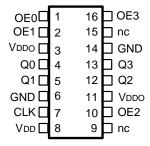

General Description

The ICS8304-02 is a low skew, high performance, 1-to-4 Fanout Buffer with individual output enables. The ICS8304-02 is characterized at full 3.3V and 2.5V for input (V_{DD}), and mixed 3.3V and 2.5V for output operating supply modes (V_{DDO}). Guaranteed output and part-to-part skew characteristics make the ICS8304-02 ideal for those clock distribution applications demanding well defined performance and repeatability.


Features

- Four LVCMOS / LVTTL outputs, 15Ω output impedance
- LVCMOS / LVTTL clock input
- Maximum output frequency: 250MHz
- Output skew: 30ps (typical)
- Part-to-part skew: 400ps (maximum)
- Small 16 lead TSSOP package saves board space
- Power supply modes: Core/Output 3.3V/3.3V 3.3V/2.5V 2.5V/2.5V
- Individual output enable control
- 0°C to 70°C ambient operating temperature
- Available in lead-free (RoHS 6) packaging
- For functional replacement part use 8305

Block Diagram

Pin Assignment

ICS8304-02

16-Lead TSSOP 4.4mm x 5.0mm x 0.92mm package body **G** Package **Top View**

Pin Descriptions and Pin Characteristics

Table 1. Pin Descriptions

Number	Name	Туре		Description
1, 2, 10, 16	OE0, OE1, OE2, OE3	Input	Pullup	Output enable pins. Active HIGH. If pin is LOW, output is high impedance. LVCMOS/LVTTL interface levels. See Table 3.
3, 11	V_{DDO}	Power		Output supply pins.
4, 5, 12, 13	Q0, Q1, Q2, Q3	Output		Single-ended clock outputs. 15 Ω output impedance. LVCMOS/LVTTL interface levels.
6, 14	GND	Power		Power supply ground.
7	CLK	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
8	V_{DD}	Power		Power supply pin.
9, 15	nc	Unused		No connect.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
	Power Dissipation Capacitance (per output)	V _{DD} , V _{DDO} = 3.465V or 2.625V		5		pF
C _{PD}		V _{DD} = 3.465V, V _{DDO} = 2.625V		3		pF
R _{OUT}	Outrout lase adopte	V _{DDO} = 3.465V		15		Ω
	Output Impedance	V _{DDO} = 2.625V		17		Ω

Function Table

Table 3. OEx Function Table

Inputs	Outputs		
OE3, OE2, OE1, OE0	Q3, Q2, Q1, Q0		
0	Hi-Z		
1	Active (default)		

NOTE: Asynchronous output enables.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DDO} + 0.5V
Package Thermal Impedance, θ_{JA}	100.3°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

					a.	5
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
V	V _{DDO} Output Supply Voltage		3.135	3.3	3.465	V
V DDO			2.375	2.5	2.625	V
I _{DD}	Power Supply Current			16	20	mA
I _{DDO}	Output Supply Current			6	10	mA

Table 4B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.375	2.5	2.625	V
V_{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current			14	17	mA
I _{DDO}	Output Supply Current			5	10	mA

Table 4C. LVCMOS/LVTTL DC Characteristics, $T_A = 0$ °C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Volt	000	V _{DD} = 3.465V	2		V _{DD} + 0.3	V
V _{IH}	Input High Volt	aye	V _{DD} = 2.625V	1.7		V _{DD} + 0.3	V
V	Input Low Volts	200	V _{DD} = 3.465V	-0.3		0.8	V
V_{IL}	Input Low Volta	age	V _{DD} = 2.625V	-0.3		0.7	V
	lonut	CLK	V _{DD} = V _{IN} = 3.465V or 2.625V			150	μΑ
I _{IH}	Input High Current	OE3, OE2, OE1, OE0	V _{DD} = V _{IN} = 3.465V or 2.625V			5	μA
	Input	CLK	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-5			μΑ
I _{IL}	Low Current	OE3, OE2, OE1, OE0	V _{DD} = 3.465V or 2.625V, V _{IN} = 0V	-150			μΑ
V	Output High Va	ltogo	$V_{DDO} = 3.3V \pm 5\%; I_{OH} = -12mA$	2.6			V
V _{OH}	Output High Vo	мауе	$V_{DDO} = 2.5V \pm 5\%; I_{OH} = -12mA$	1.8			V
V	Output Low Voltage		$V_{DDO} = 3.3V \pm 5\%; I_{OL} = 12mA$			0.5	V
V _{OL}			$V_{DDO} = 2.5V \pm 5\%; I_{OL} = 12mA$			0.5	V
I _{OZL}	Output Hi-Z Cu	rrent Low		-5			μA
I _{OZH}	Output Hi-Z Cu	rrent High				5	μΑ

