

VCXO W/3.3V, 2.5V LVPECL FemtoClock™ PLL

PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES MAY 6, 2017

DATASHEET

GENERAL DESCRIPTION

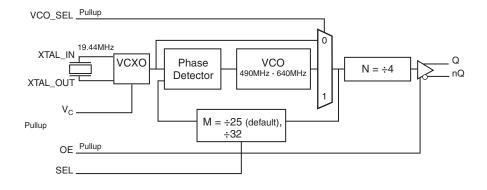
The 813321-04 is a two stage device – a VCXO followed by a FemtoClock $^{\text{TM}}$ PLL. The FemtoClock PLL can multiply the crystal frequency of the VCXO up to a range of 122MHz to 160MHz, with a random rms phase jitter of less than 1ps (1.875MHz – 20MHz). This phase jitter performance meets the requirements of 1Gb/10Gb Ethernet, 1Gb, 2Gb, 4Gb and 10Gb Fibre Channel, and SONET up to OC48.

FEATURES

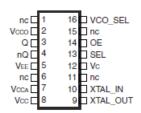
- One 3.3V or 2.5V LVPECL output pair
- Crystal operating frequency range: 14MHz 20MHz
- VCO range: 490MHz 640MHz
- Output frequency range: 122MHz 160MHz
- VCXO pull range: ±50ppm (typical APR) @ 3.3V
- Supports the following applications (among others): SONET, Ethernet, Fibre Channel
- RMS phase jitter @ 156.25MHz (1.875MHz 20MHz): 0.53ps (typical) @ 3.3V
- Supply voltage modes:

 V_{cc}/V_{cco}

3.3V/3.3V


3.3V/2.5V

2.5V/2.5V


1

- 0°C to 70°C ambient operating temperature
- · Available in both lead-free (RoHS 6) package
- For functional replacement part use 8N3QV01EG-0016CDI

BLOCK DIAGRAM

PIN ASSIGNMENT

813321-04

16-Lead TSSOP 4.4mm x 5.0mm x 0.92mm package body G Package Top View

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ty	/pe	Description	
1, 6, 11, 15	nc	Unused		No connect.	
2	V _{cco}	Power		Output supply pin.	
3, 4	Q, nQ	Output		Differential clock outputs. LVPECL interface levels.	
5	V	Power		Negative supply pin.	
7	V _{CCA}	Power		Analog supply pin.	
8	V _{cc}	Power		Core supply pin.	
9, 10	XTAL_OUT, XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.	
12	V _c	Input		VCXO control voltage input.	
13	SEL	Input	Pulldown	Select pin. LVCMOS/LVTTL interface levels. See Table 3.	
14	OE	Input	Pullup	Output enable pin. When HIGH, the output is active. When LOW, the output is in a high impedance state. LVCMOS/LVTTL interface.	
16	VCO_SEL	Input	Pullup	VCO select pin. LVCMOS/LVTTL interface levels.	

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics Table, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R	Input Pullup Resistor			51		kΩ
R	Input Pulldown Resistor			51		kΩ

TABLE 3. SEL FUNCTION TABLE

Control Input	М
SEL	IVI
0	÷25 (defalut)
1	÷32

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{cc} 4.6V

Inputs, $V_{_{\Box}}$ -0.5V to $V_{_{\Box}c}$ + 0.5V

Outputs, I (LVPECL)

Continuous Current 50mA Surge Current 100mA

Package Thermal Impedance, $\theta_{_{JA}}$ 92.4°C/W (0 mps) Storage Temperature, T $_{_{STG}}$ -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{cc} = V_{cco} = 3.3V \pm 5\%$, $V_{ee} = 0V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		V _{cc} – 0.10	3.3	V _{cc}	V
V _{cco}	Output Supply Voltage		3.135	3.3	3.465	V
I _{CCA}	Analog Supply Current				10	mA
I _{EE}	Power Supply Current				130	mA

