



# F<sup>2</sup>MC-8FX 8-bit Microcontroller

MB95220H are a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of these series contain a variety of peripheral resources.

#### **Features**

## F<sup>2</sup>MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.

#### Clock

- Selectable main clock source
  - □ External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz)
  - □ Main internal CR clock (1/8/10 MHz ±3%, maximum machine clock frequency: 10 MHz)
- Selectable subclock source
  - □ External clock (32.768 kHz)
  - □ Sub-internal CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)

#### **Timer**

- 8/16-bit composite timer
- Timebase timer
- Watch prescaler

#### LIN-UART (MB95F222H/F222K/F223H/F223K)

- Full duplex double buffer
- Capable of clock-synchronized serial data transfer and clock-asynchronized serial data transfer

### **External interrupt**

- Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
- Can be used to wake up the device from different low power consumption (standby) modes

#### 8/10-bit A/D converter

■ 8-bit or 10-bit resolution can be selected.

#### Low power consumption (standby) modes

- Stop mode
- Sleep mode
- Watch mode
- Timebase timer mode

#### I/O port (Max: 13) (MB95F222K/F223K)

■ General-purpose I/O ports (Max): CMOS I/O: 11, N-ch open drain: 2

#### I/O port (Max: 12) (MB95F222H/F223H)

■ General-purpose I/O ports (Max): CMOS I/O: 11, N-ch open drain: 1

#### On-chip debug

- 1-wire serial control
- Serial writing supported (asynchronous mode)

#### Hardware/software watchdog timer

■ Built-in hardware watchdog timer

### Low-voltage detection reset circuit

■ Built-in low-voltage detector

#### Clock supervisor counter

■ Built-in clock supervisor counter function

#### Programmable port input voltage level

■ CMOS input level / hysteresis input level

## Flash memory security function

■ Protects the contents of flash memory

**Cypress Semiconductor Corporation**Document Number: 002-07513 Rev. \*A

198 Champion Court

San Jose, CA 95134-1709

408-943-2600

Revised March 31, 2016

## MB95220H Series



## Contents

| 3          |
|------------|
| 5          |
|            |
| 5          |
| 6          |
| 7          |
| 9          |
| <b>1</b> 1 |
| <b>1</b> 1 |
| 13         |
| 14         |
| 15         |
| 19         |
|            |

| Electrical Characteristics                 | 20 |
|--------------------------------------------|----|
| Absolute Maximum Ratings                   | 20 |
| Recommended Operating Conditions           | 22 |
| DC Characteristics                         | 2  |
| AC Characteristics                         | 26 |
| A/D Converter                              | 42 |
| Flash Memory Program/Erase Characteristics | 46 |
| Sample Electrical Characteristics          | 47 |
| Mask Options                               | 53 |
| Ordering Information                       | 53 |
| Package Dimensions                         | 54 |
| Main Changes                               | 56 |
| Document History                           | 57 |



