
033&
6

 MPPC-386 Version 6 Data Compression Software

Page 2 DS-0009-02 DATA SHEET

Hi/fnTM supplies two of the Internet’s most important raw materials: compres-
sion and encryption. Hi/fn is also the world’s first company to put both on a
single chip, creating a processor that performs compression and encryption at
a faster speed than a conventional CPU alone could handle, and for much less
than the cost of a Pentium or comparable processor.

As of October 1, 1998, our address is:

Hi/fn, Inc.
750 University Avenue
Los Gatos, CA 95032
info@hifn.com
http://www.hifn.com
Tel: 408-399-3500
Fax: 408-399-3501

Hi/fn Applications Support Hotline:
408-399-3544

Disclaimer

Hi/fn reserves the right to make changes to its products or to discontinue any semiconductor product
or service without notice, and advises its customers to obtain the latest version of relevant informa-
tion to verify, before placing orders, that the information being relied on is current.

Hi/fn warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Hi/fn's standard warranty. Testing and other quality
control techniques are utilized to the extent Hi/fn deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage ("Critical Applications").

HI/FN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Hi/fn products in such critical applications is understood to be fully at the risk of the
customer. Questions concerning potential risk applications should be directed to Hi/fn through a
local sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Hi/fn does not warrant that its products are free from infringement of any patents, copyrights or
other proprietary rights of third parties. In no event shall Hi/fn be liable for any special, incidental or
consequential damages arising from infringement or alleged infringement of any patents, copyrights
or other third party intellectual property rights.

“Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals,” must be validated for each customer application by customer’s technical experts.

The use of this product may require a license from Motorola. A license agreement for the right to
use Motorola patents may be obtained through Hi/fn or directly from Motorola.

DS-0009-02 (9/98) © 1997-1998 by Hi/fn, Inc., including one or more U.S.
patents No.: 4,701,745, 5,003,307, 5,016,009, 5,126,739, 5,146,221, 5,414,425,
5,414,850, 5,463,390, 5,506,580, 5,532,694. Other patents pending.

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

DATA SHEET DS-0009-02 Page 3

Table of Contents
1 Product Description..5
2 LZS221-386 Files...6
3 Function Summary..6
4 Constants and Types...6
5 PERFORMANCE...7
6 Hi/fn MPPC Compression ..7
7 Compression & Decompression Histories ..8

7.1 History Maintenance ...8
8 SizeOfCompressionHistory ..8
9 InitCompressionHistory..9
10 Compress ..9
11 SizeOfDecompressionHistory ..11
12 InitDecompressionHistory..11
13 Decompress ..12

Figures
Figure 1. Predefined constants...7
Figure 2. Typical speed ...7
Figure 3. Compress flags parameter ..10
Figure 4. Compress example pseudocode..10
Figure 5. Compress return value..11
Figure 6. Decompress flags parameter...13
Figure 7. Decompress example pseudocode..13
Figure 8. Decompress return value ..13

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

Page 4 DS-0009-02 DATA SHEET

THIS PAGE INTENTIONALLY BLANK

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

DATA SHEET DS-0009-02 Page 5

1 Product Description
The MPPC-386 Data Compression Software Library provides a highly optimized
software implementation of the MPPC algorithm in 32-bit assembly source code
for the Intel 386 family and above of processors.

Figure 2 on page 7 illustrates the compression speed of this library.

This library supports the simultaneous use of multiple compression and decom-
pression histories. Each history is completely independent of other histories. In
addition, this software is re-entrant.

MPPC-386 is fully compatible with Hi/fn’s data compression compressor chips
that support the MPPC algorithm. Files compressed or decompressed with
MPPC hardware or software may be compressed or decompressed interchangea-
bly with MPPC hardware or software.

Assembly language optimized implementations for other specific processors are
also available. In addition, a C source code version is available that can be used
to create a compression library for any processor. Consult Hi/fn for more infor-
mation.

Features
• MPPC compression format
• Multiple history support
• High performance
• Cross compatible with other Hi/fn MPPC compression software and

hardware
• Windows® NT compatible

https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

Page 6 DS-0009-02 DATA SHEET

2 LZS221-386 Files
The MPPC-386 library is composed of several MASM 6.11 compatible files and
one C header file. These files are not user-modifiable. They are summarized
below:

MPPC.H - This header file contains the function prototypes and constant defini-
tions. This header file should be included in all source modules that access the
MPPC-386 library.