Table 4B. Power Supply DC Characteristics, $V_{cc} = 3.3V \pm 5\%$, $V_{cco} = 2.5V \pm 5\%$, $V_{ee} = 0V$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		3.135	3.3	3.465	V
V _{CCA}	Analog Supply Voltage		$V_{cc} - 0.10$	3.3	V _{cc}	V
V _{cco}	Output Supply Voltage		2.375	2.5	2.625	V
I _{CCA}	Analog Supply Current				10	mA
 EE	Power Supply Current				130	mΑ

Table 4C. Power Supply DC Characteristics, $V_{cc} = V_{cco} = 2.5V \pm 5\%$, $V_{ee} = 0V$, Ta = 0°C to 70°C to 70°C to 70°C to 70°C to 70°C.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Core Supply Voltage		2.375	2.5	2.625	V
V _{CCA}	Analog Supply Voltage		V _{cc} – 0.10	2.5	V _{cc}	V
V _{cco}	Output Supply Voltage		2.375	2.5	2.625	V
I _{CCA}	Analog Supply Current				10	mA
I_	Power Supply Current				125	mA

Table 4D. LVCMOS / LVTTL DC Characteristics, TA = 0°C TO 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltage			2		V _{cc} + 0.3	V
V _{IH}	Imput riigir voitage			1.7		V _{cc} + 0.3	V
V	Input Low Voltage	out Low Voltage		-0.3		0.8	V
V _{IL}	nput Low Voltage		-0.3		0.7	V	
I _{IH}	Input High Current	OE, VCO_SEL				5	μΑ
IH IH		SEL				150	μΑ
I	Innut Low Current	OE, VCO_SEL		-150			μA
IL.		SEL		-5			μA

Table 4E. LVPECL DC Characteristics, $V_{cc} = V_{cco} = 3.3V \pm 5\%$, $V_{ee} = 0V$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cco} - 1.4		V _{cco} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{cco} - 2.0		V _{cco} - 1.7	V
V	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 to $\rm V_{_{\rm CCO}}$ - 2V.

 $\textbf{TABLE 4F. LVPECL DC CHARACTERISTICS, V}_{\text{CC}} = 3.3 \text{V} \pm 5\% \text{ or } 2.5 \text{V} \pm 5\%, \text{V}_{\text{CCO}} = 2.5 \text{V} \pm 5\%, \text{V}_{\text{EE}} = \text{ 0V, Ta} = 0^{\circ}\text{C to } 70^{\circ}\text{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{cco} - 1.4		V _{cco} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{cco} - 2.0		V _{cco} - 1.5	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.4		1.0	V

NOTE 1: Outputs terminated with 50 to V_{cco} - 2V.

Table 5A. AC Characteristics, $V_{cc} = V_{cco} = 3.3V \pm 5\%$, $V_{ee} = 0V$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{out}	Output Frequency	VCO_SEL = 1	122		160	MHz
tjit(Ø)	RMS Phase Jitter, (Random); NOTE 1, 2	155.52MHz (1.875MHz - 20MHz)		0.53		ps
f _{vco}	PLL VCO Lock Range		490		640	MHz
t _R / t _F	Output Rise/Fall Time	20% to 80%	250		600	ps
odc	Output Duty Cycle		48		52	%

NOTE 1: Phase jitter using a crystal interface.

NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

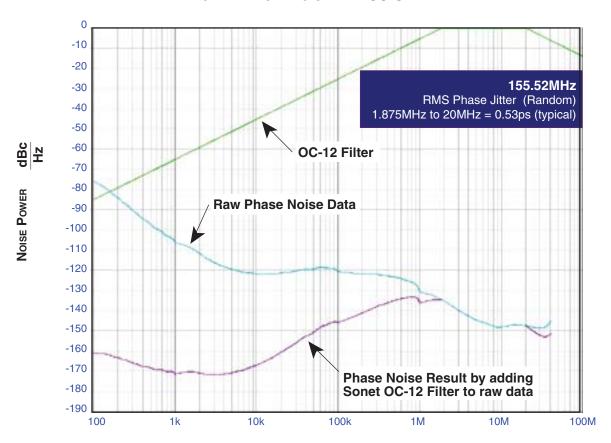
Table 5B. AC Characteristics, $V_{cc} = 3.3V \pm 5\%$, $V_{cco} = 2.5V \pm 5\%$, $V_{ee} = 0V$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f	Output Frequency	VCO_SEL = 1	122		160	MHz
tjit(Ø)	RMS Phase Jitter, (Random); NOTE 1, 2	155.52MHz (1.875MHz - 20MHz)		0.64		ps
f _{vco}	PLL VCO Lock Range		490		640	MHz
t _R / t _F	Output Rise/Fall Time	20% to 80%	250		600	ps
odc	Output Duty Cycle		48		52	%

NOTE 1: Phase jitter using a crystal interface.

