8 (0.150)	481.55

Notes: (Ref) – Dimensions provided for reference only. For low profile cases, no dimensions are provided for B, P or R because these cases do not have a bevel or a notch. These weights are provided as reference. If exact weights are needed, please contact your KEMET Sales Representative


Table 1 - Ratings & Part Number Reference

Rated Voltage	Rated Capacitance	Case Code/ Case Size	KEMET Part Number			MSL	Maximum Operating Temperature	Energy (mJ)		
VDC at 85°C	μF	KEMET/EIA	(See below for part options)	µA at V _R , 25°C Maximum/ 5 Minutes	% at 25°C 120 Hz Maximum	mΩ at 25°C 100 kHz Maximum	mA at 45°C 100 kHz	Reflow Temperature ≤ 260°C	°C	(½CVa²) - (½CVd²) Va = Voltage Applied Vd = Voltage Drop
6.3	1000	H/7360-20	T545H108M006ATE055	630.0	20	55	1850.0	3	85	11.57
6.3	1500	H/7360-20	T545H158M006ATE035	945.0	20	35	2300.0	3	85	17.36
6.3	1500	H/7360-20	T545H158M006ATE055	945.0	20	55	1850.0	3	85	17.36
6.3	330	V/7343-20	T545V337M006ATE045	207.9	10	45	2000.0	3	105	3.82
6.3	470	W/7343-15	T545W477M006ATE035	296.0	10	35	2268.0	3	105	5.44
6.3	470	W/7343-15	T545W477M006ATE045	296.0	10	45	2000.0	3	105	5.44
6.3	470	W/7343-15	T545W477M006ATE055	296.0	10	55	1800.0	3	105	5.44
6.3	470	V/7343-20	T545V477M006ATE055	296.0	10	55	1800.0	3	105	5.44
10	220	V/7343-20	T545V227M010ATE045	220.0	10	45	2000.0	3	105	7.92
10	330	Y/7343-40	T545Y337M010ATE035	330.0	10	35	2600.0	3	105	11.88
16	47	W/7343-15	T545W476M016ATE045	75.0	10	45	2000.0	3	105	3.64
16	47	V/7343-20	T545V476M016ATE070	75.0	10	70	1400.0	3	105	3.64
16	47	V/7343-20	T545V476M016ATE045	75.0	10	45	2000.0	3	105	3.64
16	150	X/7343-43	T545X157M016ATE040	240.0	10	40	2485.0	3	105	11.61
16	180	H/7360-20	T545H187M016ATE055	288.0	20	55	1843.0	3	85	13.94
16	220	X/7343-43	T545X227M016ATE035	352.0	10	35	2700.0	3	105	17.03
16	330	X/7343-43	T545X337M016ATE025	528.0	10	25	3300.0	3	105	25.55
16	100	V/7343-20	T545V107M016ATE050	160.0	10	50	1934.0	3	105	7.74
20	47	V/7343-20	T545V476M020ATE090	94.0	10	90	1400.0	3	125	5.80
20	47	V/7343-20	T545V476M020ATE070	94.0	10	70	1400.0	3	105	5.80
20	47	W/7343-15	T545W476M020ATE055	94.0	10	55	1800.0	3	105	5.80
20	47	W/7343-15	T545W476M020ATE045	94.0	10	45	2000.0	3	105	5.80
VDC at 85°C	μF	KEMET/EIA	(See below for part options)	µA at V _R , 25°C Maximum/ 5 Minutes	% at 25°C 120 Hz Maximum	mΩ at 25°C 100 kHz Maximum	mA at 45°C 100 kHz	Reflow Temperature ≤ 260°C	°C	(½CVa²) - (½CVd²) Va = Voltage Applied Vd = Voltage Drop
Rated Voltage	Rated Capacitance	Case Code/ Case Size	KEMET Part Number	DC Leakage	DF	ESR	Maximum Allowable Ripple Current	MSL	Maximum Operating Temperature	Energy (mJ)

Blue color text denotes "Under Development"

Derating Guidelines

Recommended Application Voltage

KOCAP's are solid state capacitors that demonstrate no wearout mechanism when operated within their recommended guidelines. While the KOCAP can be operated at full rated voltage, most circuit designers seek a minimum level of assurance in long term reliability which should be demonstrated with data. A voltage derating can provide the desired level of demonstrated reliability based on industry accepted acceleration models. Since most applications do require long term reliability, KEMET recommends that designers consider a voltage derating, according the graphic above, for the maximum steady state voltage.