MPPCC.ASM - This source file contains the functions required for the compres-
sion operations.

MPPCD.ASM - This source file contains the functions required for the decom-
pression operations.

HIFNDEFS.H – This file contains machine specific definitions used by MPPC-
386.

HIFNUTIL.ASM – This file includes code which utilizes memory utility func-
tions that are required by MPPC-386.

3 Function Summary
All function names (and constants) must prepended with “MPPC_386_” to
uniquely identify the version of this software library. In this data sheet, the
“MPPC_386_” is missing to improve readability.

Functions related to data compression are:

SizeOfCompressionHistory - Returns amount of memory required for each com-
pression history.

InitCompressionHistory - Initializes a compression history.
Compress - Compresses a block of data.

Functions related to data decompression are:

SizeOfDecompressionHistory - Returns amount of memory required for each
decompression history.

InitDecompressionHistory - Initializes a decompression history.
Decompress - Decompresses a block of data.

4 Constants and Types
In addition to the compile-time options described previously, the following con-
stants are defined in the MPPC.H header file. See the function definitions for
further information concerning these constants.

https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

DATA SHEET DS-0009-02 Page 7

Constant Value
SAVE_HISTORY 0x04
INVALID 0x00
SOURCE_EXHAUSTED 0x01
DEST_EXHAUSTED 0x02
FLUSHED 0x04
RESTART_HISTORY 0x08
EXPANDED 0x10
SOURCE_MAX 8192

Note: The values listed are for this version of the software only. These values are listed
here for information purposes only. These values may change in future versions. Do not
write software that relies on a particular value of these constants.

Figure 1. Predefined constants

Note: All unused bits in function return values must be ignored. All unused bits
in input parameters must be set to zero.

u32b is a type definition which is defined to be a 32-bit unsigned data type for
the target compiler.

u16b is a type definition which is defined to be a 16-bit unsigned data type for
the target compiler.

u8b is a type definition which is defined to be a 8-bit unsigned data type for the
target compiler.

5 PERFORMANCE
The data presented in this section was generated by assembling MPPC-386.

Figure 2 lists the approximate speed of compression and decompression over a
range of processors. This performance is based on compressing a typical ASCII
text file. In this case a text file containing the U.S. Constitution was used.

Processor Compress
(Kbytes/s)

Decompress
(Kbytes/s)

80486DX2-66 1383 2054
Pentium Pro @ 200MHz 8276 13738

Figure 2. Typical speed

6 Hi/fn MPPC Compression
The MPPC compression algorithm compresses and decompresses data without
sacrificing data integrity. The MPPC algorithm reduces the size of data by re-
placing redundant sequences of characters with tokens that represent those se-
quences. When the data is decompressed, the original sequences are substituted
for the tokens in a manner that preserves the integrity of all data. MPPC differs
significantly from “lossy” schemes, such as those used often for video images,
which discard information that is deemed unnecessary.

https://www.application-datasheet.com/
https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

Page 8 DS-0009-02 DATA SHEET

The efficiency of data compression depends on the degree of redundancy within
a given file. Although very high compression ratios are possible, an average
compression ratio for mass storage applications is typically 2:1. For data com-
munication applications, a compression ratio of 3:1 is more common.

7 Compression & Decompression Histories
This software requires a reserved block of memory in order to calculate and
maintain compression information. This is referred to as a “history”. The com-
pression operation requires a compression history. The decompression operation
requires a decompression history.

Some applications may want to maintain multiple compression and decompres-
sion histories. For example a data communications product may associate a dif-
ferent history for each data channel. This may be used to maximize the redun-
dancy in each individual history, which in turn maximizes the compression ratio
that is obtained.

7.1 History Maintenance
Before a history may be used for the first time, it must be initialized. This is
accomplished using the InitCompressionHistory or InitDecompressionHistory
commands. This will place the history in a start state. A start state allows the
history to be used when starting to process a new block of data. For multiple
histories, each history must be initialized to the start state before it can be used
for compression or decompression.

To properly finish compressing a block of data, a flush operation must be per-
formed. A flush operation forces the compression algorithm to complete the
compression of all the data it has read from the source. A flush operation guar-
antees that all the data read by the compression algorithm will be represented in
the compressed data stream. A flush operation also places a compression history
into a start state.

