
3

 MPPC-C Version 3 Data Compression Software

__
Page 2 DS-0014-00 DATA SHEET

Hi/fnTM supplies two of the Internet’s most important raw materials: compres-
sion and encryption. Hi/fn is also the world’s first company to put both on a
single chip, creating a processor that performs compression and encryption at a
faster speed than a conventional CPU alone could handle, and for much less than
the cost of a Pentium or comparable processor.

As of October 1, 1998, our address is:

Hi/fn, Inc.
750 University Avenue
Los Gatos, CA 95032
info@hifn.com
http://www.hifn.com
Tel: 408-399-3500
Fax: 408-399-3501

Hi/fn Applications Support Hotline:
408-399-3544

Disclaimer

Hi/fn reserves the right to make changes to its products or to discontinue any semiconductor product
or service without notice, and advises its customers to obtain the latest version of relevant informa-
tion to verify, before placing orders, that the information being relied on is current.

Hi/fn warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Hi/fn's standard warranty. Testing and other quality
control techniques are utilized to the extent Hi/fn deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage ("Critical Applications").

HI/FN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Hi/fn products in such critical applications is understood to be fully at the risk of the
customer. Questions concerning potential risk applications should be directed to Hi/fn through a
local sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Hi/fn does not warrant that its products are free from infringement of any patents, copyrights or
other proprietary rights of third parties. In no event shall Hi/fn be liable for any special, incidental or
consequential damages arising from infringement or alleged infringement of any patents, copyrights
or other third party intellectual property rights.

“Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals,” must be validated for each customer application by customer’s technical experts.

DS-0014-00 (11/98) © 1997-1998 by Hi/fn, Inc., including one or more U.S.
patents No.: 4,701,745, 5,003,307, 5,016,009, 5,126,739, 5,146,221, 5,414,425,
5,414,850, 5,463,390, 5,506,580, 5,532,694. Other patents pending.

https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
DATA SHEET DS-0014-00 Page 3

Table of Contents
1 Product Description..5
2 MPPC-C Files...5
3 Function Summary..5
4 Predefined Constants ..6
5 Performance..6
6 Hi/fn MPPC Compression ..6
7 Compression & Decompression Histories ..7

7.1 History Maintenance ...7
8 MPPC_SizeOfCompressionHistory..7
9 MPPC_InitCompressionHistory ...8
10 MPPC_Compress ...8
11 MPPC_SizeOfDecompressionHistory..10
12 MPPC_InitDecompressionHistory ...10
13 MPPC_Decompress..11

Figures
Figure 1. Predefined constants...6
Figure 2. Typical speed ...6
Figure 3. MPPC_Compress flags parameter..9
Figure 4. MPPC_Compress return value ...9
Figure 5. MPPC_Compress example pseudocode ...10
Figure 6. MPPC_Decompress flag parameters..11
Figure 7. MPPC_Decompress return value ...12
Figure 8. MPPC_Compress example pseudocode ...12

https://www.application-datasheet.com/
https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
Page 4 DS-0014-00 DATA SHEET

THIS PAGE INTENTIONALLY BLANK

https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
DATA SHEET DS-0014-00 Page 5

1 Product Description
The MPPC-C Data Compression Software Library provides a processor inde-
pendent software implementation of the MPPC algorithm in a C source code
format. The software is compatible with ANSI C.

This library supports the simultaneous use of multiple compression and decom-
pression histories. Each history is completely independent of other histories. In
addition, this software is re-entrant.

MPPC-C is fully compatible with Hi/fn’s data compression processor chips that
support the MPPC algorithm. Files compressed or decompressed with MPPC
hardware or software may be compressed or decompressed interchangeably with
MPPC hardware or software

Features
• MPPC compression format
• Multiple history support
• Windows® NT compatible

2 MPPC-C Files
The MPPC-C library is composed of several files. They are summarized below:

MPPC.H - This header file contains the function prototypes and constant defini-
tions. This header file should be included in all source modules that access the
MPPC-C library.

MPPCC.C - This source file contains the functions required for the compression
operations.

MPPCD.C - This source file contains the functions required for the decompres-
sion operations.

3 Function Summary
Functions related to data compression are:

MPPC_SizeOfCompressionHistory - Returns amount of memory required for
each compression history.

MPPC_InitCompressionHistory - Initializes a compression history.

MPPC_Compress - Compresses a block of data.

