8-bit Microcontrollers

CMOS

New 8FX MB95430H Series

MB95F432H/F433H/F434H MB95F432K/F433K/F434K

DESCRIPTION

MB95430H is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources.

■ FEATURES

• F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.
- Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.
- Clock
 - Selectable main clock source
 - Main OSC clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz) External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz) Main CR clock (1/8/10/12.5 MHz ±2%, maximum machine clock frequency: 12.5 MHz)
 - Selectable subclock source Sub-OSC clock (32.768 kHz) External clock (32.768 kHz) Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)
- Timer
 - 8/16-bit composite timer × 1 channel
 - 16-bit PPG \times 1 channel
 - 16-bit free-running timer \times 1 channel
 - 16-bit output compare × 2 channels
 - Time-base timer \times 1 channel
 - Watch prescaler \times 1 channel
- UART/SIO × 1 channel
 - Full duplex double buffer
 - Capable of clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer

(Continued)

For the information for microcontroller supports, see the following website.

http://edevice.fujitsu.com/micom/en-support/

Created with

(Continued)

- I²C × 1 channel
 - Built-in wake-up function
- \bullet Voltage comparator $\times\,4$ channels
- Operational amplifier (OPAMP) \times 1 channel
 - Software-select programmable gain
 - Software-select standalone option
 - Power down function included
- External interrupt $\times\,8$ channels
 - Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
 - Can be used to wake up the device from different low power consumption (standby) modes
- 8/10-bit A/D converter \times 17 channels
 - 8-bit and 10-bit resolution can be chosen.
- Low power consumption (standby) modes
 - Stop mode
 - Sleep mode
 - Watch mode
 - Time-base timer mode
- I/O port
 - MB95F432H/F433H/F434H (maximum no. of I/O ports: 28) General-purpose I/O ports (N-ch open drain) : 1 General-purpose I/O ports (CMOS I/O) : 27
 - MB95F432K/F433K/F434K (maximum no. of I/O ports: 29) General-purpose I/O ports (N-ch open drain) : 2 General-purpose I/O ports (CMOS I/O) : 27
- On-chip debug
 - 1-wire serial control
 - Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
 - Built-in hardware watchdog timer
 - Built-in software watchdog timer
- Low-voltage detection reset circuit (available only on MB95F432K/F433K/F434K)
 - Built-in low-voltage detector
- Clock supervisor counter
 - Built-in clock supervisor counter function
- Programmable port input voltage level
 - CMOS input level / hysteresis input level
- Dual operation Flash memory
 - The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.
- Flash memory security function
 - · Protects the content of the Flash memory

■ PRODUCT LINE-UP

Part number								
	MB95F432H	MB95F433H	MB95F434H	MB95F432K	MB95F433K	MB95F434K		
Parameter								
Type			Flash mem	ory product				
Clock			T last mem					
supervisor counter	It supervises th	supervises the main clock oscillation.						
Flash memory capacity	8 Kbyte	12 Kbyte	20 Kbyte	8 Kbyte	12 Kbyte	20 Kbyte		
RAM capacity	240 bytes	240 bytes	496 bytes	240 bytes	240 bytes	496 bytes		
Low-voltage detection reset		No			Yes			
Reset input		Dedicated		Se	lected by softwa	are		
CPU functions	 Instruction bit Instruction let Data bit lengt Minimum inst Interrupt proc 	 Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes Data bit length : 1, 8 and 16 bits Minimum instruction execution time : 61.5 ns (with machine clock frequency = 16.25 MHz Interrupt processing time : 0.6 µs (with machine clock frequency = 16.25 MHz) 						
purpose I/O	 I/O ports (Ma CMOS I/O N-ch open dr 	: 27 ain: 1		 I/O ports (Ma CMOS I/O N-ch open dr 	27 ain: 2			
Time-base timer	Interval time: 0	.256 ms to 8.3 s	(with external	clock frequency	= 4 MHz)			
	 Reset generation 							
software	 Main osci The sub-CR (llation clock at 1		· · ·	ordworo wotobd	log timor		
watchdog timer Wild register		to replace three				log timer.		
		h. 16 is the cha		2 output)				
8/10-bit A/D converter	8-bit resolution			• •				
converter		and to-bit leso	iution can be ci	iosen.				
composite timer	 The timer car It has built-in Count clock: It can output 	 channel The timer can be configured as an "8-bit timer × 2 channels" or a "16-bit timer × 1 channel". It has built-in timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave. 						
External	8 channels							
interrupt	 Interrupt by e It can be used 	d to wake up the				n be selected.)		
On-chip debug	 1-wire serial It supports se 		ynchronous mo	de)				
UART/SIO	 I channel Data transfer with UART/SIO is enabled. It has a full duplex double buffer, variable data length (5/6/7/8 bits), a built-in baud rate generator and an error detection function. It uses the NRZ type transfer format. LSB-first data transfer and MSB-first data transfer are available to use. Clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer is enabled. 							

(Continued)

Created with

(Continued)

Part number							
	MB95F432H	MB95F433H	MB95F434H	MB95F432K	MB95F433K	MB95F434K	
Parameter							
~	1 channel						
I ² C	 Master/slave transmission and receiving It has a bus error function, an arbitration function, a transmission direction detection function and a wake-up function. It also has functions of generating and detecting repeated START conditions. 						
TO-DIL PPG	 PWM mode a Ch. 0 can wo 	rk with the mult	i-functional time	er or individually			
		 1 channel of 16-bit free-running timer with a compare buffer 2 channels of 16-bit output compare 					
Voltage comparator	4 channels						
ΟΡΑΜΡ	 This is an operational amplifier used in an induction heater. It contains 7 software (registers) select close loop gain selections for ground current sensing according to different sense resistor values. The OPAMP can also work as a standalone OPAMP. It selects closed loop gain for ground current sensing according to different sense resistor values of a standalone OPAMP. 						
Watch prescaler	Eight different t	ime intervals ca	an be selected.				
Flash memory	 It supports automatic programming, Embedded Algorithm, and write/erase/erase-suspend/ erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles: 100000 Data retention time: 20 years Flash security feature for protecting the content of the Flash memory 						
Standby mode	Sleep mode, st	Sleep mode, stop mode, watch mode, time-base timer mode					
Package				2P-M30 2P-M06			

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95F432H	MB95F433H	MB95F434H	MB95F432K	MB95F433K	MB95F434K
FPT-32P-M30	0	0	0	0	0	0
DIP-32P-M06	0	0	0	0	0	0

O: Available

DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

• Current consumption

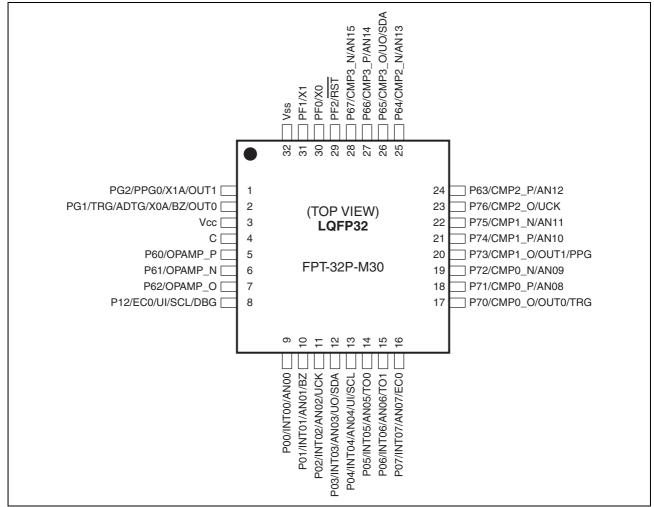
When using the on-chip debug function, take account of the current consumption of flash program/erase. For details of current consumption, see "■ ELECTRICAL CHARACTERISTICS".

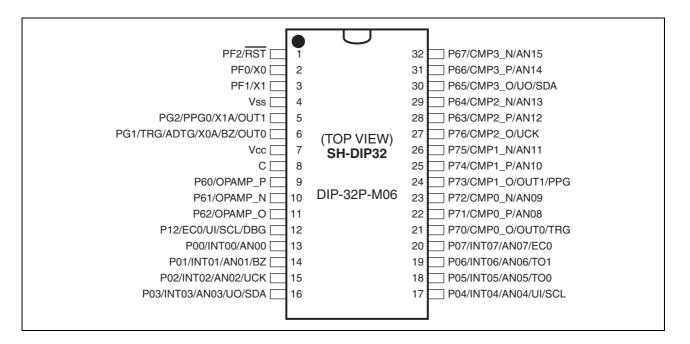
Package

For details of information on each package, see "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSION".

Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not.


For details of the operating voltage, see "■ ELECTRICAL CHARACTERISTICS".


• On-chip debug function

The on-chip debug function requires that V_{CC} , V_{SS} and one serial wire be connected to an evaluation tool. For details of the connection method, refer to "CHAPTER 29 EXAMPLE OF SERIAL PROGRAMMING CONNECTION" in the hardware manual of the MB95430H Series.

PIN ASSIGNMENT

FUĬĪTSU

Created with

nitro

^{•DF[•]professional}

download the free trial online at nitropdf.com/professional

■ PIN DESCRIPTION

Pin	no.		I/O			
LQFP32*1	SH-DIP32*2	Pin name	circuit type* ³	Function		
		PG2		General-purpose I/O port		
1	5	PPG	с	16-bit PPG output pin		
I	5	X1A		Subclock I/O oscillation pin		
		OUT1	-	Output compare ch. 1 output pin		
		PG1		General-purpose I/O port		
		TRG		16-bit PPG trigger input pin		
2	6	ADTG	С	A/D converter trigger input pin		
2	0	X0A		Subclock I/O oscillation pin		
		BZ		Buzzer output pin		
		OUT0		Output compare ch. 0 output pin		
3	7	Vcc	_	Power supply pin		
4	8	С	_	Capacitor connection pin		
F	5 9	0	0	P60	К	General-purpose I/O port
5		OPAMP_P		Operational amplifier input pin		
6	10	P61	К	General-purpose I/O port		
o	10	OPAMP_N		Operational amplifier input pin		
7	11	P62		General-purpose I/O port		
1	11	OPAMP_O	J	Operational amplifier output pin		
		P12		General-purpose I/O port		
		EC0		8/16-bit composite timer external clock input pin		
8	12	UI	н	UART/SIO data input pin		
		SCL		I²C clock I/O pin		
		DBG		DBG input pin		
		P00		General-purpose I/O port		
9	13	INT00	E	External interrupt input pin		
		AN00		A/D converter analog input pin		
		P01		General-purpose I/O port		
10	14	INT01		External interrupt input pin		
10	14	AN01	E	A/D converter analog input pin		
		BZ		Buzzer output pin		
		P02		General-purpose I/O port		
44	15	INT02		External interrupt input pin		
11	15	AN02	E	A/D converter analog input pin		
		UCK	1	UART/SIO clock I/O pin		