## 1. Product Line-up

| Part number                         | MB95F223H                                                                                                                                                                                                                                                                                                 | MB95F222H                                                               | MB95F223K                                                        | MB95F222K   |  |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|-------------|--|--|--|--|--|--|
| Туре                                | Flash memory product                                                                                                                                                                                                                                                                                      |                                                                         |                                                                  |             |  |  |  |  |  |  |
| Clock supervisor                    | It supervises the main clock oscillation.                                                                                                                                                                                                                                                                 |                                                                         |                                                                  |             |  |  |  |  |  |  |
| ROM capacity                        | 8 KB 4 KB 8 KB 4 KB                                                                                                                                                                                                                                                                                       |                                                                         |                                                                  |             |  |  |  |  |  |  |
| RAM capacity                        | 496 B                                                                                                                                                                                                                                                                                                     | 240 B                                                                   | 496 B                                                            | 240 B       |  |  |  |  |  |  |
| Low-voltage<br>detection reset      | No                                                                                                                                                                                                                                                                                                        | 0                                                                       | Y                                                                | es          |  |  |  |  |  |  |
| Reset input                         | Dedic                                                                                                                                                                                                                                                                                                     | ated                                                                    | Selected b                                                       | oy software |  |  |  |  |  |  |
| CPO functions                       | Number of basic instructions<br>Instruction bit length<br>Instruction length<br>Data bit length<br>Minimum instruction execution<br>Interrupt processing time                                                                                                                                             | : 8 bits<br>: 1 to 3 bytes<br>: 1, 8, and 16<br>on time : 61.5 ns (with | bits<br>n machine clock = 16.25 MHz<br>machine clock = 16.25 MHz | ,           |  |  |  |  |  |  |
| General-purpose<br>I/O              | I/O ports (Max): 12<br>CMOS: 11,<br>N-ch: 1                                                                                                                                                                                                                                                               |                                                                         | I/O ports (Max): 13<br>CMOS: 11,<br>N-ch: 2                      |             |  |  |  |  |  |  |
| Timebase timer                      | Interrupt cycle: 0.256 ms - 8                                                                                                                                                                                                                                                                             | 3.3 s (when external clock =                                            | = 4 MHz)                                                         |             |  |  |  |  |  |  |
| Hardware/software<br>watchdog timer | Reset generation cycle<br>Main oscillation clock at 10 N<br>The sub-CR clock can be us                                                                                                                                                                                                                    |                                                                         | he hardware watchdog timer                                       |             |  |  |  |  |  |  |
| Wild register                       | It can be used to replace thre                                                                                                                                                                                                                                                                            | ee bytes of data.                                                       |                                                                  |             |  |  |  |  |  |  |
| LIN-UART                            | A wide range of communicat<br>It has a full duplex double bu<br>Clock-synchronized serial da<br>The LIN function can be use                                                                                                                                                                               | uffer.<br>ata transfer and clock-asyn                                   | chronized serial data transfe                                    |             |  |  |  |  |  |  |
| 8/10-bit A/D                        | 5 ch.                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                  |             |  |  |  |  |  |  |
| converter                           | 8-bit or 10-bit resolution can                                                                                                                                                                                                                                                                            | be selected.                                                            |                                                                  |             |  |  |  |  |  |  |
|                                     | 1 ch.                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                  |             |  |  |  |  |  |  |
| 8/16-bit<br>composite timer         | The timer can be configured as an "8-bit timer x 2 channels" or a "16-bit timer x 1 channel". It has built-in timer function, PWC function, PWM function and input capture function.  Count clock: it can be selected from internal clocks (seven types) and external clocks.  It can output square wave. |                                                                         |                                                                  |             |  |  |  |  |  |  |
| External                            | 6 ch.                                                                                                                                                                                                                                                                                                     |                                                                         |                                                                  |             |  |  |  |  |  |  |
| interrunt                           | Interrupt by edge detection (<br>It can be used to wake up th                                                                                                                                                                                                                                             |                                                                         |                                                                  | ected.)     |  |  |  |  |  |  |
| On-chip debug                       | 1-wire serial control<br>It supports serial writing. (as                                                                                                                                                                                                                                                  | ynchronous mode)                                                        |                                                                  |             |  |  |  |  |  |  |



| Part number     | ſ                                                                                                                                                                                                                                                                                                                                                                                  |                  |           |           |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|-----------|--|--|--|
|                 | MB95F223H                                                                                                                                                                                                                                                                                                                                                                          | MB95F222H        | MB95F223K | MB95F222K |  |  |  |
| Parameter       |                                                                                                                                                                                                                                                                                                                                                                                    |                  |           |           |  |  |  |
| Watch prescaler | Eight different time intervals                                                                                                                                                                                                                                                                                                                                                     | can be selected. | •         |           |  |  |  |
| Flash memory    | It supports automatic programming, Embedded Algorithm, write/erase/erase-suspend/erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Number of write/erase cycles: 100000 Data retention time: 20 years For write/erase, external Vpp(+10 V) input is required. Flash security feature for protecting the contents of the flash |                  |           |           |  |  |  |
| Standby mode    | Sleep mode, stop mode, watch mode, timebase timer mode                                                                                                                                                                                                                                                                                                                             |                  |           |           |  |  |  |
| Package         | DIP-16P-M06<br>FPT-16P-M06                                                                                                                                                                                                                                                                                                                                                         |                  |           |           |  |  |  |



## 2. Packages and Corresponding Products

| Part number Package | MB95F223H | MB95F222H | MB95F223K | MB95F222K |
|---------------------|-----------|-----------|-----------|-----------|
| DIP-16P-M06         | 0         | 0         | 0         | 0         |
| FPT-16P-M06         | 0         | 0         | 0         | 0         |

O: Available

## 3. Differences Among Products and Notes on Product Selection

## **Current consumption**

When using the on-chip debug function, take account of the current consumption of flash erase/program.

For details of current consumption, see "13. Electrical Characteristics".