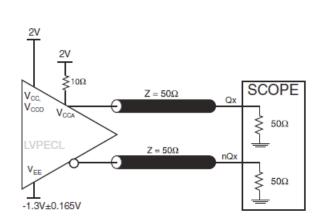
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

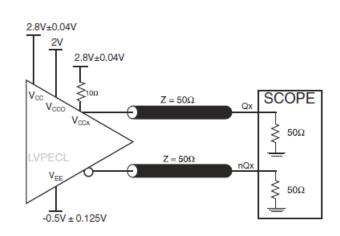
Table 5C. AC Characteristics, $V_{cc} = V_{cco} = 2.5V \pm 5\%$, $V_{ee} = 0V$, Ta = 0°C to 70°C

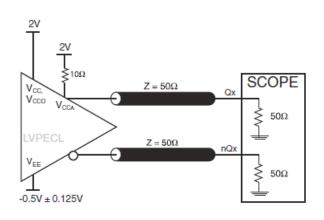

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{out}	Output Frequency	VCO_SEL = 1	122		160	MHz
tjit(Ø)	RMS Phase Jitter, (Random); NOTE 1, 2	155.52MHz (1.875MHz - 20MHz)		0.53		ps
f _{vco}	PLL VCO Lock Range		490		640	MHz
t _R / t _F	Output Rise/Fall Time	20% to 80%	250		600	ps
odc	Output Duty Cycle		48		52	%

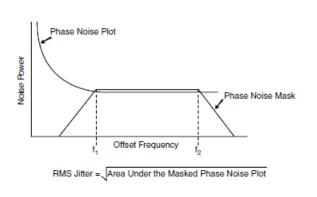
NOTE 1: Phase jitter using a crystal interface.

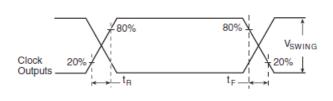
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.

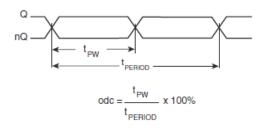

TYPICAL PHASE NOISE AT 155.52MHz


OFFSET FREQUENCY (Hz)


PARAMETER MEASUREMENT INFORMATION


3.3V Core/3.3V LVPECL OUTPUT LOAD ACTEST CIRCUIT


3.3V Core/2.5V LVPECL OUTPUT LOAD ACTEST CIRCUIT


2.5V Core/2.5V LVPECL OUTPUT LOAD ACTEST CIRCUIT

RMS PHASE JITTER

OUTPUT RISE/FALL TIME

OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD

APPLICATION INFORMATION

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 813321-04 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{cc} , V_{ccA} , and V_{cco} should be individually connected to the power supply plane through vias, and $0.01\mu F$ bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V_{cc} pin and also shows that V_{ccA} requires that an additional 10Ω resistor along with a $10\mu F$ bypass capacitor be connected to the V_{ccA} pin.

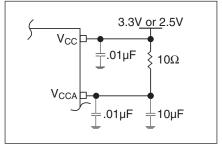


FIGURE 1. POWER SUPPLY FILTERING

RECOMMENDATIONS FOR UNUSED INPUT PINS

INPUTS:

LVCMOS Control Pins:

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

TERMINATION FOR 3.3V LVPECL OUTPUT

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission

lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 2A and 2B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