FUJITSU

(Continued)

MB95430H Series

Pin	no.		I/O											
LQFP32*1	SH-DIP32*2	Pin name	circuit type* ³	Function										
		P03		General-purpose I/O port										
		INT03		External interrupt input pin										
12	16	AN03	F	A/D converter analog input pin										
		UO		UART/SIO data output pin										
		SDA		I²C data I/O pin										
		P04		General-purpose I/O port										
		INT04		External interrupt input pin										
13	17	AN04	F	A/D converter analog input pin										
		UI		UART/SIO data input pin										
		SCL		I²C clock I/O pin										
		P05		General-purpose I/O port										
14	10	INT05	E	External interrupt input pin										
14	18	AN05		A/D converter analog input pin										
		TO0		Timer output pin										
		P06		General-purpose I/O port										
15	19	INT06	E	External interrupt input pin										
15		13	AN06		A/D converter analog input pin									
		TO1		Timer output pin										
		P07		General-purpose I/O port										
16	20	INT07	E	External interrupt input pin										
10	20	20	20	20	20	20	20	20	20	20	20	AN07		A/D converter analog input pin
		EC0		8/16-bit composite timer external clock input pin										
		P70		General-purpose I/O port										
17	21	CMP0_O	- D	Comparator ch. 0 output pin										
17	21	OUT0		Output compare ch. 0 output pin										
		TRG		16-bit PPG trigger input pin										
		P71		General-purpose I/O port										
18	22	CMP0_P	1	Comparator ch. 0 positive input pin										
		AN08		A/D converter analog input pin										
		P72		General-purpose I/O port										
19	23	CMP0_N	I	Comparator ch. 0 negative input pin										
		AN09		A/D converter analog input pin										
		P73		General-purpose I/O port										
20	24	CMP1_O	D	Comparator ch. 1 output pin										
20	24	OUT1		Output compare ch. 1 output pin										
		PPG		16-bit PPG output pin										

(Continued)

FUJITSU

Created with

(Continued)

(Continued) Pin	no.		I/O	
LQFP32*1	SH-DIP32*2	Pin name	circuit type* ³	Function
		P74		General-purpose I/O port
21	25	CMP1_P	I	Comparator ch. 1 positive input pin
		AN10		A/D converter analog input pin
		P75		General-purpose I/O port
22	26	CMP1_N	1	Comparator ch. 1 negative input pin
		AN11		A/D converter analog input pin
		P76		General-purpose I/O port
23	27	CMP2_O	D	Comparator ch. 2 output pin
		UCK		UART/SIO clock I/O pin
		P63		General-purpose I/O port
24	28	CMP2_P	I	Comparator ch. 2 positive input pin
		AN12		A/D converter analog input pin
		P64		General-purpose I/O port
25	29	CMP2_N		Comparator ch. 2 negative input pin
		AN13		A/D converter analog input pin
	30	P65		General-purpose I/O port
26		CMP3_O	UO	Comparator ch. 3 output pin
20		UO		UART/SIO data output pin
		SDA		I ² C data I/O pin
		P66		General-purpose I/O port
27	31	CMP3_P	I	Comparator ch. 3 positive input pin
		AN14		A/D converter analog input pin
		P67		General-purpose I/O port
28	32	CMP3_N	I	Comparator ch. 3 negative input pin
		AN15		A/D converter analog input pin
		PF2		General-purpose I/O port
29 1		RST	A	Reset pin Dedicated reset pin in MB95F432H/F433H/F434H
30	2	PF0	B	General-purpose I/O port
50	<u> </u>	X0		Main clock I/O oscillation pin
31	3	PF1	B	General-purpose I/O port
51	3	X1		Main clock I/O oscillation pin
32	4	Vss	—	Power supply pin (GND)

*1: Package code: FPT-32P-M30

*2: Package code: DIP-32P-M06

*3: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
A	Reset input / Hysteresis input	N-ch open drain outputHysteresis inputReset output
В	P-ch Port select Digital output Digital output N-ch Hysteresis input Clock input	 Oscillation circuit High-speed side Feedback resistance: approx. 1 MΩ CMOS output Hysteresis input
	Standby control / Port select P-ch Digital output N-ch Standby control Hysteresis input	
С	Port select Pull-up control Digital output Digital output N-ch Standby control Hysteresis input XIA XOA	 Oscillation circuit Low-speed side Feedback resistance: approx.10 MΩ CMOS output Hysteresis input Pull-up control available
	Standby control / Port select Port select Pull-up control Digital output P-ch N-ch Standby control Hysteresis input	Continued

(Continued)

download the free trial online at nitropdf.com/professional

mitro^{PDF} professional

Туре	Circuit		Remarks
D	- - ₽-ch		CMOS output
		— Digital output	 Hysteresis input
		— Digital output	
	,,,, N-ch	— Standby control	
		— Hysteresis input	
Е	+		CMOS output
	ÅR	— Pull-up control	Hysteresis input
	P -ch	Disitel systemat	Pull-up control available
	P-ch	— Digital output	 Analog input
	→ ,,,,,,,,,,,,,,,,,,,,,,,,,,	— Digital output	
	▶ □	— Analog input	
		— A/D control — Standby control	
		— Hysteresis input	
F	→ -		CMOS output
	¢ R	— Pull-up control	Hysteresis input
	P-ch	— I ² C output control	CMOS input
	P-ch	— I ² C output control — Digital output	Pull-up control available
	→ 	— Digital output	Analog inputN-ch open drain output
			(as I ² C output)
	•	— Analog input	
		— A/D control	
		 Standby control Hysteresis input 	
		— CMOS input	
G	→ ~		CMOS output
	¢ R	— Pull-up control	Hysteresis input
	P-ch	Disite anterest	Pull-up control available
	P-ch	— Digital output	
		— Digital output	
		— Standby control	
		— Hysteresis input	
Н		— Standby control	N-ch open drain output
	• • • • • • • • • • • • • • • • • • •	— Hysteresis input	Hysteresis inputCMOS input
		— CMOS input	
	Digital output		

(Continued)

Created with

FUJITSU

Туре	Circuit	Remarks
Ι	P-ch Digital output	CMOS outputHysteresis input
	Analog input for A/D	
	Analog input control Standby control Hysteresis input	
J	P-ch Digital output	CMOS outputHysteresis input
	Analog output Analog output control Standby control Hysteresis input	
К	P-ch P-ch Digital output Digital output	CMOS outputHysteresis input
	Analog input Analog input control Standby control Hysteresis input	
L	P-ch P-ch N-ch P-ch P-ch P-ch P-ch Digital output	 CMOS output Hysteresis input CMOS input N-ch open drain output (as I²C output)
	Standby control	

FUJITSU

Created with **nitro**^{PDF*}professional download the free trial online at nitropdf.com/professional

NOTES ON DEVICE HANDLING

Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of "■ ELECTRICAL CHARAC-TERISTICS" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

• Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{cc} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{cc} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

• Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

■ PIN CONNECTION

• Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

• Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{cc} pin and the V_{ss} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{cc} pin and the V_{ss} pin with low impedance.

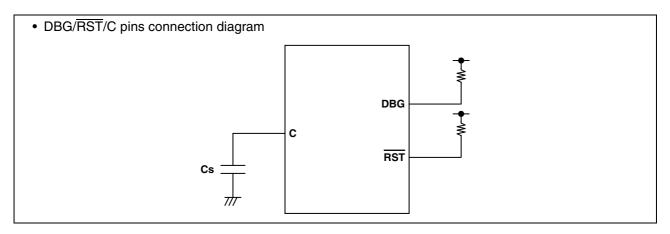
It is also advisable to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between the V_{cc} pin and the V_{ss} pin at a location close to this device.

DBG pin

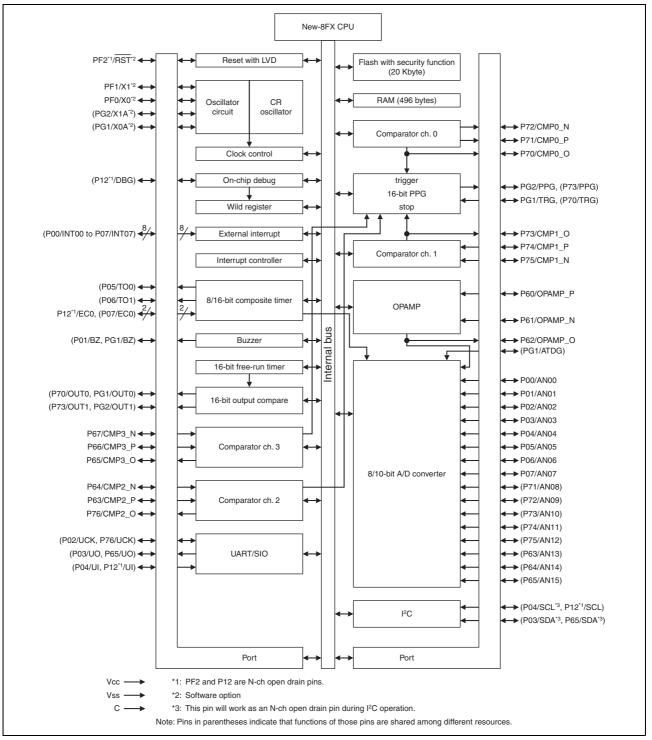
Connect the DBG pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the Vcc or Vss pin when designing the layout of the printed circuit board. The DBG pin should not stay at "L" level after power-on until the reset output is released.

• RST pin


Connect the $\overline{\text{RST}}$ pin directly to an external pull-up resistor.

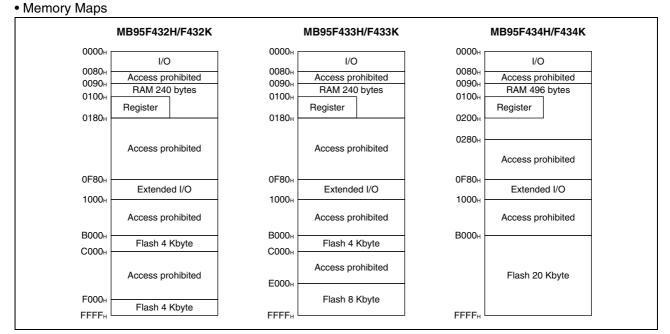
To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the RST pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board. The RST/PF2 pin functions as the reset input/output pin after power-on. In addition, the reset output of the RST/PF2 pin can be enabled by the RSTOE bit in the SYSC1 register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC1 register.


