

CDK3402/CDK3403

8-bit, 100/150MSPS, Triple Video DACs

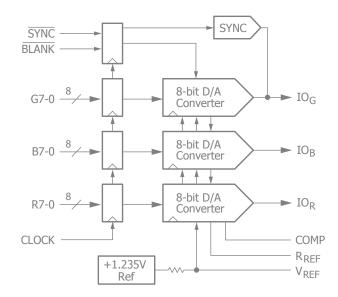
FEATURES

- 8-bit resolution
- 150 megapixels per second
- ±0.2% linearity error
- Sync and blank controls
- 1.0V_{pp} video into 37.5Ω or 75Ω load
- Internal bandgap voltage reference
- Double-buffered data for low distortion
- TTL-compatible inputs
- Low glitch energy
- Single +5V power supply

APPLICATIONS

- Video signal conversion
- RGB
- YCRCR
- Composite, Y, C
- Multimedia systems
- Image processing
- True-color graphics systems

General Description

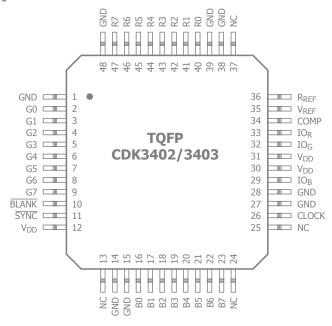

CDK3402/3401 products are low-cost triple D/A converters that are tailored to fit graphics and video applications where speed is critical. Two speed grades are available: CDK3402 at 100MSPS and CDK3403 at 150MSPS.

TTL-level inputs are converted to analog current outputs that can drive $25\text{-}37.5\Omega$ loads corresponding to doubly-terminated $50\text{-}75\Omega$ loads. A sync current following $\overline{\text{SYNC}}$ input timing is added to the IO_G output. $\overline{\text{BLANK}}$ will override RGB inputs, setting IO_G , IO_B and IO_R currents to zero when $\overline{\text{BLANK}} = L$. Although appropriate for many applications, the internal 1.235V reference voltage can be overridden by the V_{REF} input.

Few external components are required, just the current reference resistor, current output load resistors, and decoupling capacitors.

Package is a 48-lead TQFP. Fabrication technology is CMOS. Performance is quaranteed from 0 to 70°C.

Block Diagram


Ordering Information

Part Number	Package	Pb-Free	RoHS Compliant	Operating Temp Range	Packaging Method	Package Quantity
CDK3402CTQ48	TQFP-48	Yes	Yes	0°C to +70°C	Tray	250
CDK3403CTQ48	TQFP-48	Yes	Yes	0°C to +70°C	Tray	250

Moisture sensitivity level for all parts is MSL-3.

Pin Configuration

TQFP-48

Pin Assignments

Pin No.	Pin Name	Description			
Clock and P	Clock and Pixel I/O				
26	CLK	Clock Input			
47-40	R7-0	Red Pixel Data Inputs			
9–2	G7-0	Green Pixel Data Inputs			
23–16	B7-0	Blue Pixel Data Inputs			
Controls					
11	SYNC	Sync Pulse Input			
10	BLANK	Blanking Input			
Video Outp	uts				
33	IOR	Red Current Output			
32	IOG	Green Current Output			
29	IOB	Blue Current Output			
Voltage Ref	ference				
35	V_{REF}	Voltage Reference Output/Input			
36	R _{REF}	Current-Setting Resistor			
34	COMP	Compensation Capacitor			
Power and	Ground				
12, 30, 31	V_{DD}	Power Supply			
1, 14, 15, 27, 28, 38, 39, 48	GND	Ground			
13, 24, 25, 37	NC	No Connect			