Functions related to data decompression are:

MPPC_SizeOfDecompressionHistory - Returns amount of memory required for
each decompression history.

MPPC_InitDecompressionHistory - Initializes a decompression history.

https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
Page 6 DS-0014-00 DATA SHEET

MPPC_Decompress - Decompresses a block of data.

4 Predefined Constants
In addition to the compile-time options described previously, the following con-
stants are defined in the MPPC.H header file. See the function definitions for
further information concerning these constants.

Constant Value
MPPC_SAVE_HISTORY 0x04
MPPC_INTERNAL_DECOMPRESS 0x10
MPPC_MANDATORY_COMPRESS_FLAGS 0x01
MPPC_MANDATORY_DECOMPRESS_FLAGS 0x04
MPPC_INVALID 0x00
MPPC_SOURCE_EXHAUSTED 0x01
MPPC_DEST_EXHAUSTED 0x02
MPPC_FLUSHED 0x04
MPPC_RESTART_HISTORY 0x08
MPPC_EXPANDED 0x10
MPPC_SOURCE_MAX 8192

Note: The values listed are for this version of the software only. These values are listed
here for information purposes only. These values may change in future versions. Do not
write software that relies on a particular value of these constants.

Figure 1. Predefined constants

Note: All unused bits in function return values must be ignored. All unused bits
in input parameters must be set to zero.

5 Performance
The data presented in this section was generated by compiling MPPC-C with all
optimization switches turned on.

Figure 2 lists the approximate speed of compression and decompression over a
range of processors. This performance is based on compressing a typical ASCII
text file. In this case a text file containing the U.S. Constitution was used.
.

Processor compress
(Kbytes/s)

decompress
(Kbytes/s)

80486DX2-66 350 1654
Pentium@ 150MHz 1125 5589

Figure 2. Typical speed

6 Hi/fn MPPC Compression
The MPPC compression algorithm compresses and decompresses data without
sacrificing data integrity. The MPPC algorithm reduces the size of data by re-
placing redundant sequences of characters with tokens that represent those se-
quences. When the data is decompressed, the original sequences are substituted

https://www.application-datasheet.com/
https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
DATA SHEET DS-0014-00 Page 7

for the tokens in a manner that preserves the integrity of all data. MPPC differs
significantly from “lossy” schemes, such as those used often for video images,
which discard information that is deemed unnecessary.

The efficiency of data compression depends on the degree of redundancy within
a given file. Although very high compression ratios are possible, an average
compression ratio for mass storage applications is typically 2:1. For data com-
munication applications, a compression ratio of 3:1 is more common.

7 Compression & Decompression Histories
This software requires a reserved block of memory in order to calculate and
maintain compression information. This is referred to as a “history”. The com-
pression operation requires a compression history. The decompression operation
requires a decompression history.

Some applications may want to maintain multiple compression and decompres-
sion histories. For example a data communications product may associate a dif-
ferent history for each data channel. This may be used to maximize the redun-
dancy in each individual history, which in turn maximizes the compression ratio
that is obtained.

7.1 History Maintenance
Before a history may be used for the first time, it must be initialized. This is
accomplished using the MPPC_InitCompressionHistory or
MPPC_InitDecompressionHistory commands. This will place the history in a
start state. A start state allows the history to be used when starting to process a
new block of data. For multiple histories, each history must be initialized to the
start state before it can be used for compression or decompression.

To properly finish compressing a block of data, a flush operation must be per-
formed. A flush operation forces the compression algorithm to complete the
compression of all the data it has read from the source. A flush operation guar-
antees that all the data read by the compression algorithm will be represented in
the compressed data stream. A flush operation also places a compression history
into a start state.

For this version of MPPC software, a flush operation must be performed on
every call to the compression function.

8 MPPC_SizeOfCompressionHistory

unsigned short MPPC_SizeOfCompressionHistory(void);

This function must be called to determine the number of bytes required to be
allocated for one compression history. If multiple compression histories are to
be used, simply multiply the value returned by this function by the number of
compression histories desired.
Note: For informational purposes only, the number of bytes required to be allo-
cated for of each compression history is approximately 42 Kbytes. This is in-

https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
Page 8 DS-0014-00 DATA SHEET

formational only, and subject to change. The MPPC_ SizeOfCompressionHis-
tory function must be used to determine the actual byte count.