• C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_S. For the connection to a smoothing capacitor C_S, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

■ BLOCK DIAGRAM

Created with


FUITSU

■ CPU CORE

Memory Space

The memory space of the MB95430H Series is 64 Kbyte in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95430H Series are shown below.

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	00000000В
0004н	—	(Disabled)	_	_
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111 в
0006н	—	(Disabled)		_
0007н	SYCC	System clock control register	R/W	0000Х011в
0008 H	STBC	Standby control register	R/W	00000XXX _B
0009н	RSRR	Reset source register	R/W	000XXXXX _B
000Aн	TBTC	Time-base timer control register	R/W	0000000в
000Bн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	00XX0000 _B
000Dн	SYCC2	System clock control register 2	R/W	XX100011 _B
000Eн				
to	—	(Disabled)	—	—
0015н 0016н	PDR6	Dart 6 data registar	R/W	000000-
0016н 0017н		Port 6 data register Port 6 direction register	R/W	0000000B
0017н 0018н	DDR6			0000000в
0018н 0019н	PDR7	Port 7 data register	R/W	0000000B
	DDR7	Port 7 direction register	R/W	0000000в
0020н to 0027н	—	(Disabled)	_	—
0028н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002Aн	PDRG	Port G data register	R/W	0000000в
002Вн	DDRG	Port G direction register	R/W	0000000в
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн to 0034н	_	(Disabled)	_	_
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit composite timer 01 status control register 1 ch. 0	R/W	0000000в
0037н	T00CR1	8/16-bit composite timer 00 status control register 1 ch. 0	R/W	0000000в
0038н	BUZZ	Buzzer control register	R/W	0000000в
0039н	_	(Disabled)		

(Continued)

Created with

Address	Register abbreviation	Register name	R/W	Initial value
003Ан	CMR0	Voltage comparator control register ch. 0	R/W	000Х0001в
003Вн	CMR1	Voltage comparator control register ch. 1	R/W	000Х0001в
003Сн	CMR2	Voltage comparator control register ch. 2	R/W	000Х0001в
003Dн	CMR3	Voltage comparator control register ch. 3	R/W	000Х0001в
003Ен	OPCR	OPAMP control register	R/W	00000011в
003Fн to 0041н	_	(Disabled)	_	_
0042н	PCNTH0	16-bit PPG status control register upper ch. 0	R/W	0000000в
0043н	PCNTL0	16-bit PPG status control register lower ch. 0	R/W	0000000в
0044н	PTGS0	16-bit PPG trigger source control register ch. 0	R/W	0000000в
0045н	—	(Disabled)	_	
0046н	OCUOC	16-bit output compare stop trigger control register	R/W	0000000в
0047н	—	(Disabled)		—
0048 н	EIC00	External interrupt circuit control register ch. 0/ch. 1	R/W	0000000в
0049 н	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	0000000в
004Ан	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	0000000в
004Bн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	0000000в
004Сн, 004Dн	_	(Disabled)	_	_
004Eн	SYSC2	System control register 2	R/W	0000000в
004Fн	—	(Disabled)		—
0050 н	IBCR00	I ² C bus control register 0	R/W	0000000в
0051 н	IBCR10	I ² C bus control register 1	R/W	0000000в
0052н	IBSR0	I ² C bus status register	R/W	0000000в
0053н	IDDR0	I ² C data register	R/W	0000000в
0054н	IAAR0	I ² C address register	R/W	0000000в
0055н	ICCR0	I ² C clock control register	R/W	0000000в
0056н	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	0000000в
0057н	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	0010000в
0058 н	SSR0	UART/SIO serial status and data register ch. 0	R/W	0000001в
0059 н	TDR0	UART/SIO serial output data register ch. 0	R/W	0000000в
005Ан	RDR0	UART/SIO serial input data register ch. 0	R	0000000в
005Вн	—	(Disabled)	—	—
005Сн	TCDTH	16-bit free-running timer data register (upper)	R/W	0000000в
005Dн	TCDTL	16-bit free-running timer data register (lower)	R/W	0000000в
005Ен	CPCLRH	16-bit free-running timer compare clear register (upper)	R	11111111в
005Fн	CPCLRL	16-bit free-running timer compare clear register (lower)	R	11111111в

Created with

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0060н	TCCSH	16-bit free-running timer control status register (upper)	R/W	0100000в
0061 н	TCCSL	16-bit free-running timer control status register (lower)	R/W	0000000в
0062н	ETCCSH	16-bit free-running timer extended control status register (upper)	R/W	0000000в
0063н	ETCCSL	16-bit free-running timer extended control status register (lower)	R/W	0000000в
0064н	OCCP0H	16-bit output compare channel 0 register (upper)	R	0000000в
0065н	OCCP0L	16-bit output compare channel 0 register (lower)	R	0000000в
0066н	OCCP1H	16-bit output compare channel 1 register (upper)	R	0000000в
0067 н	OCCP1L	16-bit output compare channel 1 register (lower)	R	0000000в
0068 H	OCSH	16-bit output compare control status register (upper)	R/W	0000000в
0069 н	OCSL	16-bit output compare control status register (lower)	R/W	0000000в
006Ан	OCMCR	16-bit output compare mode control register	R/W	0000000в
006Вн	EOCS	16-bit output compare extended control status register	R/W	0000000в
006С н	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в
006Е н	ADDH	8/10-bit A/D converter data register (upper)	R/W	0000000в
006F н	ADDL	8/10-bit A/D converter data register (lower)	R/W	0000000в
0070н	_	(Disabled)	_	_
0071 н	FSR2	Flash memory status register 2	R/W	0000000в
0072н	FSR	Flash memory status register	R/W	000Х000в
0073н	SWRE0	Flash memory sector write control register 0	R/W	0000000в
0074н	FSR3	Flash memory status register 3	R	0000XXXX _B
0075н	_	(Disabled)	_	_
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078 н	_	(Disabled)	_	—
0079 н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111в
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в
007Е н	ILR5	Interrupt level setting register 5	R/W	11111111в
007Fн to	_	(Disabled)	_	_
0F7Fн				

(Continued)

Created with

FUJITSU

Address	Register abbreviation	Register name	R/W	Initial value
0F80н	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	0000000в
0F83н	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0000000в
0F84н	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0000000в
0F85н	WRDR1	Wild register data setting register ch. 1	R/W	0000000в
0F86н	WRARH2	Wild register address setting register (upper) ch. 2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (lower) ch. 2	R/W	0000000в
0F88⊦	WRDR2	Wild register data setting register ch. 2	R/W	0000000в
0F89н	WRARH3	Wild register address setting register (upper) ch. 3	R/W	0000000в
0F8Aн	WRARL3	Wild register address setting register (lower) ch. 3	R/W	0000000в
0F8Bн	WRDR3	Wild register data setting register ch. 3	R/W	0000000в
0F8Cн to 0F91н		(Disabled)	_	
0F92н	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	0000000в
0F93⊦	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	0000000в
0F94н	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	0000000в
0F95⊦	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	0000000в
0F96⊦	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	0000000в
0F97н to 0FA9н	_	(Disabled)	-	_
0FAAH	PDCRH0	16-bit PPG down counter register (upper) ch. 0	R/W	0000000в
0FABH	PDCRL0	16-bit PPG down counter register (lower) ch. 0	R/W	0000000в
0FACH	PCSRH0	16-bit PPG cycle setting buffer register (upper) ch. 0	R/W	11111111в
0FADH	PCSRL0	16-bit PPG cycle setting buffer register (lower) ch. 0	R/W	11111111в
0FAEH	PDUTH0	16-bit PPG duty setting buffer register (upper) ch. 0	R/W	11111111в
0FAFH	PDUTL0	16-bit PPG duty setting buffer register (lower) ch. 0	R/W	11111111в
0FB0н to 0FBDн		(Disabled)	_	
0FBEH	PSSR0	UART/SIO prescaler select register ch. 0	R/W	0000000в
0FBFH	BRSR0	UART/SIO baud rate setting register ch. 0	R/W	0000000в
0FC0н, 0FC1н	_	(Disabled)	—	_
0FC2H	AIDRH	A/D input disable register (upper)	R/W	00000000в
0FC3н	AIDRL	A/D input disable register (lower)	R/W	0000000в
0FC4н to 0FE3н	_	(Disabled)	_	_

Created with

(Continued)

(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
0FE4H	CRTH	Main CR clock trimming register (upper)	R/W	0XXXXXXXB
0FE5н	CRTL	Main CR clock trimming register (lower)	R/W	00XXXXXXB
0FE6н, 0FE7н	_	(Disabled)		—
0FE8H	SYSC1	System configuration register 1	R/W	11000011в
0FE9н	CMCR	Clock monitoring control register	R/W	0000000в
0FEAH	CMDR	Clock monitoring data register	R	0000000в
0FEBH	WDTH	Watchdog timer selection ID register (upper)	R	XXXXXXXXB
0FECH	WDTL	Watchdog timer selection ID register (lower)	R	XXXXXXXXB
0FEDH		(Disabled)		—
0FEEH	ILSR	Input level select register	R/W	0000000в
0FEFH	WICR	Interrupt pin control register	R/W	0100000в
0FF0н to 0FFFн	_	(Disabled)		_

• R/W access symbols

- R/W : Readable / Writable
- R : Read only
- W : Write only

• Initial value symbols

- 0 : The initial value of this bit is "0".
- 1 : The initial value of this bit is "1".
- X : The initial value of this bit is indeterminate.
- Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