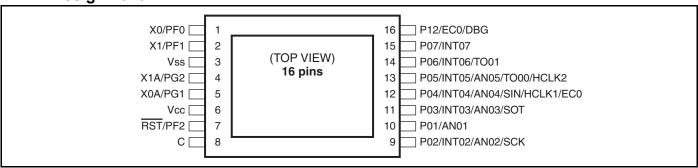
#### **Package**

For details of information on each package, see "2. Packages and Corresponding Products" and "17. Package Dimensions".

### Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not.

For details of the operating voltage, see "13. Electrical Characteristics".


### On-chip debug function

The on-chip debug function requires that  $V_{CC}$ ,  $V_{SS}$  and 1 serial-wire be connected to an evaluation tool. In addition, if the flash memory data has to be updated, the RST/PF2 pin must also be connected to the same evaluation tool.

Document Number: 002-07513 Rev. \*A Page 5 of 58



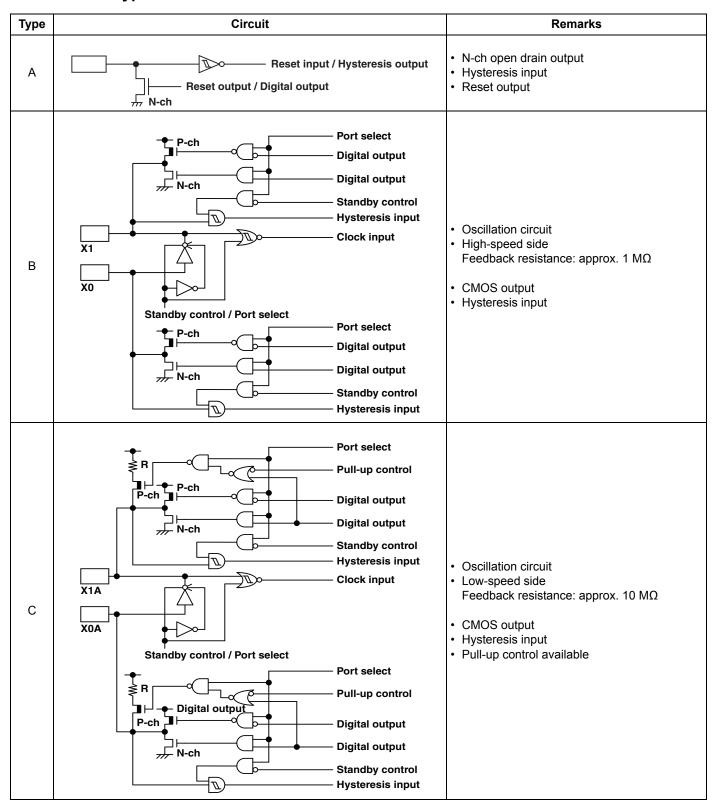
4. Pin Assignment



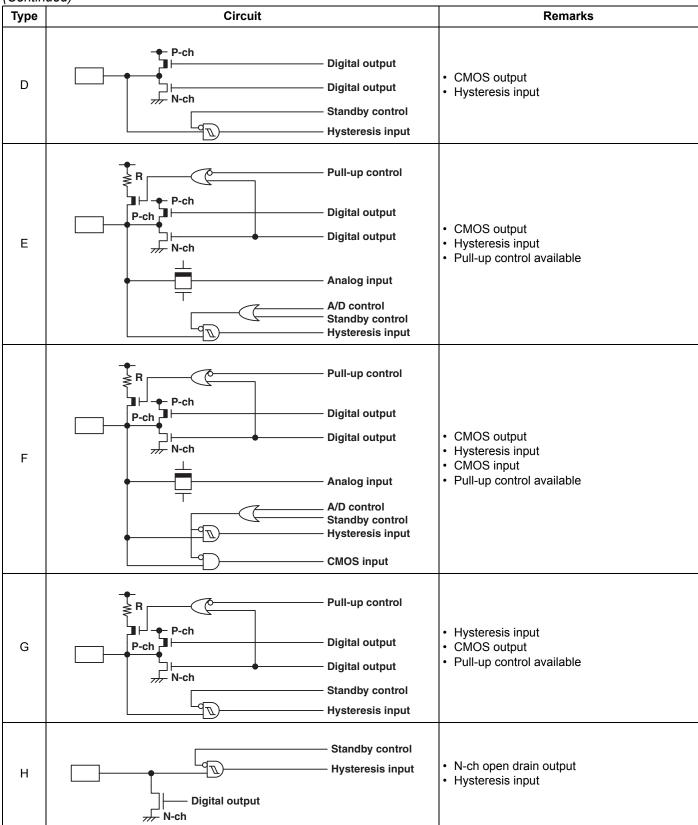


## 5. Pin Description (MB95220H Series)

| Pin no. | Pin name        | I/O<br>circuit<br>type* | Function                                                        |
|---------|-----------------|-------------------------|-----------------------------------------------------------------|
| 4       | PF0             | В                       | General-purpose I/O port                                        |
|         | 1 X0            |                         | Main clock input oscillation pin                                |
| 2       | PF1             | D                       | General-purpose I/O port                                        |
| 2       | X1              | В                       | Main clock I/O oscillation pin                                  |
| 3       | V <sub>SS</sub> | _                       | Power supply pin (GND)                                          |
| 4       | PG2             | С                       | General-purpose I/O port                                        |
| 4       | X1A             | C                       | Subclock I/O oscillation pin                                    |
| 5       | PG1             | С                       | General-purpose I/O port                                        |
| 5       | X0A             | C                       | Subclock input oscillation pin                                  |
| 6       | V <sub>CC</sub> | _                       | Power supply pin                                                |
|         | PF2             |                         | General-purpose I/O port                                        |
| 7       | 7 RST           |                         | Reset pin This pin is a dedicated reset pin in MB95F222H/F223H. |
| 8       | С               | _                       | Capacitor connection pin                                        |
|         | P02<br>INT02    |                         | General-purpose I/O port                                        |
| 9       |                 |                         | INT02                                                           |
| 9       | AN02            | _                       | A/D converter analog input pin                                  |
|         | SCK             |                         | LIN-UART clock I/O pin                                          |
| 10      | P01             | E                       | General-purpose I/O port                                        |
| 10      | AN01            | E                       | A/D converter analog input pin                                  |
|         | P03             |                         | General-purpose I/O port                                        |
| 11      | INT03           | Е                       | External interrupt input pin                                    |
| ''      | AN03            |                         | A/D converter analog input pin                                  |