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				250	MHz
tp _{LH}	Propagation Delay, Low to High; NOTE 1		2.0	2.5	4.0	ns
tsk(o)	Output Skew; NOTE 2, 5	Measured on the Rising Edge		30	60	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 5				400	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	400	600	1000	ps
	Output Duty Ovele	Output Frequency < 150MHz	45	50	55	%
odc	Output Duty Cycle	Output Frequency ≥150MHz	40	47	60	%
t _{EN}	Output Enable Time; NOTE 4			3	5	ns
t _{DIS}	Output Disable Time; NOTE 4			4	6	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

- NOTE 1: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.
- NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.
- NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDO}/2$.
- NOTE 4: These parameters are guaranteed by characterization. Not tested in production.
- NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

Table 5B. AC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				250	MHz
tp _{LH}	Propagation Delay, Low to High; NOTE 1		2.0	2.7	4.0	ns
tsk(o)	Output Skew; NOTE 2, 5	Measured on the Rising Edge		30	60	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 5				425	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	400	750	1200	ps
	Outrout Duty Ovala	Output Frequency < 150MHz	45	50	55	%
odc	Output Duty Cycle	Output Frequency ≥150MHz	40	47	60	%
t _{EN}	Output Enable Time; NOTE 4			3	5	ns
t _{DIS}	Output Disable Time; NOTE 4			4	6	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDO}/2$.

NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

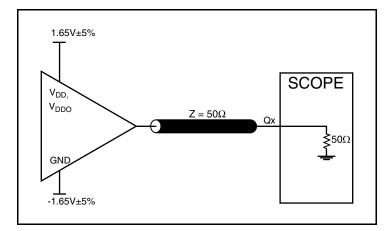
NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

Table 5C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

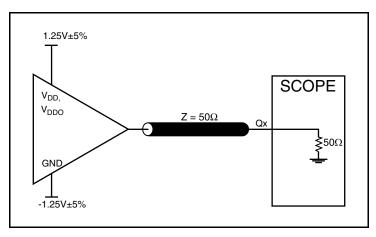
Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency				250	MHz
tp _{LH}	Propagation Delay, Low to High; NOTE 1		2.0	2.8	4.0	ns
tsk(o)	Output Skew; NOTE 2, 5	Measured on the Rising Edge		30	60	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 5				425	ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	400	750	1200	ps
odc	Output Duty Cycle	Output Frequency < 150MHz	45	50	55	%
ouc	Output Duty Cycle	Output Frequency ≥150MHz	40	47	60	%
t _{EN}	Output Enable Time; NOTE 4			3	5	ns
t _{DIS}	Output Disable Time; NOTE 4			4	6	ns

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

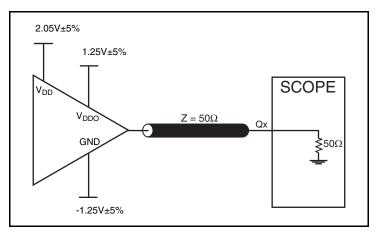
NOTE 1: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output.

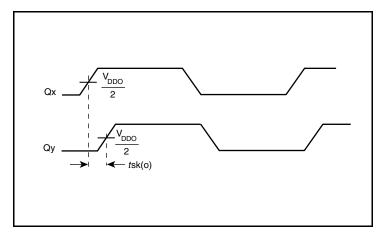

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

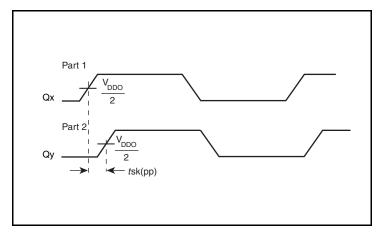
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDO}/2$.