■ INTERRUPT SOURCE TABLE

	Vector table address			Priority order of	
Interrupt source	Interrupt request number	Upper	Lower	Bit name of interrupt level setting register	interrupt sources of the same level (occurring simultaneously)
External interrupt ch. 0	IRQ00	FFFA _H	FFFB⊦	L00 [1:0]	High
External interrupt ch. 4		FFFAH	ГГГФН	200 [1.0]	A
External interrupt ch. 1	IRQ01	FFF8 _H			
External interrupt ch. 5	INQUI	ГГГОН	FFF9⊦	L01 [1:0]	
External interrupt ch. 2			FFF7		
External interrupt ch. 6	IRQ02	FFF6H	FFF7н	L02 [1:0]	
External interrupt ch. 3			FFFF		
External interrupt ch. 7	IRQ03	FFF4 _H	FFF5H	L03 [1:0]	
UART/SIO	IRQ04	FFF2H	FFF3⊦	L04 [1:0]	
8/16-bit composite timer ch. 0 (lower)	IRQ05	FFF0H	FFF1 _H	L05 [1:0]	
8/16-bit composite timer ch. 0 (upper)	IRQ06	FFEEH	FFEFH	L06 [1:0]	
Output compare ch. 0 match	IRQ07	FFECH	FFEDH	L07 [1:0]	
Output compare ch. 1 match	IRQ08	FFEAH	FFEB H	L08 [1:0]	
_	IRQ09	FFE8⊦	FFE9н	L09 [1:0]	
Voltage comparator ch. 0	IRQ10	FFE6H	FFE7н	L10 [1:0]	
Voltage comparator ch. 1	IRQ11	FFE4H	FFE5H	L11 [1:0]	
Voltage comparator ch. 2	IRQ12	FFE2H	FFE3H	L12 [1:0]	
Voltage comparator ch. 3	IRQ13	FFE0H	FFE1H	L13 [1:0]	
16-bit free-running timer (compare match/zero-detect/overflow)	IRQ14	FFDEH	FFDFH	L14 [1:0]	
16-bit PPG	IRQ15	FFDC H	FFDDH	L15 [1:0]	
l ² C	IRQ16	FFDAH	FFDBH	L16 [1:0]	
	IRQ17	FFD8H	FFD9н	L17 [1:0]	
8/10-bit A/D converter	IRQ18	FFD6н	FFD7⊦	L18 [1:0]	
Time-base timer	IRQ19	FFD4 _H	FFD5H	L19 [1:0]	
Watch prescaler	IRQ20	FFD2H	FFD3H	L20 [1:0]	
—	IRQ21	FFD0н	FFD1н	L21 [1:0]	
—	IRQ22	FFCEH	FFCFH	L22 [1:0]	
Flash memory	IRQ23	FFCCH	FFCDH	L23 [1:0]	Low

nitro^{PDF} professional

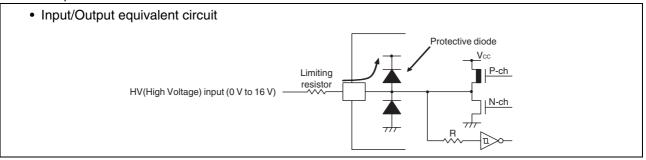
download the free trial online at nitropdf.23m/professional

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Deverter	Cumhal	Rat	ing	11-14	Demorito
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss+6	V	
Input voltage*1	Vı	Vss - 0.3	Vss+6	V	*2
Output voltage*1	Vo	Vss - 0.3	Vss+6	V	*2
Maximum clamp current	CLAMP	-2	+2	mA	Applicable to specific pins*3
Total maximum clamp current	Σ clamp	_	20	mA	Applicable to specific pins [⋅] 3
"L" level maximum	OL1		15	m۸	Other than P05 and P06
output current	OL2		15	- mA	P05 and P06
"I" lovel overege ourrept	Iolav1	_	4	- mA	Other than P05 and P06 Average output current = operating current × operating ratio (1 pin)
"L" level average current	Iolav2		12	- 111A	P05 and P06 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	Σ Iolav		50	mA	Total average output current = operating current \times operating ratio (Total number of pins)
"H" level maximum	Он1	—	-15		Other than P05 and P06
output current	Он2	—	-15	mA	P05 and P06
"H" level average	Iohav1	_	-4		Other than P05 and P06 Average output current = operating current × operating ratio (1 pin)
current	Іонау2	_	-8	- mA	P05 and P06 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣІон	_	-100	mA	
"H" level total average output current	ΣΙοήαν	_	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd	—	320	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

(Continued)



(Continued)

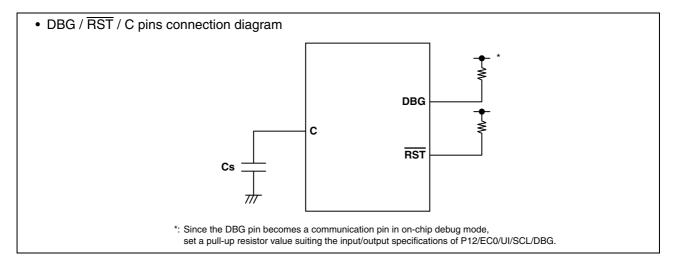
- *1: The parameter is based on $V_{SS} = 0.0 V$.
- *2: VI and Vo must not exceed Vcc + 0.3 V. VI must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the IcLAMP rating is used instead of the VI rating.

*3: Applicable to the following pins: P00 to P07, P60 to P67, P70 to P76, PF0 and PF1

- Use under recommended operating conditions.
- Use with DC voltage (current).
- The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- Example of a recommended circuit

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions


(Vss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks				
Farameter	Min Max		nein						
	2.4 ^{*1*2} 5.5 ^{*1} In normal operation		Other than on-chip debug						
Power supply	ly Vcc	2.3	5.5	v	Hold condition in stop mode	mode			
voltage		2.9	5.5	v	In normal operation	On-chip debug mode			
		2.3	5.5		Hold condition in stop mode	On-chip debug mode			
Smoothing capacitor	Cs	0.022	1	μF	*3				
Operating	TA	-40	+85	°C	Other than on-chip debug mode				
temperature	IA	+5	+35		On-chip debug mode				

*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.

*2: This value becomes 2.88 V when the low-voltage detection reset is used.

*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V_{CC} pin must have a capacitance larger than C_s. For the connection to a smoothing capacitor C_s, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_s and the distance between C_s and the V_{ss} pin when designing the layout of a printed circuit board.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

		1	1	·).0 V,	T _A = -40°C to +85°C)
Parameter	Symbol	Pin name	Condition		Value	•	Unit	Remarks
i ulullotoi	0,			Min	Тур⁺³	Max	•	Tomarko
	Vihi	P03, P04, P12, P65	*1	0.7 Vcc		Vcc + 0.3	V	When CMOS input level (hysteresis input) is selected
"H" level input voltage	Viнs	P00 to P07, P12, P60 to P67, P70 to P76, PF0, PF1, PG1, PG2	*1	0.8 Vcc		Vcc + 0.3	V	Hysteresis input
	Vінм	PF2	—	0.7 Vcc	—	Vcc + 0.3	V	Hysteresis input
	VIL	P03, P04, P12, P65	*1	Vss - 0.3		0.3 Vcc	V	When CMOS input level (hysteresis input) is selected
"L" level input voltage	Vils	P00 to P07, P12, P60 to P67, P70 to P76, PF0, PF1, PG1, PG2	*1	Vss – 0.3		0.2 Vcc	V	Hysteresis input
	VILM	PF2		$V_{\text{SS}}-0.3$	_	0.3 Vcc	V	Hysteresis input
Open-drain output application voltage	VD	P03, P04, P12, P65, PF2	_	Vss – 0.3		Vss + 5.5	V	P03, P04 and P65 are open-drain output pins when assigned as the SDA/SCL pin of I ² C.
"H" level output voltage	Voh1	Output pins other than P05, P06, P12 and PF2	Іон = −4 mA	Vcc - 0.5	_	_	V	
	Vон2	P05, P06	Iон = −8 mA	V cc - 0.5		—	V	
"L" level output	V _{OL1}	Output pins other than P05 and P06	lo∟ = 4 mA	_		0.4	V	
voltage	Vol2	P05, P06	lo∟ = 12 mA	—		0.4	V	
Input leak current (Hi-Z output leak current)	Lu	All input pins	0.0 V < Vı < Vcc	-5	_	+5		When pull-up resistance is disabled
Pull-up resistance	Rpull	P00 to P07, PG1, PG2	V1 = 0 V	25	50	100	kΩ	When pull-up resistance is enabled
Input capacitance	Cin	Other than Vcc and Vss	f = 1 MHz	_	5	15	pF	(Continued)

FUJITSU

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

(Continued)

					Value				
Parameter	Symbol	Pin name	Condition	Min	Typ ^{∗3}	Max	Unit	Remarks	
				_	11.9	13.7	mA	Except during Flash memory writing and erasing	
				Vcc = 5.5 V Fcн = 32 MHz	_	17.9	21.8	mA	During Flash memory writing and erasing
	lcc		F _{MP} = 16 MHz Main clock mode	_	13.6	15.9	mA	At A/D conversion	
				(divided by 2)	_	12.3	14.2	mA	When the voltage comparator is operating
					12.3	15.3	mA	When the OPAMP is operating	
	lccs	Vcc (External clock operation)	$V_{CC} = 5.5 V$ $F_{CH} = 32 MHz$ $F_{MP} = 16 MHz$ Main sleep mode (divided by 2)	_	5.1	6.5	mA		
Power supply current*2	lcc∟		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subclock mode (divided by 2) $T_A = +25^{\circ}C$	_	59.2	83	μΑ		
	Iccls		$V_{CC} = 5.5 V$ $F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subsleep mode (divided by 2) $T_A = +25^{\circ}C$		7.8	11.3	μΑ		
	Ісст		$V_{CC} = 5.5 V$ $F_{CL} = 32 kHz$ Watch mode Main stop mode $T_A = +25^{\circ}C$	_	4.2	6.5	μA		
	Іссмсв	Vcc	$V_{CC} = 5.5 V$ $F_{CRH} = 12.5 MHz$ $F_{MP} = 12.5 MHz$ Main CR clock mode	_	9.5	11.5	mA		
	ICCSCR	¥.C.	$V_{CC} = 5.5 V$ Sub-CR clock mode (divided by 2) T _A = +25°C	_	107.4	146.3	μΑ		

(Vcc = 5.0 V \pm 10%, Vss = 0.0 V, T_A = -40°C to +85°C)

(Continued)

PDF professional

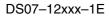
download the free triaDSO7 at 2005 at

Created with

(Continued)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Deremeter	Symbol	Din nomo	Condition		Value		Unit	Bemerke
Parameter	Symbol	Pin name	Condition	Min	Typ⁺³	Мах	Unit	Remarks
	Ісстѕ	Vcc (External clock operation)	Vcc = 5.5 V Fcн = 32 MHz Time-base timer mode TA = +25°C	_	0.9	1.2	mA	
	Іссн	operation	$V_{CC} = 5.5 V$ Substop mode $T_A = +25^{\circ}C$	_	3.0	4.8	μA	
Power supply current*2	Ilvd		Current consumption for low-voltage detection circuit only	_	26.8	39.7	μA	
	Ісвн	Vcc	Current consumption for the main CR oscillator	_	0.2	0.4	mA	
	ICRL		Current consumption for the sub-CR oscillator oscillating at 100 kHz	_	8.0	18	μA	


*1: The input levels of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

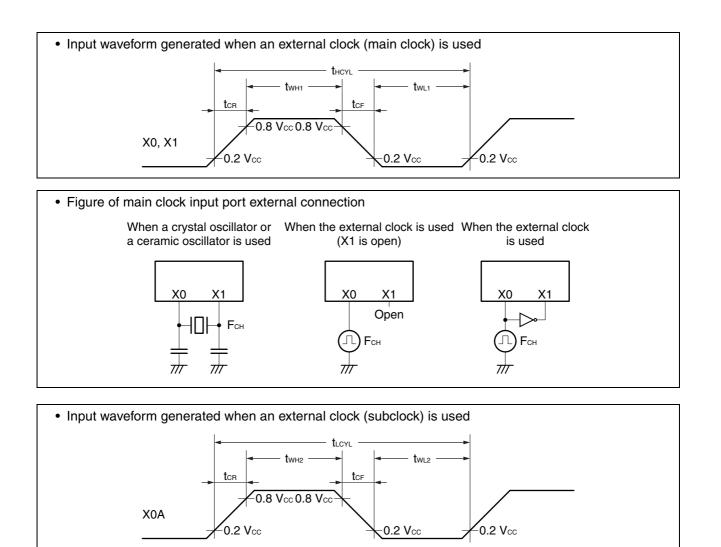
- *2: The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (ILVD) to one of the value from Icc to IccH. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (ICRH, ICRL) and a specified value. In on-chip debug mode, the CR oscillator (ICRH) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.
 - See "4. AC Characteristics: (1) Clock Timing" for F_{CH} and F_{CL}
 - See "4. AC Characteristics: (2) Source Clock/Machine Clock" for FMP and FMPL.

