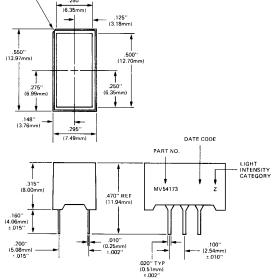


YELLOW MV53173 HIGH EFFICIENCY GREEN MV54173 HIGH EFFICIENCY RED MV57173

DESCRIPTION

The MV5X173 series is a large rectangular lamp which contains two LED chips with separate anodes and cathodes for each light. The illuminated area is 0.500-inches $\times 0.250$ -inches (12.7 mm $\times 6.35$ mm).

FEATURES


- .500-inch×.250-inch lighted area available in three colors
- Solid state reliability
- Fast switching—excellent for multiplexing
- Low power consumption
- Directly compatible with IC's
- Wide viewing angle
- .2 inch DIP lead spacing
- Mounting hardware available
- Categorized for Luminous Intensity (See Note 1)

- Panel indicators
- Backlight legends
- Light arrays

ABSOLUTE MAXIMUM RATINGS					
Power dissipation at 25°C Derate linearly from 50°C Storage temperature Operating temperature	MV53173 190 mW −4.3 mW/°C −40°C to +100°C −40°C to +85°C	MV54173 200 mW -4.5 mW/°C -40°C to +100°C -40°C to +85°C	MV57173 200 mW -4.3 mW/°C -40°C to +100°C -40°C to +85°C		
Continuous forward current per light (25°C) Peak forward current per LED chip	20 mA 60 mA	30 mA 90 mA	35 mA 1.0 A		
(1 μ sec pulse width, 300 pps) Lead soldering time at 260°C	5 sec.	5 sec.	5 sec.		

ORIENTATION MARK

TOLERANCE ±.010" UNLESS SPECIFIED.

SEMICONDUCTOR

PARAMETER	TEST CONDITIONS	MV53173	MV54173	MV57173	UNITS
Forward voltage (V _F)					
Тур.	l _⊧ =20 mA	2.0	2.2	2.0	v
Max.	l⊧=20 mA	2.5	3.0	2.5	v
Luminous Intensity Min. (See Note 1)	I₅=20 mA	4.5	4.5	45	
Peak wavelength	1F-2011A	4.5	4.5	4.5	mcd
Тур.	I _F =20 mA	585	562	635	nm
Spectral line half width	I _F =20 mA	45	30	45	nm
Capacitance					
Тур.	V=0, f=1 MHz	35	20	35	pF
Reverse voltage (V _B)					F.
Min.	$I_{R} = 100 \mu A$	5	5	5	v
Тур.	$l_{\rm B} = 100 \mu {\rm A}$	25	50	25	v
Viewing angle (total)		120	120	120	degrees

TYPICAL THERMAL CHARACTERISTICS MV53173 MV54173 MV57173 Thermal resistance juntion to free air $\Phi_{ extsf{JA}}$ \ldots \ldots . 160°C/W 160°C/W 160°C/W Wavelength temperature coefficient (case temp.) 1.0 A/°C 1.0 A/°C 1.0 Å/°C Forward voltage temperature coefficient -1.5 mV/°C -1.4 mV/°C -2.0 mV/°C

PIN CONNECTIONS PIN ELECTRICAL CONNECTIONS NO. Cathode 1 2 No Pin Anode 2 3 4 Cathode 2 5 NC 6 Anode 1

FILTER RECOMMENDATIONS

For optimum ON and OFF contrast, one of the following filters or equivalents may be used over the lamp:

MV53173 Panelgraphic Yellow 25 or Amber 23 MV54173 Panelgraphic Green 48 Homalite 100—1440 Green

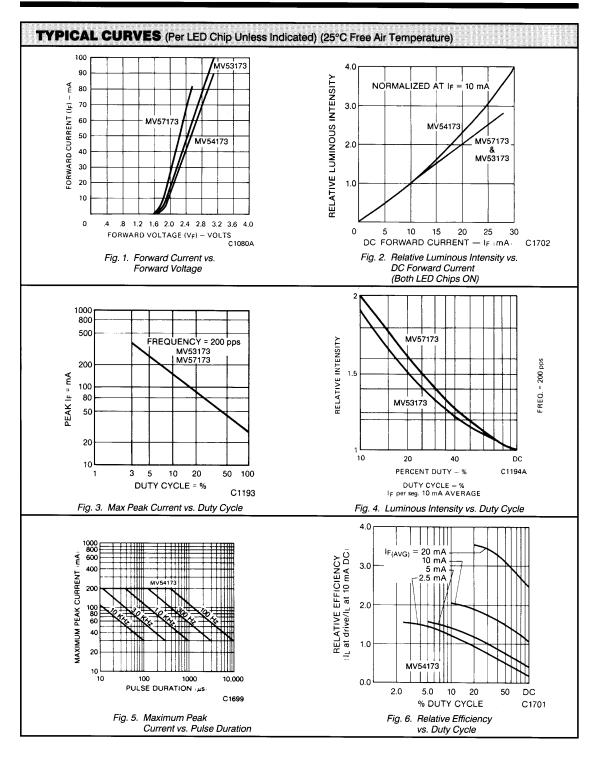
MV57173 Panelgraphic Red 60 Homalite 100—1605

In situations of high ambient light, a neutral density filter can be used to achieve greater contrast:

Panelgraphic Grey 10

Homalite 190-1720 or 100-1726

Panelgraphic Grey 10 Homalite 100—1266 Grey



 The average Luminous Intensity is obtained by summing the Luminous Intensity of each segment and dividing by the total number of segments. The standard of measurement is the Photo Research Corp. "Spectra" Microcandela Meter (Model IV-D) corrected for wavelength. Intensity will not vary more than ±33.3% between all segments within a unit.

2. Leads immersed to 1/16 inch (1.6 mm) from the body of the device. Maximum unit surface temperature is 140°C.

- 3. All units are categorized for Luminous Intensity. The Intensity category is marked on each part as a suffix letter to the part number.
- 4. For flux removal, Freon TF, Freon TE, Isoproponal or water may be used to their boiling points.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.