Voltage Rating	Maximum Recommended Steady State Voltage	Maximum Recommended Transient Voltage (1 ms – 1 μs)	Maximum Recommended Steady State Voltage	Maximum Recommended Transient Voltage (1 ms – 1 μs)
	−55°C t	o 105°C	105°C t	o 125°C
6.3 V ≤ V _R ≤ 10 V	90% of $V_{\rm R}$	V _R	60% of V _R	V _R
V _R ≥ 16 V	80% of V_{R}	V _R	54% of V_{R}	V _R

 V_R = Rated Voltage

Ripple Current/Ripple Voltage

Permissible AC ripple voltage and current are related to equivalent series resistance (ESR) and the power dissipation capabilities of the device. Permissible AC ripple voltage which may be applied is limited by two criteria:

1. The positive peak AC voltage plus the DC bias voltage, if any, must not exceed the DC voltage rating of the capacitor.

2. The negative peak AC voltage in combination with bias voltage, if any, must not exceed the allowable limits specified for reverse voltage. See the Reverse Voltage section for allowable limits.

The maximum power dissipation by case size can be determined using the table at right. The maximum power dissipation rating stated in the table must be reduced with increasing environmental operating temperatures. Refer to the table below for temperature compensation requirements.

Temperature Compensation Multipliers for Maximum Ripple Current										
T ≤ 45°C	45° C < T ≤ 85°C	85°C < T ≤ 125°C								
1.00	1.00 0.70 0.25									

T= Environmental Temperature

Using the P max of the device, the maximum allowable rms ripple current or voltage may be determined.

$$\begin{split} &I(max)=\sqrt{P\ max/R}\\ &E(max)=Z\ \sqrt{P\ max/R} \end{split}$$

I = rms ripple current (amperes) E = rms ripple voltage (volts) P max = maximum power dissipation (watts) R = ESR at specified frequency (ohms) Z = Impedance at specified frequency (ohms)

Maximum Power EIA **Dissipation (P max) Case Code Case Code** mWatts at 45°C with +30°C Rise W 7343-15 180 ٧ 7343-20 187 Y 7343-40 241 Х 7343-43 247 Н 7360-20 187

The maximum power dissipation rating must be reduced with increasing environmental operating temperatures. Refer to the Temperature Compensation Multiplier table for details.

Surge Voltage

Surge voltage is the maximum voltage (peak value) which may be applied to the capacitor.

The surge voltage must not be applied for periodic charging and discharging in the course of normal operation and cannot be part of the application voltage.

Surge voltage capability is demonstrated by application of 1,000 cycles at relevant voltage at 105°C and 125°C.

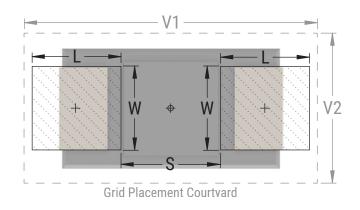
The parts are charged through a 33 Ohm resistor for 30 seconds and then discharged though a 33 Ohm resistor for each cycle.

Rated Voltage (V)	Surge Voltage (V)	Derated Voltage (V)	Derated Surge Voltage (V)		
−55°C t	o 105°C	Up to 125°C			
2.5	3.3	1.7	2.2		
6.3	8.2	4.2	5.5		
10	13.0	6.7	8.7		
16	20.8	10.7	13.9		
20	26.0	13.4	17.4		
25	32.5	16.8	21.8		
35	45.5	23.5	30.5		
50	65.0	33.5	43.6		

Reverse Voltage

Polymer electrolytic capacitors are polar devices and may be permanently damaged or destroyed if connected in the wrong polarity. These devices will withstand a small degree of transient voltage reversal for short periods as shown in the below table.