|         | SOT             |                         | LIN-UART data output pin                                        |
|         | P04             |                         | General-purpose I/O port                                        |
|         | INT04           |                         | External interrupt input pin                                    |
| 12      | AN04            | F                       | A/D converter analog input pin                                  |
| 12      | SIN             | Г                       | LIN-UART data input pin                                         |
|         | HCLK1           |                         | External clock input pin                                        |
|         | EC0             |                         | 8/16-bit composite timer ch. 0 clock input pin                  |




| Pin no. | Pin name | I/O<br>circuit<br>type* | Function                                       |  |
|---------|----------|-------------------------|------------------------------------------------|--|
|         | P05      |                         | General-purpose I/O port<br>High-current port  |  |
|         | INT05    | Ī _                     | External interrupt input pin                   |  |
| 13      | AN05     | E                       | A/D converter analog input pin                 |  |
|         | TO00     |                         | 8/16-bit composite timer ch. 0 clock input pin |  |
|         | HCLK2    |                         | External clock input pin                       |  |
|         | P06      | G                       | General-purpose I/O port<br>High-current port  |  |
| 14      | 14 INT06 |                         | External interrupt input pin                   |  |
|         | TO01     |                         | 8/16-bit composite timer ch. 0 clock input pin |  |
| 15      | P07      | G                       | General-purpose I/O port                       |  |
| 15      | INT07    | G                       | External interrupt input pin                   |  |
|         | P12      |                         | General-purpose I/O port                       |  |
| 16      | EC0      | Н                       | 8/16-bit composite timer ch. 0 clock input pin |  |
| ı       | DBG      |                         | DBG input pin                                  |  |


<sup>\*:</sup> For the I/O circuit types, see "6. I/O Circuit Type".



## 6. I/O Circuit Type









## 7. Notes on Device Handling

### Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.

In a CMOS IC, if a voltage higher than  $V_{CC}$  or a voltage lower than  $V_{SS}$  is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in 13.1 Absolute Maximum Ratings of "Electrical Characteristics" is applied to the  $V_{CC}$  pin or the  $V_{SS}$  pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

#### Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the  $V_{CC}$  power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in  $V_{CC}$  ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard  $V_{CC}$  value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

#### Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

#### 8. Pin Connection

#### Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k $\Omega$ . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

#### Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the  $V_{CC}$  pin and the  $V_{SS}$  pin to the power supply and ground outside the device. In addition, connect the current supply source to the  $V_{CC}$  pin and the  $V_{SS}$  pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1  $\mu F$  as a bypass capacitor between the  $V_{CC}$  pin and the  $V_{SS}$  pin at a location close to this device.