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
Power Supply Voltage	'		
V _{DD} (Measured to GND)	-0.5	7.0	V
Inputs			
Applied Voltage (measured to GND) ⁽²⁾	-0.5	$V_{DD} + 0.5$	V
Forced Current ^(3,4)	-10.0	10.0	mA
Outputs			
Applied Voltage (measured to GND) ⁽²⁾	-0.5	$V_{DD} + 0.5$	V
Forced Current ^(3,4)	-60.0	60.0	mA
Short Circuit Duration (single output in HIGH state to GND)		unlimited	sec
Temperature			
Operating, Ambient	-20	110	°C
Junction		150	°C
Lead Soldering (10 seconds)		300	°C
Vapor Phase Soldering (1 minute)		220	°C
Storage	-65	150	°C

Notes:

- 1. Functional operation under any of these conditions is NOT implied. Performance and reliability are guaranteed only if Operating Conditions are not exceeded.
- 2. Applied voltage must be current limited to specified range.
- 3. Forcing voltage must be limited to specified range.
- 4. Current is specified as conventional current flowing into the device.

Recommended Operating Conditions

Symbol	Parameter	Parameter			Max	Unit
V _{DD}	Power Supply Voltage		4.75	5.0	5.25	V
	Communica Data	CDK3402			100	MSPS
f_S	Conversion Rate	CDK3403			150	MSPS
	CLI/ Dudgermidth LITCH	CDK3402	3.1			ns
t _{PWH}	CLK Pulsewidth, HIGH	CDK3403	2.5			ns
	CLIV Dudgerwidth LOW	CDK3402	3.1			ns
t _{PWL}	CLK Pulsewidth, LOW	CDK3403	2.5			ns
	CLV D. I	CDK3402	10			ns
t_W	CLK Pulsewidth	CDK3403	6.6			ns
t _S	Input Data Setup Time	·	1.7			ns
t _h	Input Date Hold Time		0			ns
V _{REF}	Reference Voltage, External		1.0	1.235	1.5	V
C_{C}	Compensation Capacitor			0.1		μF
R_L	Output Load			37.5		Ω
V _{IH}	Input Voltage, Logic HIGH		2.0		VDD	V
V _{IL}	Input Voltage, Logic LOW		GND		0.8	V
T _A	Ambient Temperature, Still Air		0		70	°C

Electrical Characteristics

 $(T_A = 25$ °C, $V_{DD} = +5V$, $V_{REF} = 1.235V$, $R_L = 37.5\Omega$, $R_{REF} = 540\Omega$; unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD}	Power Supply Current ⁽¹⁾	V _{DD} = 5.25V, T _A = 0°C			125	mA
PD	Total Power Dissipation ⁽¹⁾	$V_{DD} = 5.25V, T_A = 0$ °C			655	mW
R _O	Output Resistance			100		kΩ
C _O	Output Capacitance	I _{OUT} = 0mA			30	pF
I_{IH}	Input Current, HIGH	$V_{DD} = 5.25V, V_{IN} = 2.4V$			-5	μΑ
I_{IL}	Input Current, LOW	$V_{DD} = 5.25V, V_{IN} = 0.4V$			5	μΑ
I _{REF}	V _{REF} Input Bias Current			0	±100	μΑ
V _{REF}	Reference Voltage Output			1.235		V
V _{OC}	Output Compliance	Referred to V _{DD}	-0.4	0	+1.5	V
C _{DI}	Digital Input Capacitance			4	10	pF

Notes:

- 1. 100% tested at 25°C.
- 2. Parameter is guaranteed (but not tested) by design and characterization data.

Switching Characteristics

 $(T_A = 25^{\circ}C, V_{DD} = +5V, V_{REF} = 1.235V, R_L = 37.5\Omega, R_{REF} = 590\Omega$; unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _D	Clock to Output Delay	V _{DD} = 4.75V, T _A = 0°C		10	15	ns
t _{SKEW}	Output Skew			1	2	ns
t _R	Output Risetime	10% to 90% of Full Scale			3	ns
t _F	Output Falltime	90% to 10% of Full Scale			3	ns

Notes:

- 1. 100% production tested at +25°C.
- 2. Parameter is guaranteed (but not tested) by design and characterization data.