Temperature	Permissible Transient Reverse Voltage					
25°C	15% of Rated Voltage					
55°C	10% of Rated Voltage					
85°C	5% of Rated Voltage					


KEMET	Metric Size Code	Density Level A: Maximum (Most) Land Protrusion (mm)				Density Level B: Median (Nominal) Land Protrusion (mm)				Density Level C: Minimum (Least) Land Protrusion (mm)						
Case	EIA	W	W L S V1 V2			W	L	S	V1	V2	W	L	S	V1	V2	
Н	7360-20	4.25	2.77	3.67	10.22	7.30	4.13	2.37	3.87	9.12	6.80	4.03	1.99	4.03	8.26	6.54
V	7343-20	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
W	7343-15	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
X ¹	7343-43	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84
Y ¹	7343-40	2.55	2.77	3.67	10.22	5.60	2.43	2.37	3.87	9.12	5.10	2.33	1.99	4.03	8.26	4.84

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes.

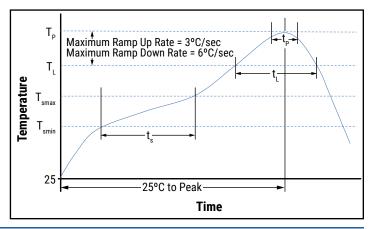
Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component desity product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC standard 7351 (IPC-7351).

¹ Height of these chips may create problems in wave soldering.

² Land pattern geometry is too small for silkscreen outline.

Soldering Process

KEMET's families of surface mount capacitors are compatible with wave (single or dual), convection, IR, or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020D standard for moisture sensitivity testing. The devices can safely withstand a maximum of three reflow passes at these conditions.

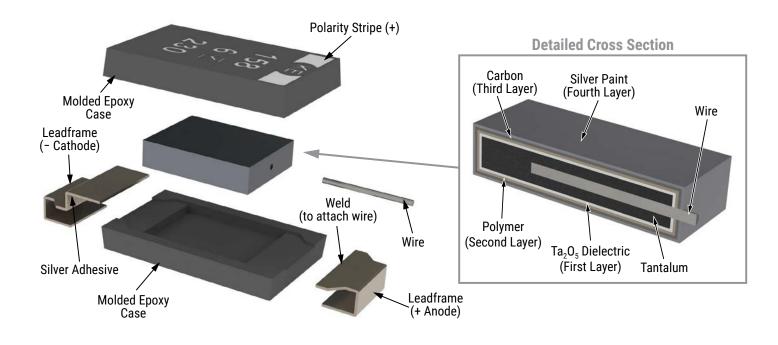

Please note that although the X/7343-43 case size can withstand wave soldering, the tall profile (4.3 mm maximum) dictates care in wave process development.

Hand soldering should be performed with care due to the difficulty in process control. If performed, care should be taken to avoid contact of the soldering iron to the molded case. The iron should be used to heat the solder pad, applying solder between the pad and the termination, until reflow occurs. Once reflow occurs, the iron should be removed immediately. "Wiping" the edges of a chip and heating the top surface is not recommended.

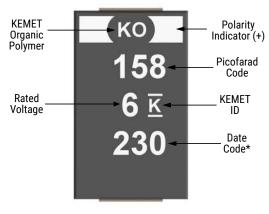
Profile Feature	SnPb Assembly	Pb-Free Assembly		
Preheat/Soak				
Temperature Minimum (T _{Smin})	100°C	150°C		
Temperature Maximum (T _{Smax})	150°C	200°C		
Time (t_s) from T_{smin} to T_{smax})	60 – 120 seconds	60 – 120 seconds		
Ramp-up Rate (T_L to T_P)	3°C/seconds maximum	3°C/seconds maximum		
Liquidous Temperature (T_L)	183°C	217°C		
Time Above Liquidous (t_L)	60 – 150 seconds	60 – 150 seconds		
Peak Temperature (T _P)	220°C* 235°C**	250°C* 260°C**		
Time within 5°C of Maximum Peak Temperature (t _P)	20 seconds maximum	30 seconds maximum		
Ramp-down Rate $(T_P to T_L)$	6°C/seconds maximum	6°C/seconds maximum		
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum		

Note: All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow. *Case Size D, E, P, Y, and X

