

PM2.5	laser	dust	sensor			SKU:	SEN0177	

Contents

 1 Introduction
 2 How it works?
 3 Specification
 4 Connection
 5 Tutorial

 5.1 Connection Diagram
 5.2 Sample Code
 5.3 Result

 6 Communication protocol
 7 Dimensions

Introduction
PM2.5 laser dust sensor is a digital universal particle concentration sensor，it can be used to obtain
the number of suspended particulate matter in a unit volume of air within 0.3 to 10 microns, namely
the concentration of particulate matter, and output with digital interface, also can output quality data
of per particle. The sensors can be embedded in a variety of concentrations of environment-related
instruments suspended particulate matter in the air ,to provide timely and accurate concentration
data.

https://www.application-datasheet.com/

How	it	works?
The sensor uses a laser scattering theory. And namely the scattering of laser irradiation in the air
suspended particles, while collecting the scattered light at a specific angle, to obtain the scattering
intensity versus with time curve. After the microprocessor data collection, get the relationship
between the time domain and frequency domain by Fourier transform, and then through a series of
complex algorithms to obtain the number of particles in the equivalent particle size and volume units
of different size. Each functional block diagram of the sensor portion as shown:

sensor structure diagram

Specification
Basic Feature

Operating voltage :4.95 ~ 5.05V
Maximum electric current: 120mA
Measuring pm diameter: 0.3~1.0、1.0~2.5、2.5~10（um）

Measuring pm range：0~500 ug/m3
Standby current: ≤200 uA
Response time: ≤10 s
Operating temperature range:: -20 ~ 50C
Operating humidity range: 0 ~ 99% RH
Maximum size: 65 × 42 × 23 (mm)
MTBF: >= 5 years

Quick response
Standard serial input word output
Second-order multi-point calibration
curve
The minimum size of 0.3 micron
resolution

Power supply quality requirements:

1. Voltage ripple: less than 100mV.
2. The power supply voltage stability: 4.95 ~ 5.05V.
3. Power supply: more than 1W (5V@200mA).
4. The upper and lower electric voltage surge is less than 50% of the system power supply voltage.

Connection

Sensor
Pin

Arduino
Pin

Function
Description

Pin 1 VCC Positive Power

Pin 2 GND Negative Power

Pin 3 SET
Mode setting (More
hereof later)

Pin 4 RXD
receive serial port
pin (3.3V level)

Pin 5 TXD
Transferring serial
port pin (3.3V level)

Pin 6 RESET Reset

Pin 7/ 8 NC NUll

NOTE:

 SET:
 SET = 1, the module works in continuous sampling mode, it will upload the sample

data after the end of each sampling. (The sampling response time is 1S)
 SET = 0, the module enters a low-power standby mode.

 RESET: leave it empty is OK.

Tutorial

Connection	Diagram

If you have an IO expansion shield, you can simply insert the PM2.5 sensor adapter onto it, and
you can use the serial to monitor the data.

pm2.5 laser dust

If you have no IO expansion shield, you can follow the wiring diagram to do wiring.

 pm2.5 laser dust connecting uno

Sample	Code
NOTE: This code can only be verified in ArduinoIDE 1.6.x or above.

 //******************************

 //*Abstract: Read value of PM1,PM2.5 and PM10 of air quality

 //

 //*Version：V3.1

 //*Author：Zuyang @ HUST

 //*Modified by Cain for Arduino Hardware Serial port compatib
ility

 //*Date：March.25.2016

 //******************************

#include <Arduino.h>

#define LENG 31 //0x42 + 31 bytes equal to 32 bytes

unsigned char buf[LENG];

int PM01Value=0; //define PM1.0 value of the air dete
ctor module

int PM2_5Value=0; //define PM2.5 value of the air dete
ctor module

int PM10Value=0; //define PM10 value of the air detect
or module

void setup()

{

 Serial.begin(9600); //use serial0

 Serial.setTimeout(1500); //set the Timeout to 1500ms, lon
ger than the data transmission periodic time of the sensor

}

void loop()

{

 if(Serial.find(0x42)){ //start to read when detect 0x42

 Serial.readBytes(buf,LENG);

 if(buf[0] == 0x4d){

 if(checkValue(buf,LENG)){

 PM01Value=transmitPM01(buf); //count PM1.0 value of th
e air detector module

 PM2_5Value=transmitPM2_5(buf);//count PM2.5 value of t
he air detector module

 PM10Value=transmitPM10(buf); //count PM10 value of the
air detector module

 }

 }

 }

 static unsigned long OledTimer=millis();

 if (millis() - OledTimer >=1000)

 {

 OledTimer=millis();

 Serial.print("PM1.0: ");

 Serial.print(PM01Value);

 Serial.println(" ug/m3");

 Serial.print("PM2.5: ");

 Serial.print(PM2_5Value);

 Serial.println(" ug/m3");

 Serial.print("PM1 0: ");

 Serial.print(PM10Value);

 Serial.println(" ug/m3");

 Serial.println();

 }

}

char checkValue(unsigned char *thebuf, char leng)

{

 char receiveflag=0;

 int receiveSum=0;

 for(int i=0; i<(leng-2); i++){

 receiveSum=receiveSum+thebuf[i];

 }

 receiveSum=receiveSum + 0x42;

 if(receiveSum == ((thebuf[leng-2]<<8)+thebuf[leng-1])) //ch
eck the serial data

 {

 receiveSum = 0;

 receiveflag = 1;

 }

 return receiveflag;

}

int transmitPM01(unsigned char *thebuf)

{

 int PM01Val;

 PM01Val=((thebuf[3]<<8) + thebuf[4]); //count PM1.0 value of
the air detector module

 return PM01Val;

}

//transmit PM Value to PC

int transmitPM2_5(unsigned char *thebuf)

{

 int PM2_5Val;

 PM2_5Val=((thebuf[5]<<8) + thebuf[6]);//count PM2.5 value of
the air detector module

 return PM2_5Val;

 }

//transmit PM Value to PC

int transmitPM10(unsigned char *thebuf)

{

 int PM10Val;

 PM10Val=((thebuf[7]<<8) + thebuf[8]); //count PM10 value of
the air detector module

 return PM10Val;

}

Result
Please wait 30s for the data.

PM2.5_Result

Communication	protocol
Serial port baudrate: 9600; Parity: None; Stop Bits: 1; packet length is fixed at 32 bytes.

Start Character 1 0x42(fixed bit)

Start Character 2 0x4d(fixed bit)

Frame Length 16-byte Frame Length = 2*9+2 (data+check bit)

Data 1, 16-byte concentration of PM1.0, ug/m3

Data 2, 16-byte concentration of PM2.5, ug/m3

Data 3, 16-byte concentration of PM10.0, ug/m3

Data 4, 16-byte Internal test data

Data 5, 16-byte Internal test data

Data 6, 16-byte Internal test data

Data 7, 16-byte
the number of particulate of diameter above
0.3um in 0.1 liters of air

Data 8, 16-byte
the number of particulate of diameter above
0.5um in 0.1 liters of air

Data 9, 16-byte
the number of particulate of diameter above
1.0um in 0.1 liters of air

Data 10, 16-byte
the number of particulate of diameter above
2.5um in 0.1 liters of air

Data 11, 16-byte
the number of particulate of diameter above
5.0um in 0.1 liters of air

Data 12, 16-byte
the number of particulate of diameter above
10.0um in 0.1 liters of air

Data 13, 16-byte Internal test data

Check Bit for Data
Sum, 16-byte

Check Bit = Start Character 1 + Start
Character 2 + ...all data

Dimensions

Powered By DFRobot © 2008-2017