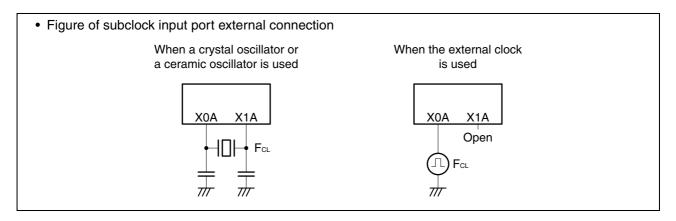
*3: $V_{CC} = 5.0 \text{ V}, \text{ } \text{T}_{\text{A}} = 25^{\circ}\text{C}$

(in nitro^{PDF*}professional download the free trial online at nitropdf.²⁹m/professional

Created with

4. AC Characteristics


(1) Clock Timing


		Dia	•		Value			Dara d		
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks		
	_	X0, X1	_	1	_	16.25	MHz	When the main oscillation circuit is used		
	Fсн	X0	X1: open	1		12	MHz	When the main external		
		X0, X1	*	1	_	32.5	MHz	clock is used		
				12.25	12.5	12.75	MHz			
				9.8	10	10.2	MHz	Operating conditions:The main CR clock is used		
				7.84	8	8.16	MHz	• $T_A = -10^{\circ}C$ to $+85^{\circ}C$		
	Fсвн			0.98	1	1.02	MHz			
Clock	I CRH			12.1875	12.5	12.8125	MHz			
frequency				9.75	10	10.25	MHz	Operating conditions:The main CR clock is used		
						7.8	8	8.2	MHz	• $T_A = -40^{\circ}C$ to $-10^{\circ}C$
				0.975	1	1.025	MHz			
	Fc∟	SL X0A, X1A		_	32.768	—	kHz	When the sub-oscillation circuit is used		
	FCL			_	32.768	—	kHz	When the sub-external clock is used		
	FCRL	_	_	50	100	200	kHz	When the sub-CR clock is used		
		X0, X1		61.5		1000	ns	When the main oscillation circuit is used		
Clock cycle	t HCYL	X0	X1: open	83.4	_	1000	ns	When the external clock is		
time		X0, X1	*	30.8	_	1000	ns	used		
	t LCYL	X0A, X1A	—	—	30.5	—	μs	When the subclock is used		
	twH1	X0	X1: open	33.4	_	—	ns	When the external clock is		
Input clock	t w∟1	X0, X1	*	12.4		—	ns	used, the duty ratio should		
pulse width	tw⊦₂ tw∟₂	X0A	—	—	15.2	_	μs	range between 40% and 60%.		
Input clock	tся	X0	X1: open	—	_	5	ns	When the external clock is		
rise time and fall time	tcr	X0, X1	*	—		5	ns	used		
CR	tсвнжк	_		—		80	μs	When the main CR clock is used		
oscillation start time	t CRLWK	_	_	_		10	μs	When the sub-CR clock is used		

*: The external clock signal is input to X0 and the inverted external clock signal to X1.

FUÏITSU

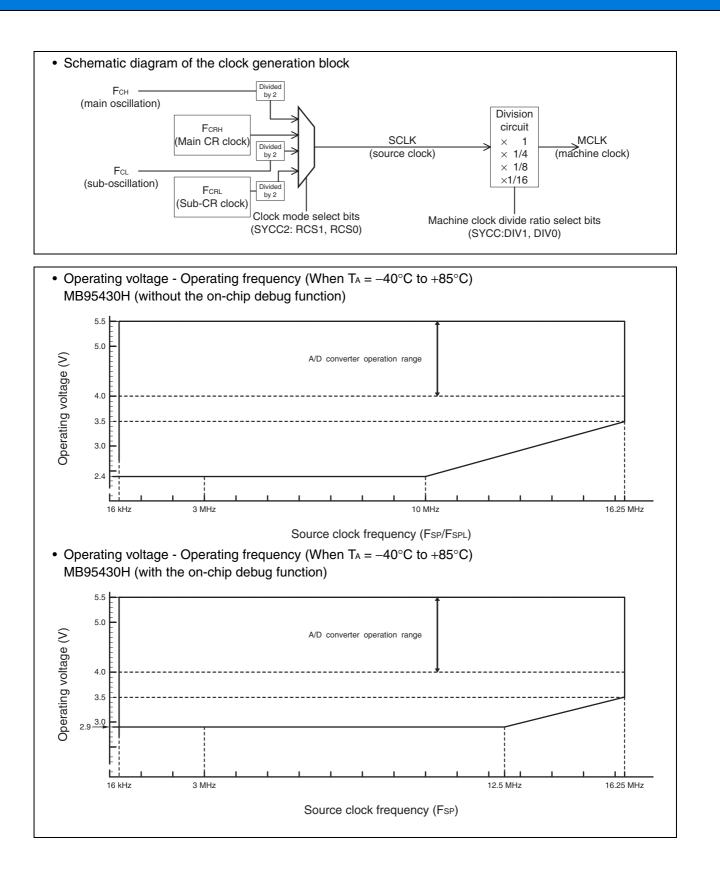
FUIITSU

Created with **nitro**^{PDF} professional download the free trial online at nitropdf.3dm/professional

(2) Source Clock/Machine Clock

					(Vcc	= 5.0	$V \pm 10\%$, $V_{SS} = 0.0$ V, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C)
Parameter	Symbol	Pin		Value		Unit	Remarks
	-	name	Min	Тур	Max		
			61.5	_	2000	ns	When the main external clock is used Min: $F_{CH} = 32.5$ MHz, divided by 2 Max: $F_{CH} = 1$ MHz, divided by 2
Source clock cycle time*1	t sclk	_	80		1000	ns	When the main CR clock is used Min: Fсвн = 12.5 MHz Max: Fсвн = 1 MHz
			_	61	_	μs	When the sub-oscillation clock is used $F_{CL} = 32.768 \text{ kHz}$, divided by 2
				20		μs	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$, divided by 2
	Fsp		0.5	_	16.25	MHz	When the main oscillation clock is used
Source clock	I SF		1	—	12.5	MHz	When the main CR clock is used
frequency		—		16.384	_	kHz	When the sub-oscillation clock is used
	Fspl		_	50	_	kHz	When the sub-CR clock is used FcRL = 100 kHz, divided by 2
			61.5	_	32000	ns	When the main oscillation clock is used Min: $F_{SP} = 16.25$ MHz, no division Max: $F_{SP} = 0.5$ MHz, divided by 16
Machine clock cycle time ^{*2} (minimum	tмськ		80	_	16000	ns	When the main CR clock is used Min: Fsp = 12.5 MHz Max: Fsp = 1 MHz, divided by 16
instruction execution time)	IMOLK		61		976.5	μs	When the sub-oscillation clock is used Min: $F_{SPL} = 16.384$ kHz, no division Max: $F_{SPL} = 16.384$ kHz, divided by 16
			20	_	320	μs	When the sub-CR clock is used Min: Fspl = 50 kHz, no division Max: Fspl = 50 kHz, divided by 16
	Fмp		0.031		16.25	MHz	When the main oscillation clock is used
Machine clock	LWA		0.0625	_	12.5	MHz	When the main CR clock is used
frequency		—	1.024	—	16.384	kHz	When the sub-oscillation clock is used
nequency	Fmpl		3.125	_	50	kHz	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$

*1: This is the clock before it is divided according to the division ratio set by the machine clock divide ratio select bits (SYCC:DIV1, DIV0). This source clock is divided to become a machine clock according to the divide ratio set by the machine clock divide ratio select bits (SYCC:DIV1, DIV0). In addition, a source clock can be selected from the following.


- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2

*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.

- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

Created with

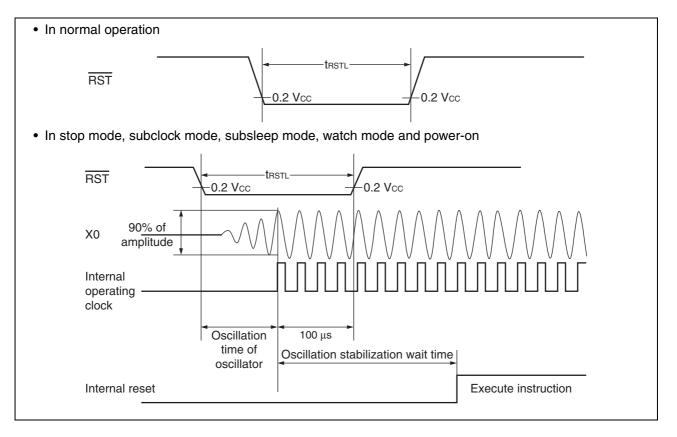
Created with

FUITSU

ΠΙΤ

protessio

download the free trial online at nitropdf.23m/professional


(3) External Reset

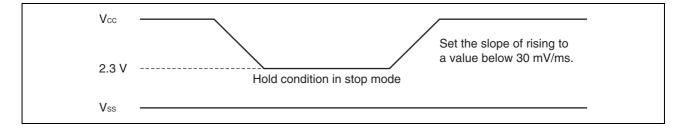
 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Value			Remarks	
Falameter	Symbol	Min	Max	Unit	nellialks	
	2 tmclk*1	—	ns	In normal operation		
RST "L" level pulse width	trst∟	Oscillation time of the oscillator*2 + 100	_	μs	In stop mode, subclock mode, subsleep mode, watch mode, and power-on	
		100	—	μs	In time-base timer mode	

*1: See "(2) Source Clock/Machine Clock" for tMCLK.