System Performance Characteristics

 $(T_A = 25$ °C, $V_{DD} = +5V$, $V_{REF} = 1.235V$, $R_L = 37.5\Omega$, $R_{REF} = 590\Omega$; unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
INL	Integral Linearity Error			±0.2	±0.3	%/FS
DNL	Differential Linearity Error			±0.2	±0.3	%/FS
E _{DM}	DAC to DAC Matching			5	10	%
PSRR	Power Supply Rejection Ratio				0.05	%/%

Notes:

- 1. 100% production tested at +25°C.
- 2. Parameter is guaranteed (but not tested) by design and characterization data.

Table 1. Output Voltage vs.	Transport Carda	CV/NC == 4 DL A NIV	\/ 1 22E\/ D	F000 D 27 F0
Table I Chirblir voitage vs	Innuit Code	SYNC AND BLANK	$V_{DCC} = I / 35V K_{DC}$	$r = 59000 R_1 = 37500$
Table II Sacpat Voltage Vo	i ilipat coac,	, orrecand bb and	* K L + 1 2 3 3 4 1 1 K L	- 33031,14 371331

RGB7-0 (MSBLSB)	BLUE AND RED			GREEN			
KGD/-U (MSDLSD)	SYNC	BLANK	Vout	SYNC	BLANK	Vout	
1111 1111	X	1	0.7140	1	1	1.0000	
1111 1111	X	1	0.7140	0	1	0.7140	
1111 1110	X	1	0.7134	1	1	0.9994	
1111 1101	X	1	0.7127	1	1	0.9987	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
0000 0000	X	1	0.3843	1	1	0.6703	
1111 1111	X	1	0.3837	1	1	0.6697	
•	•	•	•	•	•	•	
•	•	•	•	•	•	•	
0000 0010	X	1	0.0553	1	1	0.3413	
0000 0001	X	1	0.0546	1	1	0.3406	
0000 0000	X	1	0.0540	1	1	0.3400	
0000 0000	Х	1	0.0540	0	1	0.054	
XXXX XXXX	X	0	0.0000	1	0	0.2860	
XXXX XXXX	X	0	0.0000	0	0	0.0000	
XXXX XXXX	Χ	1	valid	0	1	valid	

Figure 1. CDK3402/3403 Timing Diagram

Functional Description

Within the CDK3402/3403 are three identical 8-bit D/A converters, each with a current source output. External loads are required to convert the current to voltage outputs. Data inputs RGB7-0 are overridden by the $\overline{\text{BLANK}}$ input. $\overline{\text{SYNC}}$ = H activates, sync current from I_{OS} for syncon-green video signals.

Digital Inputs

All digital inputs are TTL-compatible. Data is registered on the rising edge of the CLK signal. Following one stage of pipeline delay, the analog output changes t_{DO} after the rising edge of CLK.

Clock Input - CLK

The clock input is TTL-compatible and all pixel data is registered on the rising edge of CLK. It is recommended that CLK be driven by a dedicated TTL buffer to avoid reflection induced jitter, overshoot, and undershoot.

Pixel Data Inputs - R7-0, B7-0, G7-0

TTL-compatible Red, Green and Blue Data Inputs are registered on the rising edge of CLK.

SYNC and BLANK

 $\overline{\text{SYNC}}$ and $\overline{\text{BLANK}}$ inputs control the output level (Figure 2 and Table 1, on the previous page) of the D/A converters during CRT retrace intervals. $\overline{\text{BLANK}}$ forces the D/A outputs to the blanking level while $\overline{\text{SYNC}} = \text{L}$ turns off a current source that is connected to the green D/A converter. $\overline{\text{SYNC}} = \text{H}$ adds a 40 I_{RE} sync pulse to the green output, $\overline{\text{SYNC}} = \text{L}$ sets the green output to 0.0V during the sync tip. $\overline{\text{SYNC}}$ and $\overline{\text{BLANK}}$ are registered on the rising edge of CLK.