For this version of MPPC software, a flush operation must be performed on
every call to the compression function.

8 SizeOfCompressionHistory

u16b SizeOfCompressionHistory(void);

This function must be called to determine the number of bytes required to be
allocated for one compression history. If multiple compression histories are to
be used, simply multiply the value returned by this function by the number of
compression histories desired.

Note: For informational purposes only, the number of bytes required to be allo-
cated for of each compression history is approximately 16 Kbytes. This is in-
formational only, and subject to change. The SizeOfCompressionHistory func-
tion must be used to determine the actual byte count.

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

DATA SHEET DS-0009-02 Page 9

9 InitCompressionHistory

u16b InitCompressionHistory(
void *history /* Pointer to compression history */
);

This function must be called to initialize a compression history before it can be
used with the Compress function. Each compression history must be initialized
separately.

If this function is called with a compression history that has been used previ-
ously, the history will be re-initialized to its beginning state. Any pending com-
pression data within this compression history will be lost.

The *history parameter is a pointer to the memory allocated for a compression
history. The size of this allocated memory was determined by the SizeOfCom-
pressionHistory function.

The return value will always be non-zero.

10 Compress

u16b Compress(
u8b * *source, /* Pointer to pointer to source buffer */
u8b * *dest, /* Pointer to pointer to destination buffer */
u32b *sourceCnt, /* Pointer to source count */
u32b *destCnt, /* Pointer to destination buffer size */
void *history /* Pointer to compression history */
u16b flags, /* Special flags */
u16b performance /* Performance parameter */
);

This function will compress data from the source buffer into the dest buffer. The
function will stop when sourceCnt bytes have been read from the source buffer.
A flush operation will take place after the source data has been processed.

sourceCnt will decrement and *source will increment for each byte that is read
from the source buffer. destCnt will decrement and *dest will increment for each
byte that is written to the dest buffer.

The valid range of sourceCnt is 0 through SOURCE_MAX.

The destination buffer (allocation size and destCnt parameter) must be large
enough to hold all the compressed data. To ensure that the destination buffer is
large enough to accommodate the worst case expansion, the destCnt parameter
must be equal to or greater than the following formula:

(sourceCnt * 9/8) + 4

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

Page 10 DS-0009-02 DATA SHEET

If this function is called with an invalid value of sourceCnt or destCnt, the func-
tion will immediately terminate without performing any compression and the
return value will be INVALID.

If the data block expands during compression (meaning the number of bytes
generated is greater than sourceCnt), then the EXPANDED flag in the return
value will be set when the function returns. In this case, the destination data
should be discarded, and the compression history is re-initialized automatically.

If the SAVE_HISTORY bit of the flags parameter is set to zero, the Compres-
sion History is automatically cleared at the end of a flush operation. If this bit is
set to one, the Compression History will NOT be cleared. This will allow a
higher compression ratio for the next block to be compressed because it will
continue to use the same history information. Note: Blocks must be decom-
pressed in the same order as they were compressed if the Compression History
was not cleared between blocks during compression.

The performance parameter is not used for this version of software. The value
passed here is ignored.

The return value will be INVALID (zero) if the sourceCnt, destCnt, or flags
calling parameters are invalid. The EXPANDED bit in the return value will be
set to one if the function has been terminated by data expansion, and the function
internally calls InitCompressionHistory. The FLUSHED and
SOURCE_EXHAUSTED bits will be set if the compression operation was suc-
cessful. The RESTART_HISTORY bit is information required by the decom-
pression function. The value of the RESTART_HISTORY bit must be saved
and passed to the flags parameter of the decompression function. If successful,
the *source and *dest pointers, and sourceCnt, and destCnt values will be up-
dated.

Note: If the EXPANDED bit is set to one, the InitDecompressionHistory func-
tion must be called for the corresponding decompression history.

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
0 0 0 0 0 SAVE_

HISTORY
0 Must be 1

Figure 3. Compress flags parameter

The pseudocode in Figure 4 illustrates an example of how to call this function.
For a more detailed example, please refer to the example software supplied with
this release.