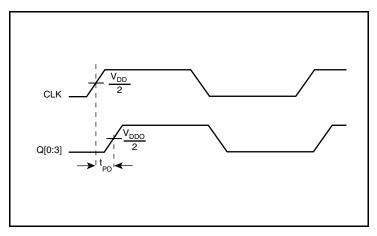

NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

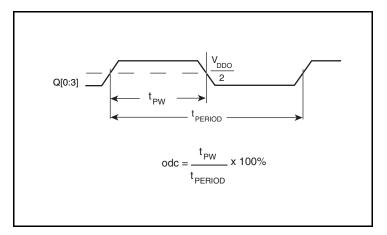

Parameter Measurement Information


3.3V Core/3.3V LVCMOS Output Load Test Circuit

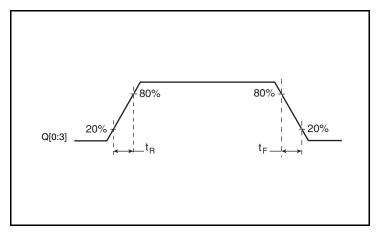

2.5V Core/2.5V LVCMOS Output Load Test Circuit


3.3V Core/2.5V LVCMOS Output Load Test Circuit

Output Skew



Part-to-Part Skew


Propagation Delay

Parameter Measurement Information, continued

Output Duty Cycle/Pulse Width/Period

Output Enable/Disable Time

Output Rise/Fall Time

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pullup resistors; additional resistance is not required but can be added for additional protection. A $1 k\Omega$ resistor can be used.

Outputs:

LVCMOS Outputs

All unused LVCMOS outputs can be left floating. There should be no trace attached.

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8304-02. Equations and example calculations are also provided.

Power Dissipation.

The total power dissipation for the ICS8304-02 is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

- Power (core)_{MAX} = $V_{DD MAX} * (I_{DD} + I_{DDO}) = 3.465V * (20mA + 17mA) = 128.21mW$
- Output Impedance R_{OUT} Current due to Loading 50Ω to $V_{DD}\!/\!2$ Output Current $I_{OUT} = V_{DD~MAX} / [2 * (50\Omega + R_{OUT})] = 3.465 V / [2 * (50\Omega + 15\Omega)] = 26.7 mA$
- Power Dissipation on the R_{OUT} per LVCMOS output Power $(R_{OUT}) = R_{OUT} * (I_{OUT})^2 = 15\Omega * (26.7mA)^2 = 10.7mW$ per output
- Total Power $(R_{OUT}) = 10.7 \text{mW} * 4 = 42.8 \text{mW}$

Dynamic Power Dissipation at 250MHz

```
Power (250MHz) = C_{PD} * Frequency * (V_{DD})^2 = 5pF * 250MHz * (3.465V)^2 = 15mW per output
Total Power (250MHz) = 15mW * 4 = 60mW
```

Total Power Dissipation

- **Total Power**
 - = Power (core)_{MAX} + Power (R_{OUT}) + Power (250MHz)
 - = 128.21 mW + 42.8 mW + 60 mW
 - = 231.01mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 100.3°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}\text{C} + 0231\text{W} * 100.3^{\circ}\text{C/W} = 93.17^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 16 Lead TSSOP, Forced Convection

θ _{JA} by Velocity					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	100.3°C/W	96.0°C/W	93.9°C/W		

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16 Lead TSSOP

θ_{JA} vs. Air Flow					
Meters per Second	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	100.3°C/W	96.0°C/W	93.9°C/W		

Transistor Count

The transistor count for ICS8304-02: 2690

Package Outline and Package Dimensions

Package Outline - G Suffix for 16 Lead TSSOP

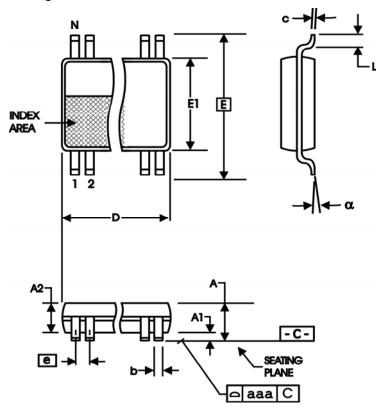


Table 8. Package Dimensions for 16 Lead TSSOP

All Dimensions in Millimeters				
Symbol	Minimum Maximun			
N	16			
Α		1.20		
A1	0.05	0.15		
A2	0.80	1.05		
b	0.19	0.30		
С	0.09	0.20		
D	4.90	5.10		
E	6.40 Basic			
E1	4.30	4.50		
е	0.65 Basic			
L	0.45	0.75		
α	0°	8°		
aaa		0.10		

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8304AG-02LF	8304A02L	"Lead-Free" 16 Lead TSSOP	Tube	0°C to 70°C
8304AG-02LFT	8304A02L	"Lead-Free" 16 Lead TSSOP	Tape & Reel	0°C to 70°C

Revision History

1

Revision Date	Description of Change
May 6, 2016	 Product Discontinuation Notice - Last time buy expires May 6, 2017. PDN CQ-16-01

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Technical Support

netcom@idt.com +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third

Copyright 2013. All rights reserved.