**Case Size A, B, C, H, I, K, M, R, S, T, U, V, W, and Z

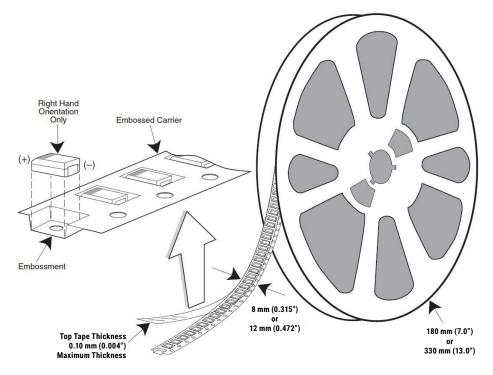


Storage


All KO-CAP Series are shipped in moisture barrier bags with a desiccant and moisture indicator card. These series are classified as MSL3 (Moisture Sensitivity Level 3). Product contained within the moisture barrier bags should be stored in normal working environments with temperatures not to exceed 40°C and humidity not in excess of 90% RH.

Construction

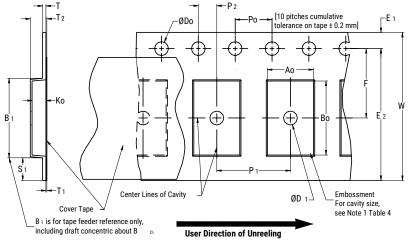
Capacitor Marking


* 230 = 30th week of 2012

Date Code *					
1 st digit = Last number of Year	2 = 2012 3 = 2013 4 = 2014 5 = 2015 6 = 2016 7 = 2017				
2 nd and 3 rd digit = Week of the Year	01 = 1^{st} week of the Year to 52 = 52^{nd} week of the Year				

Tape & Reel Packaging Information

KEMET's molded chip capacitor families are packaged in 8 and 12 mm plastic tape on 7" and 13" reels in accordance with *EIA Standard 481*: Embossed Carrier Taping of Surface Mount Components for Automatic Handling. This packaging system is compatible with all tape-fed automatic pick-and-place systems.


Table 3 – Packaging Quantity

Case Code		Tape Width (mm)	7" Reel*	13" Reel*	
KEMET	EIA				
S	3216-12	8	2,500	10,000	
Т	3528-12	8	2,500	10,000	
М	3528-15	8	2,000	8,000	
U	6032-15	12	1,000	5,000	
L	6032-19	12	1,000	3,000	
W	7343-15	12	1,000	3,000	
Z	7343-17	12	1,000	3,000	
V	7343-20	12	1,000	3,000	
А	3216-18	8	2,000	9,000	
В	3528-21	8	2,000	8,000	
С	6032-28	12	500	3,000	
D	7343-31	12	500	2,500	
Q	7343-12	12	1,000	3,000	
Y	7343-40	12	500	2,000	
Х	7343-43	12	500	2,000	
E/T428P	7360-38	12	500	2,000	
Н	7360-20	12	1,000	2,500	

* No C-Spec required for 7" reel packaging. C-7280 required for 13" reel packaging.

Figure 1 – Embossed (Plastic) Carrier Tape Dimensions

Table 4 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)								
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm		1.0 (0.039)			2.0±0.05	25.0 (0.984)			
12 mm	1.5+0.10/-0.0 (0.059+0.004/-0.0)	1.5	1.75±0.10 (0.069±0.004)	4.0±0.10 (0.157±0.004)	(0.079±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm					2.0±0.1 (0.079±0.059)	(1.181)	(0.024)	(0.021)	(0.00.1)

Variable Dimensions – Millimeters (Inches)								
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ , B ₀ & K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5±0.05 (0.138±0.002)	2.0±0.05 or 4.0±0.10 (0.079±0.002 or 0.157±0.004)	2.5 (0.098)	8.3 (0.327)	
12 mm	Single (4 mm) & Double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5±0.05 (0.217±0.002)	2.0±0.05 (0.079±0.002) or 4.0±0.10 (0.157±0.004) or 8.0±0.10 (0.315±0.004)	4.6 (0.181)	12.3 (0.484)	Note 5
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5±0.10 (0.295±0.004)	4.0±0.10 (0.157±0.004) to 12.0±0.10 (0.472±0.004)	8.0 (0.315)	16.3 (0.642)	

1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.