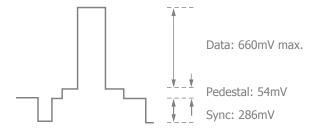


Figure 2. Normal Output Levels

 $\overline{\text{BLANK}}$ gates the D/A inputs and sets the pedestal voltage. If $\overline{\text{BLANK}}$ = HIGH, the D/A inputs are added to a pedestal

which offsets the current output. If $\overline{\text{BLANK}} = \text{Low}$, data inputs and the pedestal are disabled.

Sync Pulse Input - SYNC

Bringing $\overline{\text{SYNC}}$ LOW, turns off a 40 I_{RE} (7.62mA) current source which forms a sync pulse on the Green D/A converter output. $\overline{\text{SYNC}}$ is registered on the rising edge of CLK with the same pipeline latency as $\overline{\text{BLANK}}$ and pixel data. SYNC does not override any other data and should be used only during the blanking interval.

Since this is a single-supply D/A and all signals are positive-going, sync is added to the bottom of the Green D/A range. So turning \$\overline{SYNC}\$ OFF means turning the current source ON. When a sync pulse is desired, the current source is turned OFF. If the system does not require sync pulses from the Green D/A converter, \$\overline{SYNC}\$ should connected to GND.

Blanking Input - BLANK

When $\overline{\text{BLANK}}$ is LOW, pixel inputs are ignored and the D/A converter outputs fall to the blanking level. $\overline{\text{BLANK}}$ is registered on the rising edge of CLK and has the same pipeline latency as $\overline{\text{SYNC}}$.

D/A Outputs

Each D/A output is a current source. To obtain a voltage output, a resistor must be connected to ground. Output voltage depends upon this external resistor, the reference voltage, and the value of the gain-setting resistor connected between R_{REF} and GND.

Normally, a source termination resistor of 75Ω is connected between the D/A current output pin and GND near the D/A converter. A 75Ω line may then be connected with another 75Ω termination resistor at the far end of the cable. This "double termination" presents the D/A converter with a net resistive load of 37.5Ω .

The CDK3402/3403 may also be operated with a single 75Ω terminating resistor. To lower the output voltage swing to the desired range, the nominal value of the resistor on R_{REF} should be doubled.

R, G, and B Current Outputs - IO_R, IO_G, IO_B

The R, G, and B current source outputs of the D/A converters are capable of driving RS-343A/SMPTE-170M compatible levels into doubly-terminated 75 Ω lines. Sync pulses may be added to the Green D/A output.

Current-Setting Resistor - R_{REF}

Full-scale output current of each D/A converter is determined by the value of the resistor connected between R_{REF} and GND. Nominal value of R_{REF} is found from:

$$R_{REF} = 9.1 (V_{REF}/I_{FS})$$

where I_{FS} is the full-scale (white) output current (in amps) from the D/A converter (without sync). Sync is 0.4 * I_{FS} .

D/A full-scale (white) current may also be calculated from:

$$I_{FS} = V_{FS}/R_L$$

Where V_{FS} is the white voltage level and R_L is the total resistive load (Ω) on each D/A converter. V_{FS} is the blank to full-scale voltage.

Voltage Reference

All three D/A converters are supplied with a common voltage reference. Internal bandgap voltage reference voltage is +1.235V with a $3k\Omega$ source resistance. An external voltage reference may be connected to the V_{REF} pin, overriding the internal voltage reference.

A $0.1\mu F$ capacitor must be connected between the COMP pin and V_{DD} to stabilize internal bias circuitry and ensure low-noise operation.