Figure 4. Compress example pseudocode

Read a b lock of data in to the source buf fer ;
re tu rnCode = Compress(&source , &dest , &sourceCnt , &destCnt ,

compHistory , f lags, per formance) ;
Wr i te dest buf fer to output device;

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

DATA SHEET DS-0009-02 Page 11

15 14 13 12 11 10 9 8
x x x x x x x x

7 6 5 4 3 2 1 0
x x x EXPANDED RESTART_

HISTORY
FLUSHED 0 SOURCE_

EXHAUSTED

Figure 5. Compress return value

11 SizeOfDecompressionHistory

u32b SizeOfDecompressionHistory(void);

This function must be called to determine the number of bytes required to allo-
cate for one decompression history. If multiple decompression histories are to
be used, simply multiply the value returned by this function by the number of
decompression histories desired.

Note: For informational purposes only, the number of bytes required to be allo-
cated for each decompression history is approximately 8 Kbytes. This is infor-
mational only, and subject to change. The SizeOfDecompressionHistory function
must be used to determine the actual byte count.

12 InitDecompressionHistory

u16b InitDecompressionHistory(
void *history /* Pointer to decompression history */
);

This function must be called to initialize a decompression history before it can
be used with the Decompress function. In addition, this function must be called
if the InitCompressionHistory function was called prior to this compressed data
being produced. This would occur if the Compress function returned with the
EXPANDED bit in the return value set to one for the corresponding compression
operation, or if the Compress function was called with the SAVE_HISTORY
bit in the flags parameter set to zero. In either of these two cases the InitDecom-
pressionHistory function must be called prior to processing this compressed
data.

The *history parameter is a pointer to the memory allocated for a decompression
history. The size of this allocated memory was determined by the SizeOfDe-
compressionHistory function.

The return value will always be non-zero.

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

Page 12 DS-0009-02 DATA SHEET

13 Decompress

u16b Decompress(
u8b * *source, /* Pointer to pointer to source buffer */
u8b * *dest, /* Pointer to pointer to destination buffer */
u32b *sourceCnt, /* Pointer to source count */
u32b *destCnt, /* Pointer to destination buffer size */
void *history /* Pointer to decompression history */
u16b flags /* Special flags */
);

This function will decompress data from the source buffer into the dest buffer.
The function will stop when sourceCnt bytes have been read from the source
buffer.

sourceCnt will decrement and *source will increment when each byte is read
from the source buffer. destCnt will decrement and *dest will increment when
each byte is written to the dest buffer.

The valid range of destCnt is 0 through SOURCE_MAX. The calling value of
sourceCnt must be less than the calling value of destCnt. The value of destCnt
must be equal to or greater than the actual number of raw data originally com-
pressed. If this function is called with invalid values of sourceCnt or destCnt the
function will immediately terminate without performing any compression and the
return value will be INVALID.

If the value of destCnt is too small, the function will terminate with the
DEST_EXHAUSTED bit set to one and the DECOMP_OK bits set to zero.

The RESTART bit in the flags parameter must contain the value returned in the
RESTART bit from the compress function.

Note: Blocks must be decompressed in the same order as they were compressed
if the Compression History has not been cleared between blocks during com-
pression (i.e. the SAVE_HISTORY bit was set during Compress function calls).

The return value will be INVALID (zero) if the sourceCnt, or flags calling pa-
rameters are invalid. If the decompression operation is successful, and the desti-
nation buffer does not become full, the DECOMP_OK bits will be set to one. If
successful, and the destination buffer is full (but does not overflow), The
DECOMP_OK and the DEST_EXHAUSTED bits will be set to one. If the des-
tination buffer overflows, only the DEST_EXHAUSTED bit will be set to one.

If successful, the *source and *dest pointers and sourceCnt and destCnt will be
updated.

https://www.application-datasheet.com/

 MPPC-386 Version 6 Data Compression Software

DATA SHEET DS-0009-02 Page 13

15 14 13 12 11 10 9 8
0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
0 0 0 0 RESTART Must be 1 0 0

Figure 6. Decompress flags parameter

The pseudocode in Figure 7 illustrates an example of how to call this function.

Figure 7. Decompress example pseudocode

15 14 13 12 11 10 9 8
x x x x x x x x

7 6 5 4 3 2 1 0
x x x x x DECOMP_

OK
DEST_

EXHAUSTED
DECOMP_

OK

Figure 8. Decompress return value

Read a b lock of data f rom an input dev ice;
re tu rnCode = Decompress(&source , &dest , &sourceCnt , &destCnt ,

compHistory , f lags) ;
Wr i te dest inat ion buf fer to packet memory;

https://www.application-datasheet.com/