2. The tape, with or without components, shall pass around R without damage (see Figure 4).

3. If S₁ < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481–D, paragraph 4.3, section b).

4. B, dimension is a reference dimension for tape feeder clearance only.

5. The cavity defined by A_{n} , B_{n} and K_{n} shall surround the component with sufficient clearance that:

(a) the component does not protrude above the top surface of the carrier tape.

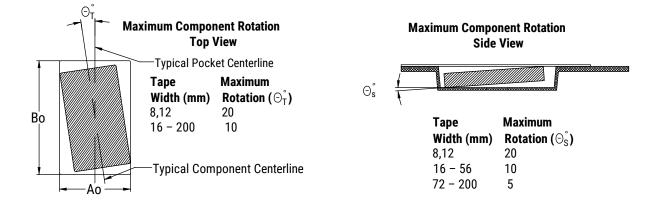
(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.

(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 2).

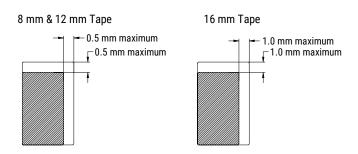
(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 mm and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 3).

(e) see Addendum in EIA Standard 481–D for standards relating to more precise taping requirements.

Packaging Information Performance Notes


- 1. Cover Tape Break Force: 1.0 Kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength
8 mm	0.1 to 1.0 Newton (10 to 100 gf)
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)


The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ± 10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.

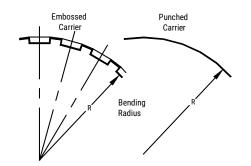

Figure 2 – Maximum Component Rotation

Figure 3 – Maximum Lateral Movement

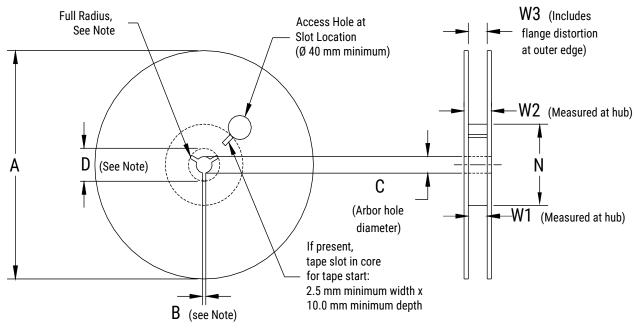
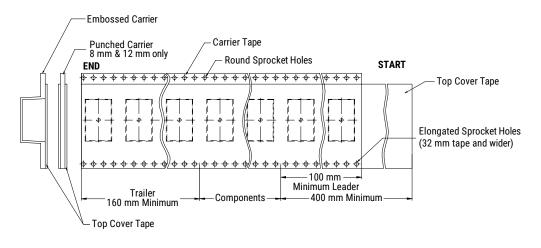


Figure 4 – Bending Radius

Figure 5 – Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.


Table 5 – Reel Dimensions

Metric will govern

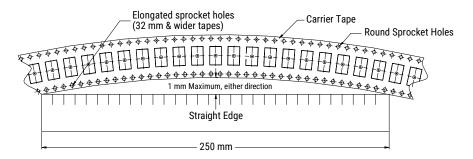

Constant Dimensions – Millimeters (Inches)								
Tape Size	А	B Minimum	С	D Minimum				
8 mm	178±0.20							
12 mm	(7.008±0.008) or	1.5 (0.059)	13.0+0.5/-0.2 (0.521+0.02/-0.008)	20.2 (0.795)				
16 mm	330±0.20 (13.000±0.008)			× -7				
	Variable Dimensions – Millimeters (Inches)							
Tape Size	N Minimum	W ₁	W ₂ Maximum	W ₃				
8 mm		8.4+1.5/-0.0 (0.331+0.059/-0.0)	14.4 (0.567)					
12 mm	50 (1.969)	12.4+2.0/-0.0 (0.488+0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference				
16 mm		16.4+2.0/-0.0 (0.646+0.078/-0.0)	22.4 (0.882)	_				

Figure 6 – Tape Leader & Trailer Dimensions

Figure 7 – Maximum Camber

KEMET Electronic Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

KEMET is a registered trademark of KEMET Electronics Corporation.