Voltage Reference Output/Input - V_{REF}

An internal voltage source of +1.235V is output on the V_{REF} pin. An external +1.235V reference may be applied here which overrides the internal reference. Decoupling V_{RFF} to GND with a $0.1\mu F$ ceramic capacitor is required.

Power and Ground

Required power is a single +5.0V supply. To minimize power supply induced noise, analog +5V should be connected to V_{DD} pins with $0.1\mu F$ and $0.01\mu F$ decoupling capacitors placed adjacent to each V_{DD} pin or pin pair.

The high slew-rate of digital data makes capacitive coupling to the outputs of any D/A converter a potential problem. Since the digital signals contain high-frequency components of the CLK signal, as well as the video output signal, the resulting data feedthrough often looks like harmonic distortion or reduced signal-to-noise performance. All ground pins should be connected to a common solid ground plane for best performance.

Equivalent Circuits

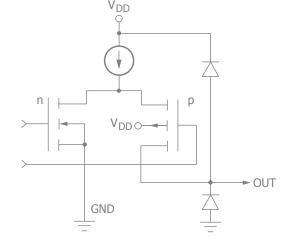


Figure 3. Equivalent Digital Input Circuit

Figure 4. Equivalent Analog Output Circuit

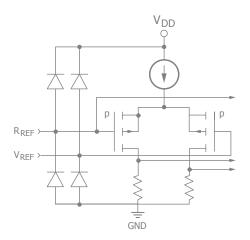


Figure 5. Equivalent Analog Input Circuit

Typical Application Diagrams

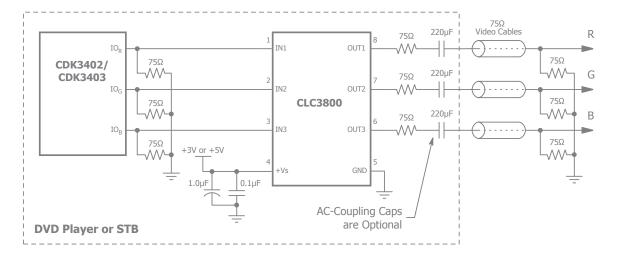


Figure 6. Standard Definition Video Output Circuit Diagram

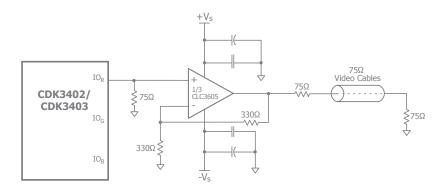


Figure 7. Graphics Output Driver Circuit Diagram

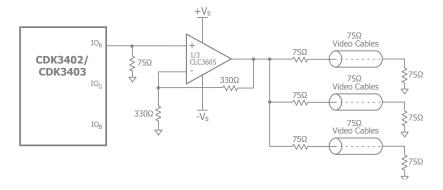


Figure 8. Standard Definition Video Distribution Circuit Diagram

Applications Dicussion

Figure 9 below illustrates a typical CDK3402/3403 interface circuit. In this example, an optional 1.2V bandgap reference is connected to the V_{REF} output, overriding the internal voltage reference source.

Grounding

It is important that the CDK3402/3403 power supply is well-

regulated and free of high-frequency noise. Careful power supply decoupling will ensure the highest quality video signals at the output of the circuit. The CDK3402/3403 has separate analog and digital circuits. To keep digital system noise from the D/A converter, it is recommended that power supply voltages (V_{DD}) come from the system analog power source and all ground connections (GND) be made to the analog ground plane. Power supply pins should be individually decoupled at the pin.