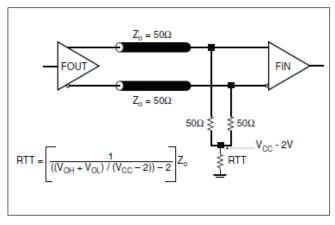


FIGURE 2A. LVPECL OUTPUT TERMINATION

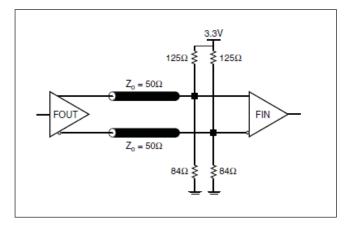


FIGURE 2B. LVPECL OUTPUT TERMINATION

TERMINATION FOR 2.5V LVPECL OUTPUT

Figure 3A and Figure 3B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{cc} - 2V. For V_{cco} = 2.5V, the V_{cco} - 2V is very close to ground

level. The R3 in Figure 3B can be eliminated and the termination is shown in *Figure 3C*.

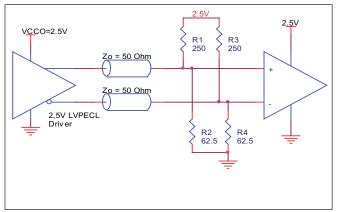


FIGURE 3A. 2.5V LVPECL DRIVER TERMINATION EXAMPLE

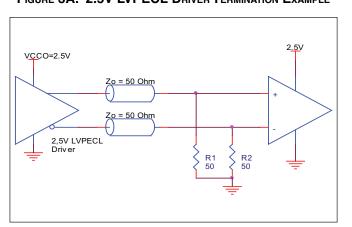


FIGURE 3C. 2.5V LVPECL TERMINATION EXAMPLE

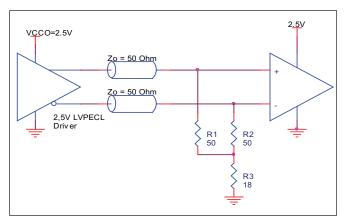


FIGURE 3B. 2.5V LVPECL DRIVER TERMINATION EXAMPLE

VCXO CRYSTAL SELECTION

Choosing a crystal with the correct characteristics is one of the most critical steps in using a Voltage Controlled Crystal Oscillator (VCXO). The crystal parameters affect the tuning range and accuracy of a

VCXO. Below are the key variables and an example of using the crystal parameters to calculate the tuning range of the VCXO.

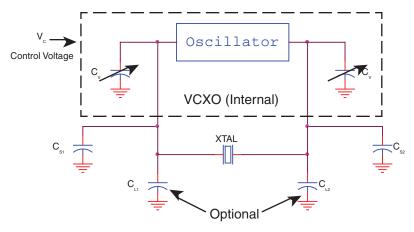


FIGURE 4. VCXO OSCILLATOR CIRCUIT

Control voltage used to tune frequency

C_v - Varactor capacitance, varies due to the change in control voltage

C_{L1,} C_{L2} - Load tuning capacitance used for fine tuning or centering nominal frequency

C_{st,} C_{s2} - Stray Capacitance caused by pads, vias, and other board parasitics

TABLE 6. EXAMPLE CRYSTAL PARAMETERS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f	Nominal Frequency		14		20	MHz
f_	Frequency Tolerance				±20	ppm
fs	Frequency Stability				±20	ppm
	Operating Temperature Range		0		70	°C
C	Load Capacitance			12		pF
C _o	Shunt Capacitance			4		pF
C _{1,} C ₂	Pullability Ratio			220	240	
ESR	Equivalent Series Resistance				20	
	Drive Level				1	mW
	Aging @ 25°C		±3 per year			ppm
	Mode of Operation		Fundamental			

TABLE 7. VARACTOR PARAMETERS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{v_Low}	Low Varactor Capacitance	$V_{c} = 0V$		6		pF
C _{v HIGH}	High Varactor Capacitance	V _c = 3.3V		11		pF

FORMULAS

$$C_{Low} = \frac{\left(C_{L1} + C_{S1} + C_{V_Low}\right) \cdot \left(C_{L2} + C_{S2} + C_{V_Low}\right)}{\left(C_{L1} + C_{S1} + C_{V_Low}\right) + \left(C_{L2} + C_{S2} + C_{V_Low}\right)}$$

$$C_{High} = \frac{\left(C_{L1} + C_{S1} + C_{V_High}\right) \cdot \left(C_{L2} + C_{S2} + C_{V_High}\right)}{\left(C_{L1} + C_{S1} + C_{V_High}\right) + \left(C_{L2} + C_{S2} + C_{V_High}\right)}$$