*2: The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of µs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several µs and several ms.

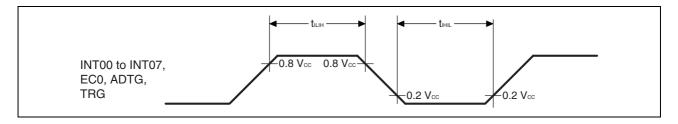

FUITSU


(4) Power-on Reset

 $(V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Condition		Va	lue	Unit	Remarks
Falameter	Symbol	condition	Min	Max	Onit	nemaiks
Power supply rising time	tR	_	_	50	ms	
Power supply cutoff time	toff	—	1		ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.

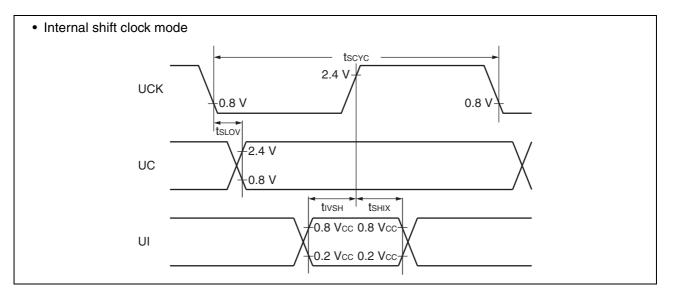


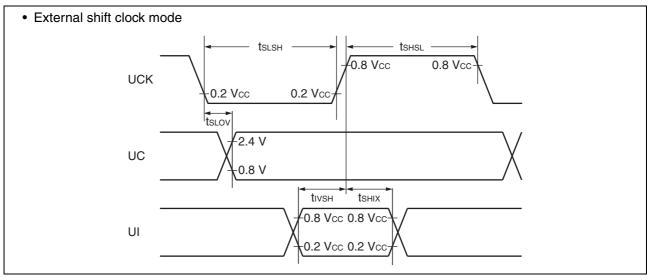
(5) Peripheral Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Value		Unit
			Min	Мах	Onit
Peripheral input "H" pulse width	tiliн	INT00 to INT07, EC0, ADTG, TRG	2 t MCLK [*]	_	ns
Peripheral input "L" pulse width	tініL		2 t MCLK [*]		ns

*: See "(2) Source Clock/Machine Clock" for tMCLK.

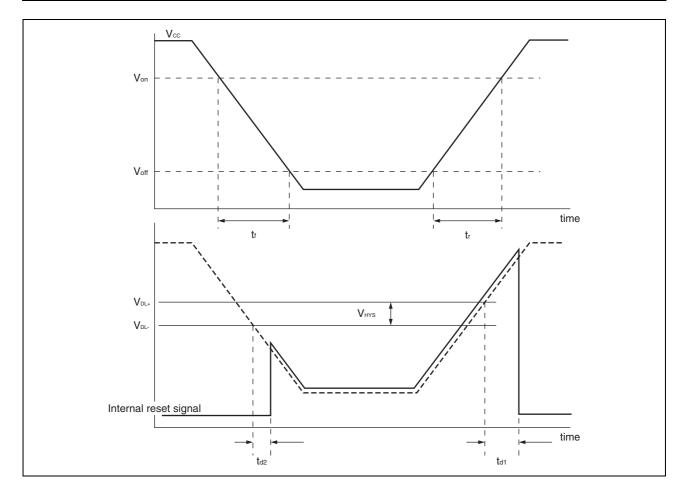




(6) UART/SIO, Serial I/O Timing

	-9	(Vcc = 5.0	0 V±10%, AVss =	Vss = 0.0 V, T	$A = -40^{\circ}C$ to	+85°C)
Parameter	Symbol	Pin name Condition		Va	lue	Unit
Farameter	Symbol	Fill lidille	Condition	Min	Max	
Serial clock cycle time	tscyc	UCK		4 t мськ*	—	ns
$UCK \downarrow \rightarrow UO$ time	tslov	UCK, UO	Internal clock	-190	+190	ns
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK, UI	operation	2 t мськ*	—	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнix	UCK, UI		2 t мськ*	—	ns
Serial clock "H" pulse width	tshsl	UCK		4 t мськ*	—	ns
Serial clock "L" pulse width	tslsh	UCK	1	4 t мськ*	—	ns
$UCK \downarrow \rightarrow UO$ time	tslov	UCK, UO	External clock	-	190	ns
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK, UI		2 t мськ*	—	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнix	UCK, UI]	2 t мськ*	—	ns

*: See "(2) Source Clock/Machine Clock" for tMCLK.


FUJITSU

Created with

(7) Low-voltage Detection

Parameter	Symbol		Value		Unit	Remarks
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Release voltage	V _{DL+}	2.52	2.7	2.88	V	At power supply rise
Detection voltage	VDL-	2.42	2.6	2.78	V	At power supply fall
Hysteresis width	VHYS	70	100	_	mV	
Power supply start voltage	Voff	_	—	2.3	V	
Power supply end voltage	Von	4.9	—		V	
Power supply voltage change time (at power supply rise)	tr	3000	_	_	μs	Slope of power supply that the reset release signal generates within the rating (V _{DL+})
Power supply voltage change time (at power supply fall)	tr	300	_	_	μs	Slope of power supply that the reset detection signal generates within the rating (V _{DL} .)
Reset release delay time	td1	_	—	300	μs	
Reset detection delay time	t _{d2}	_	—	20	μs	

FUJITSU

Created with

n

orotessioi

download the free triaDSD7 at 2007 TEm/professional

al

 $(V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

(8) I²C Timing

	((Vcc = 5.0 V±	±10%, AVss =	Vss =	0.0 V, T	ă = −4C	°C to +	-85°C)
				Va	ue			
Parameter	Symbol	Pin name	Condition		dard- ode	East-		Unit
				Min	Max	Min	Max	
SCL clock frequency	fsc∟	SCL		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t hd;sta	SCL, SDA		4.0	_	0.6	_	μs
SCL clock "L" width	tLOW	SCL		4.7		1.3		μs
SCL clock "H" width	tніgн	SCL		4.0		0.6	—	μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL, SDA	R = 1.7 kΩ,	4.7	_	0.6	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t hd;dat	SCL, SDA	C = 50 pF*1	0	3.45 ^{*2}	0	0.9 ^{*3}	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t su;dat	SCL, SDA		0.25	_	0.1	_	μs
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t su;sто	SCL, SDA		4	_	0.6	_	μs
Bus free time between STOP condition and START condition	tbuf	SCL, SDA		4.7	_	1.3	_	μs

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: The maximum thd;DAT in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (tLOW) does not extend.

*3: A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of $t_{SU;DAT} \ge 250$ ns is fulfilled.

MB95430H Series

Demonster	Sym-	Pin	O a maliti a m	Valu	ue ^{*2}		Bomorko	
Parameter	bol	name	Condition	Min	Мах	Unit	Remarks	
SCL clock "L" width	t∟ow	SCL		(2 + nm/2)tмськ – 20	_	ns	Master mode	
SCL clock "H" width	t high	SCL		(nm/2)t _{MCLK} – 20	(nm/2)t _{MCLK} + 20	ns	Master mode	
START condition hold time	thd;sta	SCL, SDA		(–1 + nm/2)tмсік – 20	(—1 + nm)t _{мськ} + 20	ns	Master mode Maximum value is applied when m, $n = 1, 8$. Otherwise, the minimum value is applied.	
STOP condition setup time	t su;sто	SCL, SDA		(1 + nm/2)tмськ – 20	(1 + nm/2)tмськ + 20	ns	Master mode	
START condition setup time	ndition tsu;sta			(1 + nm/2)tмськ – 20	(1 + nm/2)tмськ + 20	ns	Master mode	
Bus free time between STOP condition and START condition	tBUF	SCL, SDA	R = 1.7 kΩ, C = 50 pF*1	(2 nm + 4)t _{мс∟к} – 20	_	ns		
Data hold time	t hd;dat	SCL, SDA		3 tmclk - 20		ns	Master mode	
Data setup time	tsu;dat	SCL, SDA		(-2 + nm/2)tмськ – 20	(–1 + nm/2)tмськ + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.	
Setup time between clearing inter- rupt and SCL rising	tsu;int	SCL		(nm/2)tмськ – 20	(1 + nm/2)tмс∟к + 20	ns	Minimum value is applied to interrupt at 9th SCL↓. Maximum value is applied to the interrupt at the 8th SCL↓.	

(Vcc = 5.0 V \pm 10%, AVss = Vss = 0.0 V, T_A = -40°C to +85°C)

PRELIMINARY

(Continued)

_	Sym-	Pin		Valu	Je*2						
Parameter	bol	name	Condition	Min	Мах	Unit	Remarks				
SCL clock "L" width	tLOW	SCL		4 tмськ – 20	_	ns	At reception				
SCL clock "H" width	tніgн	SCL		4 tмськ – 20	_	ns	At reception				
START condition detection	t hd;sta	SCL, SDA		2 t _{MCLK} – 20	—	ns	Undetected when 1 tmclk is used at reception				
STOP condition detection	tsu;sto	SCL, SDA		2 t _{MCLK} – 20	_	ns	Undetected when 1 tMCLK is used at reception				
RESTART condition detection condition	tsu;sta	SCL, SDA		2 t _{MCLK} – 20	—	ns	Undetected when 1 tmclk is used at reception				
Bus free time	t BUF	SCL, SDA	R = 1.7 kΩ, C = 50 pF*1	2 tмськ – 20	_	ns	At reception				
Data hold time	thd;dat	SCL, SDA						2 tмськ – 20	_	ns	At slave transmission mode
Data setup time	tsu;dat	SCL, SDA		$t_{\text{LOW}} - 3 t_{\text{MCLK}} - 20$	_	ns	At slave transmission mode				
Data hold time	thd;dat	SCL, SDA		0	_	ns	At reception				
Data setup time	tsu;dat	SCL, SDA		tмськ — 20	_	ns	At reception				
$SDA \downarrow \to SCL \uparrow$ (at wakeup function)	twakeup	SCL, SDA		Oscillation stabilization wait time +2 tMCLK – 20		ns					

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: • See "(2) Source Clock/Machine Clock" for tMCLK.