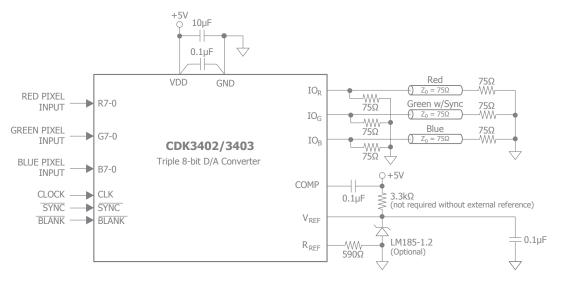


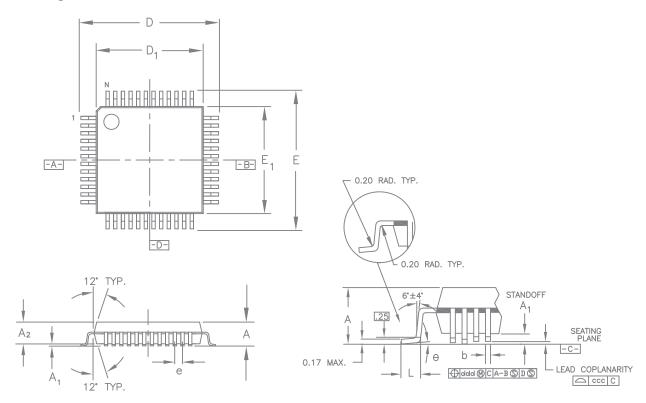
Figure 9. Typical Interface Circuit Diagram

Printed Circuit Board Layout

Designing with high-performance mixed-signal circuits demands printed circuits with ground planes. Overall system performance is strongly influenced by the board layout. Capacitive coupling from digital to analog circuits may result in poor D/A conversion. Consider the following suggestions when doing the layout:

- 1. Keep the critical analog traces (V_{REF} , I_{REF} , COMP, IO_S , IO_R , IO_G) as short as possible and as far as possible from all digital signals. The CDK3402/3403 should be located near the board edge, close to the analog out-put connectors.
- 2. Power plane for the CDK3402/3403 should be separate from that which supplies the digital circuitry. A single power plane should be used for all of the V_{DD} pins. If the power supply for the CDK3402/3403 is the same as that of the system's digital circuitry, power to the CDK3402/3403 should be decoupled with $0.1\mu F$ and $0.01\mu F$ capacitors and iso-lated with a ferrite bead.

- 3. The ground plane should be solid, not cross-hatched. Connections to the ground plane should have very short leads.
- 4. If the digital power supply has a dedicated power plane layer, it should not be placed under the CDK3402/3403, the voltage reference, or the analog outputs. Capacitive coupling of digital power supply noise from this layer to the CDK3402/3403 and its related analog circuitry can have an adverse effect on performance.
- CLK should be handled carefully. Jitter and noise on this clock will degrade performance. Terminate the clock line carefully to eliminate overshoot and ringing.


Evaluation boards are available (CEB3402 and CEB3403), contact Exar for more information.

Related Products

- CDK3400/3401 Triple 10-bit 100/150MSPS DACs
- CDK3404 Triple 8-bit 180MSPS DAC

Mechanical Dimensions

TQFP-48 Package

LEAD	COUNT	48L
DIMS.	TOL.	
Α	MAX.	1.20
A 1	±.05	0.1
A ₂	±.05	1.00
D	±.20	9.00
D ₁	±.10	7.00
Е	±.20	9.00
E ₁	±.10	7.00
L	+.15/10	.60
е	BASIC	.50
ф	±.05	.22
Θ		0°-7°
ddd	MAX.	.08
ccc	MAX.	.08
JEDEC REFERE VARIATION DES		MS-026 ABC

NOTES.

- 1. All dimensions in mm.
- 2. Dimension shown are nominal with tolerances indicated.
- 3. Foot length 'L' is measured at gage plane 0.25mm above seating plane.
- 4. L/F: Eftec 64T Cu or equivalent, 0.127mm (0.005") thick

For Further Assistance:

Exar Corporation Headquarters and Sales Offices

48720 Kato Road Tel.: +1 (510) 668-7000 Fremont, CA 94538 - USA Fax: +1 (510) 668-7001 www.exar.com

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.