- C is the effective capacitance due to the low varactor capacitance, load capacitance and stray capacitance. C determines the high frequency component on the TPR.
- $C_{_{\text{High}}}$ is the effective capacitance due to the high varactor capacitance, load capacitance and stray capacitance. C_{High} determines the low frequency component on the TPR.

$$Total\ Pull\ Range\ (TPR) = \left(\frac{1}{2 \cdot C_0 / C_1 \cdot \left(1 + \frac{C_{Low}}{C_0}\right)} - \frac{1}{2 \cdot C_0 / C_1 \cdot \left(1 + \frac{C_{High}}{C_0}\right)}\right) \cdot \emptyset^{-6}$$

Absolute Pull Range (APR) = Total Pull Range - (Frequency Tolerance + Frequency Stability + Aging)

EXAMPLE CALCULATIONS

Using the tables and figures above, we can now calculate the TPR and APR of the VCXO using the example crystal parameters. For the numerical example below there were some assumptions made. First, the stray capacitance (C_{s_1} , C_{s_2}), which is all the excess capacitance due to board parasitic, is 4pF. Second, the expected lifetime of the project is 5 years; hence the inaccuracy due to aging

is ± 15 ppm. Third, though many boards will not require load tuning capacitors (C_L, C_L), it is recommended for long-term consistent performance of the system that two tuning capacitor pads be placed into every design. Typical values for the load tuning capacitors will range from 0 to 4pF.

$$C_{\text{\tiny Low}} = \frac{(0 + 4pf + 15pf) \cdot (0 + 4pf + 15pf)}{(0 + 4pf + 15pf) \cdot (0 + 4pf + 15pf)} = 9.5pf$$

$$C_{_{High}} = \frac{(0 + 4pf + 27.4pf) \cdot (0 + 4pf + 27.4pf)}{(0 + 4pf + 27.4pf) \cdot (0 + 4pf + 27.4pf)} = 15.7pf$$

$$TPR = \left(\frac{1}{2 \cdot 220 \cdot \left(1 + \frac{9.5pf}{4pf}\right)} - \frac{1}{2 \cdot 220 \cdot \left(1 + \frac{15.7pf}{4pf}\right)} \right) \cdot 10^{\circ} = 212 \text{ppm}$$

 $TPR = \pm 106ppm$

 $APR = 106ppm - (20ppm + 20ppm + 15ppm) = \pm 51ppm$

The example above will ensure a total pull range of ±106 ppm with an APR of ±51ppm. Many times, board designers may select their own crystal based on their application. If the application requires a tighter APR, a crystal with better pullability

(C0/C1 ratio) can be used. Also, with the equations above, one can vary the frequency tolerance, temperature stability, and aging or shunt capacitance to achieve the required pullability.

Power Considerations

This section provides information on power dissipation and junction temperature for the 813321-04. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 813321-04 is the sum of the core power plus the power dissipated in the load(s).

The following is the power dissipation for $V_{cc} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

Power (core)_{MAX} = $V_{CC,MAX} * I_{FE,MAX} = 3.465V * 130mA =$ **450mW**

Total Power MAX (3.465V, with output switching) = 450mW + 30mW = 480mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS™ devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 92.4°C/W per Table 8 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is: $70^{\circ}\text{C} + 0.480\text{W} * 92.4^{\circ}\text{C/W} = 114.4^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 8. Thermal Resistance θ_{JA} for 16-pin TSSOP, Forced Convection

θ_{JA} by Velocity (Meters per Second) 0 2.5 Multi-Layer PCB, JEDEC Standard Test Boards 92.4°C/W 88.0°C/W 75.91°C/W

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 5.