9 MPPC_InitCompressionHistory

unsigned short MPPC_InitCompressionHistory(
void *history /* Pointer to compression history */
);

This function must be called to initialize a compression history before it can be
used with the MPPC_Compress function. Each compression history must be
initialized separately.

If this function is called with a compression history that has been used previ-
ously, the history will be re-initialized to its beginning state. Any pending com-
pression data within this compression history will be lost.

The *history parameter is a pointer to the memory allocated for a compression
history. The size of this allocated memory was determined by the
MPPC_SizeOfCompressionHistory function.

The return value will always be non-zero.

10 MPPC_Compress

unsigned short MPPC_Compress(
unsigned char * *source, /* Pointer to pointer to source buffer */
unsigned char * *dest, /* Pointer to pointer to destination buffer */
unsigned long *sourceCnt, /* Pointer to source count */
unsigned long *destCnt, /* Pointer to destination buffer size */
void *history /* Pointer to compression history */
unsigned short flags, /* Special flags */
unsigned short performance /* Performance parameter */
);

This function will compress data from the source buffer into the dest buffer. The
function will stop when sourceCnt bytes have been read from the source buffer.
A flush operation will take place after the source data has been processed.

sourceCnt will decrement and *source will increment for each byte that is read
from the source buffer. destCnt will decrement and *dest will increment for each
byte that is written to the dest buffer.

The valid range of sourceCnt is 0 through MPPC_SOURCE_MAX.

The destination buffer (allocation size and destCnt parameter) must be large
enough to hold all the compressed data. To ensure that the destination buffer is
large enough to accommodate the worst case expansion, the destCnt parameter
must be equal to or greater than the following formula:

https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
DATA SHEET DS-0014-00 Page 9

(sourceCnt * 9/8) + 4

If this function is called with an invalid value of sourceCnt or destCnt, the func-
tion will immediately terminate without performing any compression and the
return value will be MPPC_INVALID.

If the data block expands during compression (meaning the number of bytes
generated is greater than sourceCnt), then the MPPC_EXPANDED flag in the
return value will be set when the function returns. In this case, the destination
data should be discarded, and the compression history will be re-initialized
automatically.

If the MPPC_SAVE_HISTORY bit of the flags parameter is set to zero, the
Compression History will be cleared at the end of a flush operation. If this bit is
set to one, the Compression History will NOT be cleared. This will allow a
higher compression ratio for the next block to be compressed because it will
continue to use the same history information.

Note: Blocks must be decompressed in the same order as they were compressed
if the Compression History was not cleared between blocks during compression.

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
0 0 0 0 0 MPPC_SAVE_HISTORY 0 1

Figure 3. MPPC_Compress flags parameter

The performance parameter is not used for this version of software. The value
passed here is ignored.

The return value will be MPPC_INVALID (zero) if the sourceCnt, destCnt, or
flags calling parameters are invalid. The MPPC_EXPANDED bit in the return
value will be set to one if the function has been terminated by data expansion.
The MPPC_FLUSHED and MPPC_SOURCE_EXHAUSTED bits will be set if
the compression operation was successful. The MPPC_RESTART_HISTORY
bit is information required by the decompression function. The value of the
MPPC_RESTART_HISTORY bit must be saved and passed to the flags pa-
rameter of the decompression function. If successful, the *source and *dest
pointers, and sourceCnt, and destCnt values will be updated.

15 14 13 12 11 10 9 8
x x x x x x x x
7 6 5 4 3 2 1 0
x x x MPPC_

EXPANDED
MPPC_

RESTART_HISTORY
MPPC_

FLUSHED
0 MPPC_SOURCE_

EXHAUSTED

Figure 4. MPPC_Compress return value

Note: If the MPPC_EXPANDED bit is set to one, the InitDecompressionHis-
tory function must be called for the corresponding decompression history.

https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
Page 10 DS-0014-00 DATA SHEET

Figure 5. MPPC_Compress example pseudocode

The pseudocode in Figure 5 illustrates an example of how to call this function.
For a more detailed example, please refer to the example software supplied with
this release.

11 MPPC_SizeOfDecompressionHistory

unsigned short MPPC_SizeOfDecompressionHistory(void);

This function must be called to determine the number of bytes required to allo-
cate for one decompression history. If multiple decompression histories are to
be used, simply multiply the value returned by this function by the number of
decompression histories desired.