- m represents the CS4 bit and CS3 bit (bit4 and bit3) in the I²C clock control register (ICCR0).
- n represents the CS2 bit to CS0 bit (bit2 to bit0) in the I²C clock control register (ICCR0).
- The actual timing of I²C is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS4 to CS0 bits in the ICCR0 register.
- Standard-mode:

m and n can be set to values in the following range: 0.9 MHz < t_{MCLK} (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below. (m, n) = (1, 8) : 0.9 MHz < $t_{MCLK} \le 1$ MHz

 $\begin{array}{l} (m, n) = (1, 8) \\ (m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4) \\ (m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8) \\ (m, n) = (1, 98), (5, 22), (6, 22), (7, 22) \\ (m, n) = (8, 22) \end{array}$

: 0.9 MHz < $t_{MCLK} \le 1$ MHz : 0.9 MHz < $t_{MCLK} \le 2$ MHz : 0.9 MHz < $t_{MCLK} \le 4$ MHz : 0.9 MHz < $t_{MCLK} \le 10$ MHz : 0.9 MHz < $t_{MCLK} \le 16.25$ MHz

• Fast-mode:

m and n can be set to values in the following range: $3.3 \text{ MHz} < t_{MCLK}$ (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below. (m, n) = (1, 8) : $3.3 \text{ MHz} < t_{MCLK} \le 4 \text{ MHz}$

(m, n) = (1, 22), (5, 4)(m, n) = (1, 22), (6, 4), (7, 4), (8, 4)(m, n) = (5, 8) : 3.3 MHz < t_{MCLK} ≤ 8 MHz : 3.3 MHz < t_{MCLK} ≤ 10 MHz

: 3.3 MHz < tmclk \leq 16.25 MHz

(9) Voltage Compare Timing

		(***	/ - +.0 V	10 0.0 V, V	55 – U	0° , $TA = -40^{\circ}$ C 10° +85°C)
Parameter	Din name	Pin name Value			Unit	Remarks
Faiametei	Fin name	Min Typ Max		Unit	neillaiks	
Voltage range	CMPn_P, CMPn_N (n = 0,1,2,3)	0	_	Vcc - 1.3	v	
Offset voltage	CMPn_P, CMPn_N (n = 0,1,2,3)	-10	_	+10	mV	
Delay time	CMPn_O		650	1210	ns	5 mV overdrive
Delay lille	(n = 0,1,2,3)	_	140	420	ns	50 mV overdrive
	CMPn O	_	_	1210	ns	Power down recovery PD: $1 \rightarrow 0$
Power down delay	(n = 0, 1, 2, 3)	0			ns	Power down effective PD: $0 \rightarrow 1$ Output: "H" level
Power up stabilization time	CMPn_O (n = 0,1,2,3)	_	_	1210	ns	Output stabilization time at power up

$(V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

(9) Operational Amplifier Timing

Open Loop Configuration

 $(V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Pin name		Value		Unit	Remarks
Farameter	Fin name	Min	Тур	Max	Unit	nemarks
Input voltage range	OPAMP_P, OPAMP_N	0.1	_	1.5	V	
Output voltage range	OPAMP_O	0.1		Vcc - 0.1	V	
Output resistor load	OPAMP_O	220	_	_	kΩ	Minimum driving resistor value
Output capacitor load	OPAMP_O	_	_	20	pF	AD loading (maximum ESR = 10k)
Offset voltage	OPAMP_O	_		10	mV	
Open loop bandwidth	OPAMP_O	3		—	MHz	
Open loop gain	OPAMP_O	75	85	—	dB	AD loading
Common mode rejection ratio	OPAMP_O	60		—	dB	AD loading
Power supply rejection ratio	OPAMP_O	65		—	dB	
Power down recovery time	OPAMP_O	_		200	μs	
Slew rate	OPAMP_O	0.3		_	V/µs	
Large signal response	OPAMP_O			6	μs	
Small signal response	OPAMP_O			500	ns	
Output stabilization time	OPAMP_O	_		60	μs	After values of RES0- RES2 change

Closed Loop Configuration

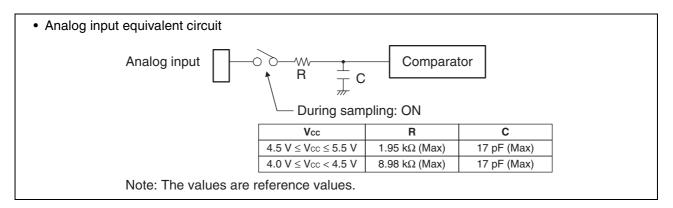
Clobba Loop Comgulation			(Vcc = 4.0 V	to 5.5	V, $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$)
Parameter	Pin name	Pin name Value			Unit	Remarks
raidilletei	rinname	Min	Тур	Max	Omt	Temarks
Input voltage range (10x, 20x, 60x)	OPAMP_P, OPAMP_N	0.09		_	v	
Input voltage range (30x, 40x, 50x)	OPAMP_P, OPAMP_N	0.10		—	v	
Maximum input voltage range (10x, 20x, 30x, 40x, 50x, 60x)		—	_	Vcc/Gain	V	
Output voltage range	OPAMP_O	0.1	_	Vcc-0.1	V	
Output capacitor load	OPAMP_O	_	_	20	pF	AD loading (maximum ESR = 10k)
Closed loop bandwidth	OPAMP_O	1	_	—	MHz	AD loading
Closed loop gain	OPAMP_O	10	_	60	V/V	Selectable
Closed loop gain error* (10x, 20x, 30x, 40x, 50x)	OPAMP_O	—	_	±10%	_	
Closed loop gain error* (60x)	OPAMP_O	—	_	±15%	_	
Power down recovery time	OPAMP_O	_	_	200	μs	
Slew rate	OPAMP_O	0.3	_	—	V/µs	
Large signal response	OPAMP_O	_	—	6	μs	
Small signal response	OPAMP_O	_	—	500	ns	
Output stabilization time	OPAMP_O	_	_	60	μs	After values of RES0- RES2 change

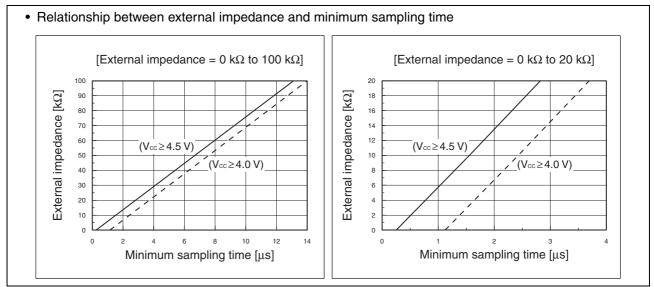
*: Gain error = 1 – (actual gain / design gain)

5. A/D Converter

(1) A/D Converter Electrical Characteristics

 $(V_{CC} = 4.0 \text{ V to } 5.5 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


Parameter	Symbol		Value		Unit	Remarks		
Parameter	Symbol	Min	Тур	Max	Unit	Remarks		
Resolution		_	—	10	bit			
Total error		-3		+3	LSB			
Linearity error		—	—	-2.5	—	+2.5	LSB	
Differential linear error		-1.9	_	+1.9	LSB			
Zero transition voltage	Vот	Vss – 1.5 LSB	Vss + 0.5 LSB	Vss + 2.5 LSB	v			
Full-scale transition voltage	VFST	Vcc – 4.5 LSB	Vcc – 2 LSB	Vcc + 0.5 LSB	v			
Compare time		0.9	—	16500	μs	$4.5~V \leq V_{CC} \leq 5.5~V$		
		1.8		16500	μs	$4.0 \text{ V} \leq \text{V}_{\text{CC}} < 4.5 \text{ V}$		
Sampling time		0.6	_	œ	μs	$\begin{array}{l} \mbox{4.5 V} \leq V_{CC} \leq 5.5 \ \mbox{V}, \\ \mbox{with external} \\ \mbox{impedance} < 5.4 \ \mbox{k}\Omega \end{array}$		
		1.2	_	∞ µs		$\begin{array}{l} 4.0 \ V \leq V_{CC} < 4.5 \ V, \\ \text{with external} \\ \text{impedance} < 2.4 \ \text{k}\Omega \end{array}$		
Analog input current	Iain	-0.3	—	+0.3	μA			
Analog input voltage	VAIN	Vss	—	Vcc	V			

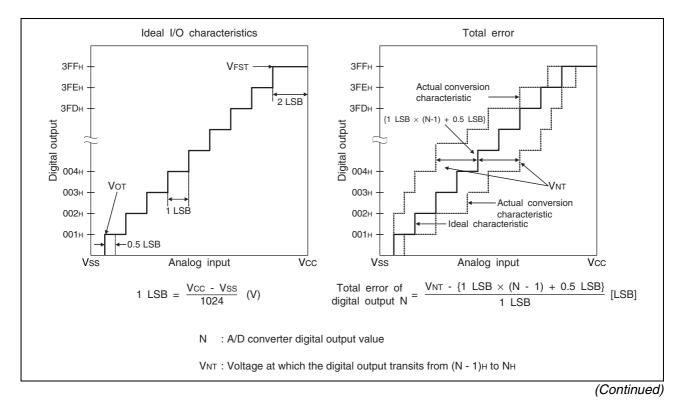


(2) Notes on Using the A/D Converter

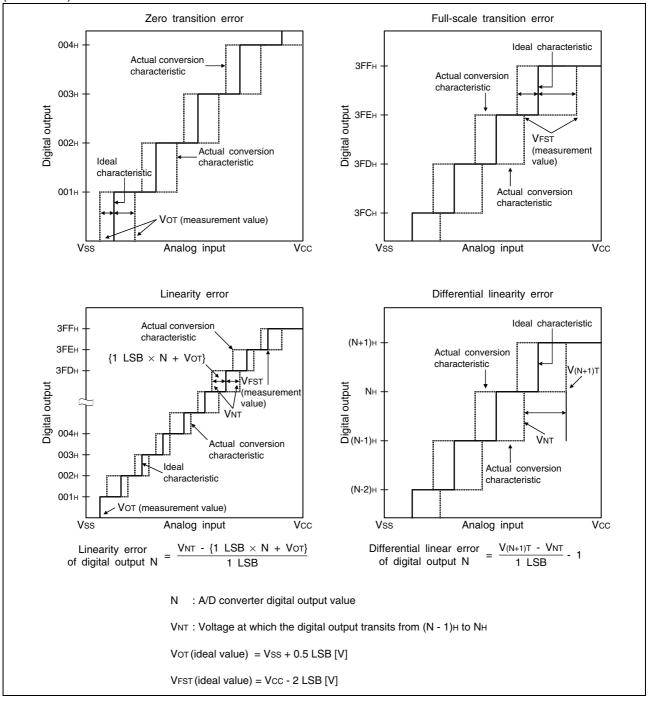
• External impedance of analog input and its sampling time

 The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.