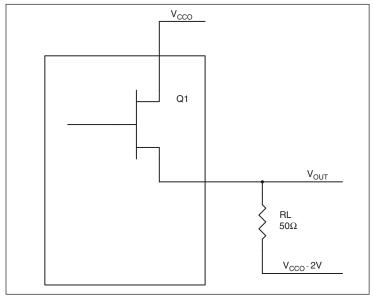


FIGURE 5. LVPECL DRIVER CIRCUIT AND TERMINATION

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of $V_{mn} - 2V$.

• For logic high,
$$V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.9V$$

$$(V_{CCO_MAX} - V_{OH_MAX}) = 0.9V$$

• For logic low,
$$V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.7V$$

$$(V_{CCO_MAX} - V_{OL_MAX}) = 1.7V$$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

$$\begin{split} & \text{Pd_H} = [(\text{V}_{\text{OH_MAX}} - (\text{V}_{\text{CCO_MAX}} - 2\text{V}))/\text{R}_{\text{L}}] * (\text{V}_{\text{CCO_MAX}} - \text{V}_{\text{OH_MAX}}) = [(2\text{V} - (\text{V}_{\text{CCO_MAX}} - \text{V}_{\text{OH_MAX}}))/\text{R}_{\text{L}}] * (\text{V}_{\text{CCO_MAX}} - \text{V}_{\text{OH_MAX}}) = [(2\text{V} - 0.9\text{V})/50\Omega] * 0.9\text{V} = \textbf{19.8mW} \\ & \text{Pd_L} = [(\text{V}_{\text{OL_MAX}} - (\text{V}_{\text{CCO_MAX}} - 2\text{V}))/\text{R}_{\text{L}}] * (\text{V}_{\text{CCO_MAX}} - \text{V}_{\text{OL_MAX}}) = [(2\text{V} - (\text{V}_{\text{CCO_MAX}} - \text{V}_{\text{OL_MAX}}))/\text{R}_{\text{L}}] * (\text{V}_{\text{CCO_MAX}} - \text{V}_{\text{OL_MAX}}) = [(2\text{V} - 1.7\text{V})/50\Omega] * 1.7\text{V} = \textbf{10.2mW} \end{split}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = **30mW**

RELIABILITY INFORMATION

Table 9. $\theta_{_{JA}} vs.$ Air Flow Table for 16 Lead TSSOP

θ_{JA} by Velocity (Meters per Second)

0 1 2.5

Multi-Layer PCB, JEDEC Standard Test Boards 92.4°C/W 88.0°C/W 75.91°C/W

TRANSISTOR COUNT

The transistor count for 813321-04 is: 3948

PACKAGE OUTLINE - G SUFFIX FOR 16 LEAD TSSOP

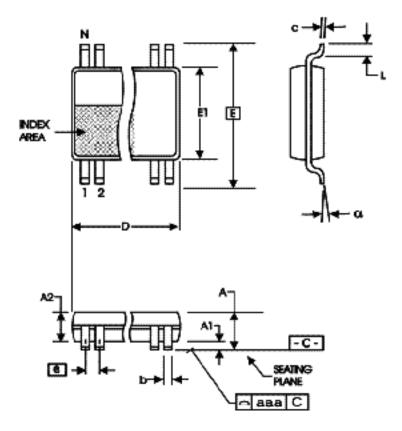


TABLE 10. PACKAGE DIMENSIONS

SYMBOL	Millim	neters
STWIDOL	Minimum	Maximum
N	1	6
А		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
С	0.09	0.20
D	4.90	5.10
E	6.40 E	BASIC
E1	4.30	4.50
е	0.65 E	BASIC
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Table 11. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
ICS813321AG-04LF	3321A04L	16 lead "Lead-Free" TSSOP	tube	0°C to 70°C
ICS813321AG-04LFT	3321A04L	16 lead "Lead-Free" TSSOP	tape & reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

REVISION HISTORY SHEET

Rev	Table	Page	Description of Change	
Α	T11	17	Removed leaded devices and updated data sheet format	3/19/15
А		l	Product Discontinuation Notice - Last time buy expires May 6, 2017 PDN CQ-16-01	5/5/16

Corporate Headquarters

6024 Silver Creek Valley Road San Jose, California 95138 Sales

800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.