Note: For informational purposes only, the number of bytes required to be allo-
cated for each decompression history is approximately 8 Kbytes. This is infor-
mational only, and subject to change. The MPPC_ SizeOfDecompressionHistory
function must be used to determine the actual byte count.

12 MPPC_InitDecompressionHistory

unsigned short MPPC_InitDecompressionHistory(
void *history /* Pointer to decompression history */
);

This function must be called to initialize a decompression history before it can
be used with the MPPC_Decompress function. In addition, this function must be
called if the MPPC_InitCompressionHistory function was called prior to this
compressed data being produced. This would occur if the MPPC_Compress
function returned with the MPPC_EXPANDED bit in the return value set to one
for the corresponding compression operation, or if the MPPC_Compress func-
tion was called with the MPPC_SAVE_HISTORY bit in the flags parameter set
to zero. In either of these two cases the MPPC_InitDecompressionHistory func-
tion must be called prior to processing this compressed data.

The *history parameter is a pointer to the memory allocated for a decompression
history. The size of this allocated memory was determined by the
MPPC_SizeOfDecompressionHistory function.

The return value will always be non-zero.

Read a block of data into the source buffer;
returnCode = MPPC_Compress(&source, &dest, &sourceCnt, &destCnt,

compHistory, flags, performance);
Write dest buffer to output device;

https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
DATA SHEET DS-0014-00 Page 11

13 MPPC_Decompress

unsigned short MPPC_Decompress(
unsigned char * *source, /* Pointer to pointer to source buffer */
unsigned char * *dest, /* Pointer to pointer to destination buffer */
unsigned long *sourceCnt, /* Pointer to source count */
unsigned long *destCnt, /* Pointer to destination buffer size */
void *history /* Pointer to decompression history */
unsigned short flags /* Special flags */
);

This function will decompress data from the source buffer into the dest buffer.
The function will stop when sourceCnt bytes have been read from the source
buffer.

sourceCnt will decrement and *source will increment when each byte is read
from the source buffer. destCnt will decrement and *dest will increment when
each byte is written to the dest buffer.

The valid range of destCnt is 0 through MPPC_SOURCE_MAX. The calling
value of sourceCnt must be less than the calling value of destCnt. The value of
destCnt must be equal to or greater than the actual number of raw data originally
compressed. If this function is called with invalid values of sourceCnt or
destCnt the function will immediately terminate without performing any com-
pression and the return value will be MPPC_INVALID.

If the value of destCnt is too small, the function will terminate with the
MPPC_DEST_EXHAUSTED bit set to one and the MPPC_DECOMP_OK bits
set to zero.

The MPPC_RESTART bit in the flags parameter must contain the value re-
turned in the MPPC_RESTART bit from the compress function.

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0
0 0 0 0 MPPC_

RESTART
1 0 0

Figure 6. MPPC_Decompress flag parameters

Note: Blocks must be decompressed in the same order as they were compressed
if the Compression History has not been cleared between blocks during com-
pression (i.e. the MPPC_SAVE_HISTORY bit was set during MPPC_Compress
function calls).

The return value will be MPPC_INVALID (zero) if the sourceCnt, or flags call-
ing parameters are invalid. If the decompression operation is successful, and the
destination buffer does not become full, the MPPC_DECOMP_OK bits will be
set to one. If successful, and the destination buffer is full (but does not over-
flow), The MPPC_DECOMP_OK and the MPPC_DEST_EXHAUSTED bits

https://www.application-datasheet.com/

 MPPC-C Version 3 Data Compression Software

__
Page 12 DS-0014-00 DATA SHEET

will be set to one. If the destination buffer overflows, only the
MPPC_DEST_EXHAUSTED bit will be set to one.

15 14 13 12 11 10 9 8
x x x x x x x x
7 6 5 4 3 2 1 0
x x x x x MPPC_

DECOMP_OK
MPPC_DEST_
EXHAUSTED

MPPC_
DECOMP_OK

Figure 7. MPPC_Decompress return value

If successful, the *source and *dest pointers and sourceCnt and destCnt will be
updated.

Figure 8. MPPC_Compress example pseudocode

The pseudocode in Figure 8 illustrates an example of how to call this function.

Read a block of data from an input device;
returnCode = MPPC_Deompress(&source, &dest, &sourceCnt, &destCnt,

compHistory, flags, performance);
Write the destination buffer to packet memory;

https://www.application-datasheet.com/