A/D conversion error


As IVcc-VssI decreases, the A/D conversion error increases proportionately.

(3) Definitions of A/D Converter Terms


- Resolution
 It indicates the level of analog variation that can be distinguished by the A/D converter.
 When the number of bits is 10, analog voltage can be divided into 2¹⁰ = 1024.
- Linearity error (unit: LSB)
 It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000" ← → "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111" ← → "11 1111 1110") of the same device.
- Differential linear error (unit: LSB) It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.
- Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

MB95430H Series

6. Flash Memory Program/Erase Characteristics

Parameter		Value		Unit	Remarks
Farameter	Min	Тур	Max	Unit	nemarks
Sector erase time (2 Kbyte sector)	—	0.2*1	0.5* ²	s	The time of writing 00⊦ prior to erasure is excluded.
Sector erase time (16 Kbyte sector)	_	0.5* ¹	7.5* ²	s	The time of writing 00⊦ prior to erasure is excluded.
Byte writing time	_	21	6100* ²	μs	System-level overhead is excluded.
Program/erase cycle	100000	_	_	cycle	
Power supply voltage at program/erase	3.0	_	5.5	v	
Flash memory data retention time	20* ³		_	year	Average T _A = +85°C

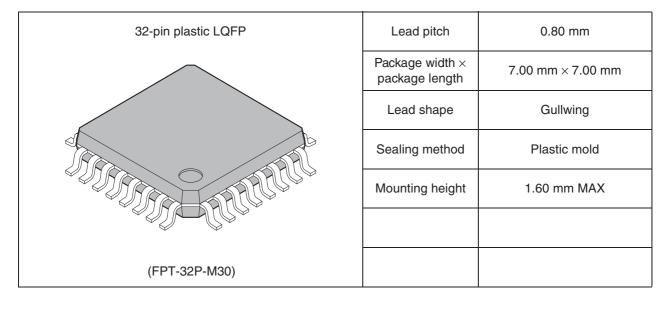
*1: $T_A = +25^{\circ}C$, $V_{CC} = 5.0$ V, 100000 cycles

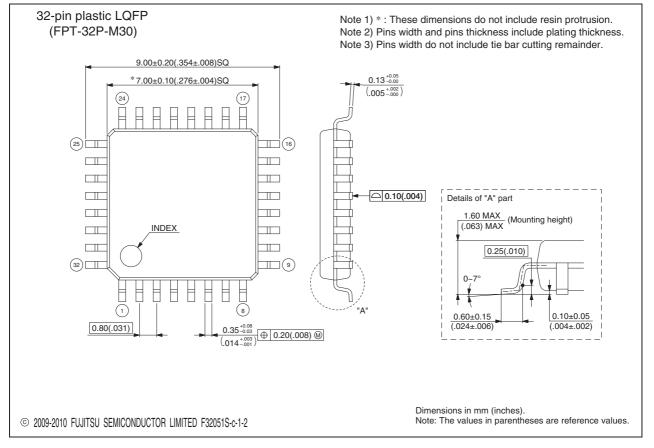
*2: $T_A = +85^{\circ}C$, $V_{CC} = 3.0$ V, 100000 cycles

*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being +85°C).

■ MASK OPTIONS

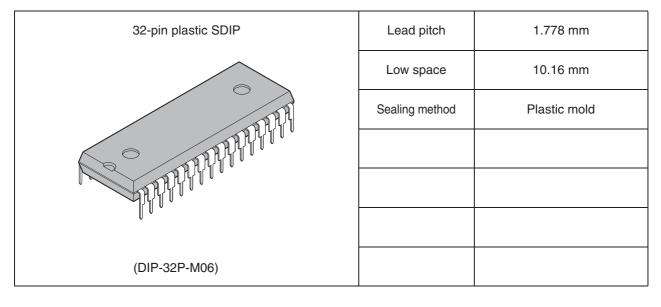
No.	Part Number	MB95F432H MB95F433H MB95F434H	MB95F432K MB95F433K MB95F434K
	Selectable/Fixed	Fix	red
1	Low-voltage detection reset	Without low-voltage detection reset With low-voltage detection re	
2	Reset	With dedicated reset input	Without dedicated reset input

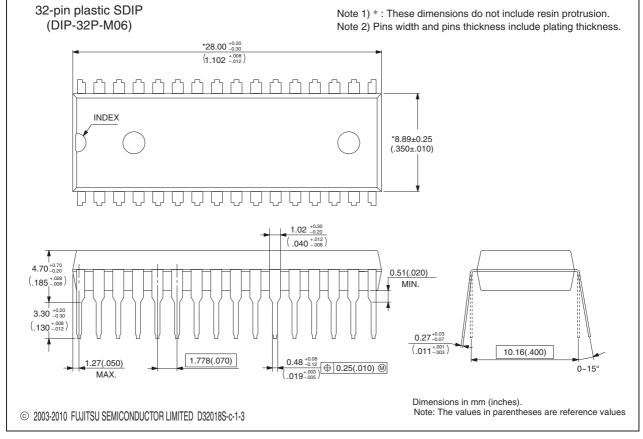



ORDERING INFORMATION

Part Number	Package
MB95F432HPMC-G-SNE2 MB95F432KPMC-G-SNE2 MB95F433HPMC-G-SNE2 MB95F433KPMC-G-SNE2 MB95F434HPMC-G-SNE2 MB95F434KPMC-G-SNE2	32-pin plastic LQFP (FPT-32P-M30)
MB95F432HP-G-SH-SNE2 MB95F432KP-G-SH-SNE2 MB95F433HP-G-SH-SNE2 MB95F433KP-G-SH-SNE2 MB95F434HP-G-SH-SNE2 MB95F434KP-G-SH-SNE2	32-pin plastic SH-DIP (DIP-32P-M06)

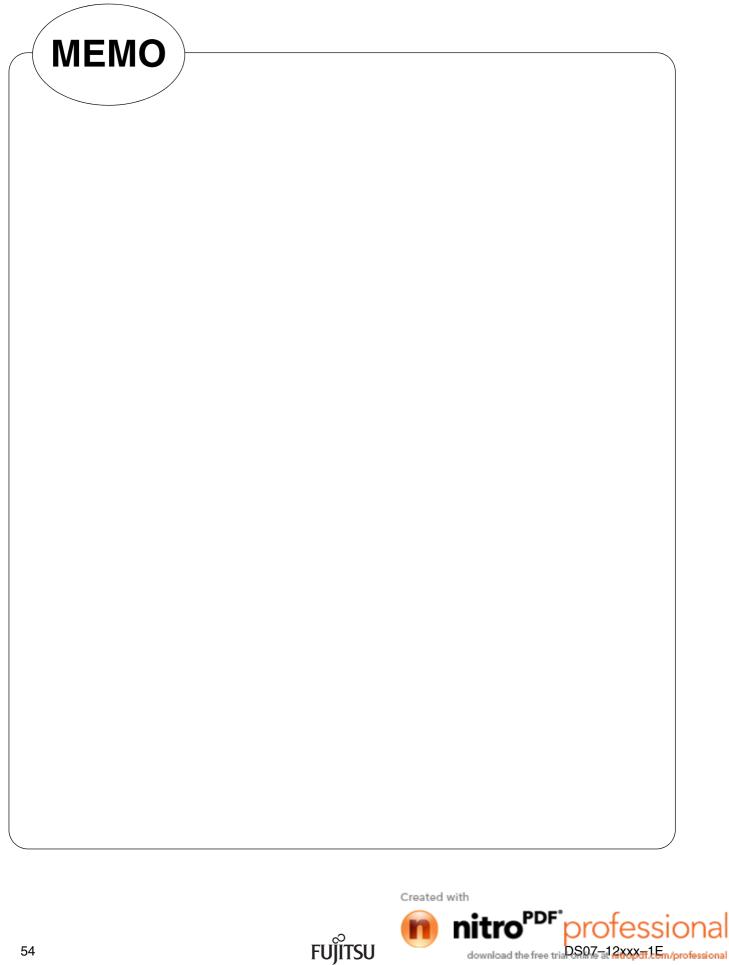
PACKAGE DIMENSION

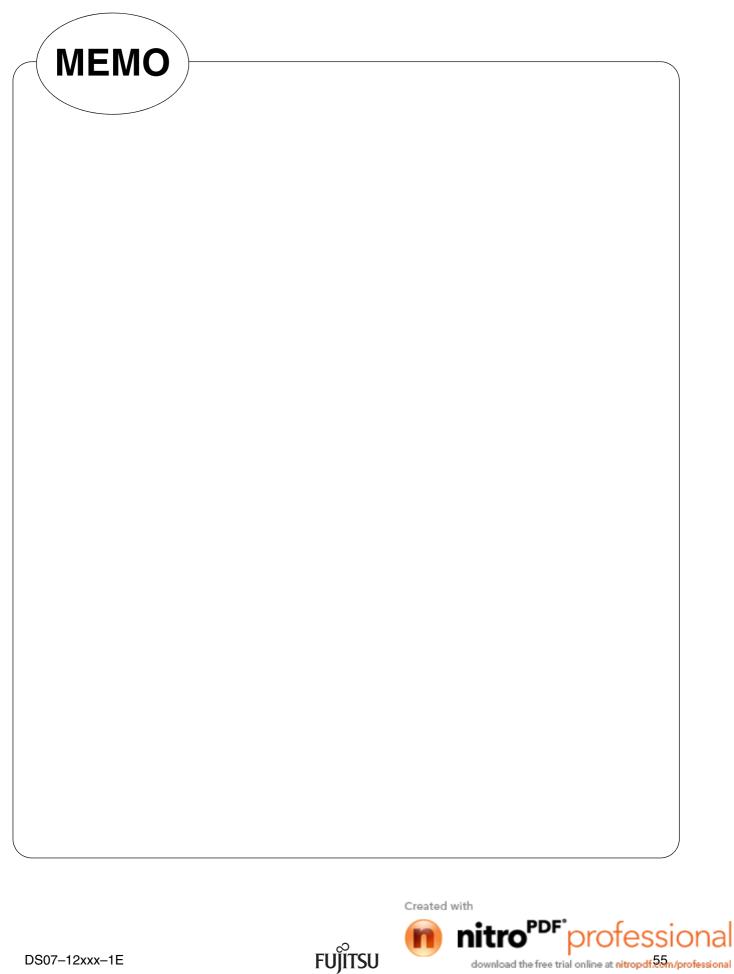



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

PRELIMINARY

(Continued)




FUJITSU

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

PRELIMINARY

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 *http://jp.fujitsu.com/fsl/en/*

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department

Created with

