600 V

15 A

35 ns

advanced

Sonic-FRD

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)

DHF 30 IM 600PN

1 3

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- · Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

 $V_{RRM} =$

TO-220FPAB

- Industry standard outline
- Plastic overmolded tab for electrical isolation
- Epoxy meets UL 94V-0
- RoHS compliant

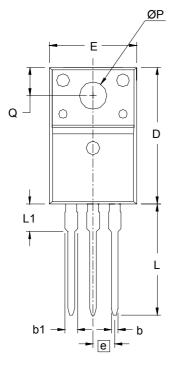
Ratings

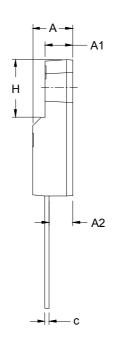
				. . .			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25 ^{\circ}C$			600	٧
I _R	reverse current	V _R = 600 V	T _{VJ} = 25 °C			50	μA
		$V_{R} = 600 V$	T_{VJ} = 125 °C			5	mΑ
V _F	forward voltage	I _F = 30 A	T _{VJ} = 25 °C			2.37	V
		I _F = 60 A				3.18	V
		I _F = 30 A	T _{vJ} = 125 °C			2.22	٧
		I _F = 60 A				3.11	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 35 °C			15	Α
V _{F0}	threshold voltage	T _{vJ} = 150 °C			1.31	V	
r _F	slope resistance for power loss calculation only					29.2	$\text{m}\Omega$
R _{thJC}	thermal resistance junction to case					3.50	K/W
T _{VJ}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		$T_c = 25 ^{\circ}C$			35	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms } (50 \text{ Hz}), \text{ sine}$	$T_{VJ} = 45 ^{\circ}C$			200	Α
I _{RM}	max. reverse recovery current	I _F = 30 A;	$T_{VJ} = 25 ^{\circ}C$		12		Α
t _{rr}	reverse recovery time	$T_{VJ} = 125 ^{\circ}\text{C}$ $-\text{di}_F/\text{dt} = 600 \text{A/}\mu\text{s}$ $V_{VJ} = 400 \text{V}$ $T_{VJ} = 25 ^{\circ}\text{C}$	T_{VJ} = 125 °C				Α
			$T_{VJ} = 25 ^{\circ}C$		35		ns
			T_{VJ} = 125 °C				ns
C _J	junction capacitance	V _R = 300 V; f = 1 MHz	T _{VJ} = 25 °C		40		pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = 2 A; L = 100 μH	T _{VJ} = 25 °C			0.5	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R \text{ typ.; } f = 10 \text{ kHz}$	 Z			0.9	Α

Recommended replacement: DHG30I600HA, DHG30I600PA

IXYS reserves the right to change limits, conditions and dimensions.

* Data according to IEC 60747and per diode unless otherwise specified




advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			35	Α	
R _{thCH}	thermal resistance case to heatsink			0.50		K/W	
$M_{\scriptscriptstyle D}$	mounting torque		0.4		0.6	Nm	
F _c	mounting force with clip		20		60	N	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	

^{*} Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.
In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220FPAB

SYM	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
Ь	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
E	.392	.408	9.96	10.36	
е	.100 BSC		2.54 BSC		
Η	.255	.271	6.48	6.88	
L	.499	.523	12.68	13.28	
L1	.119	.135	3.03	3.43	
ØΡ	.121	.129	3.08	3.28	
Q	.126	.134	3.20	3.40	