#### DBG pin

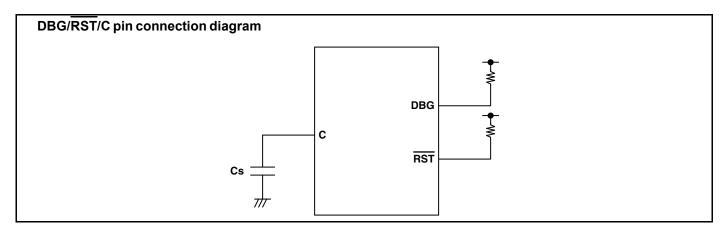
Connect the DBG pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the  $V_{CC}$  or  $V_{SS}$  pin when designing the layout of the printed circuit board.

The DBG pin should not stay at "L" level after power-on until the reset output is released.

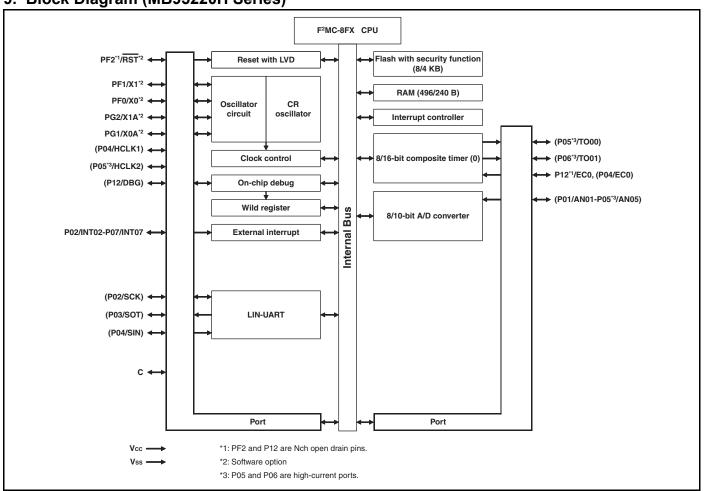
#### RST pin

Connect the RST pin directly to an external pull-up resistor.


To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the  $\overline{RST}$  pin and the  $V_{CC}$  or  $V_{SS}$  pin when designing the layout of the printed circuit board.

The RST/PF2 pin functions as the reset input/output pin after power-on. In addition, the reset output of the RST/PF2 pin can be enabled by the RSTOE bit of the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit of the SYSC register.



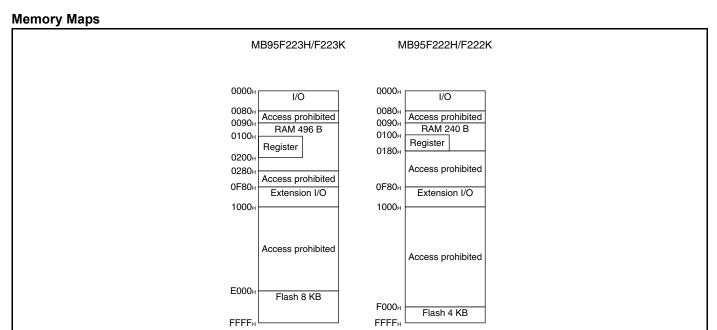

## C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the  $V_{CC}$  pin must have a capacitance larger than  $C_S$ . For the connection to a smoothing capacitor  $C_S$ , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and  $C_S$  and the distance between  $C_S$  and the  $V_{SS}$  pin when designing the layout of a printed circuit board.





## 9. Block Diagram (MB95220H Series)






## 10. CPU Core

## **Memory Space**

The memory space of the MB95220H Series is 64 KB in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95220H Series are shown below.





## 11. I/O Map (MB95220H Series)

| Address                                   | Register abbreviation | Register name                                               | R/W | Initial value         |
|-------------------------------------------|-----------------------|-------------------------------------------------------------|-----|-----------------------|
| 0000 <sub>H</sub>                         | PDR0                  | Port 0 data register                                        | R/W | 00000000 <sub>B</sub> |
| 0001 <sub>H</sub>                         | DDR0                  | Port 0 direction register                                   | R/W | 00000000 <sub>B</sub> |
| 0002 <sub>H</sub>                         | PDR1                  | Port 1 data register                                        | R/W | 00000000 <sub>B</sub> |
| 0003 <sub>H</sub>                         | DDR1                  | Port 1 direction register                                   | R/W | 00000000 <sub>B</sub> |
| 0004 <sub>H</sub>                         | _                     | (Disabled)                                                  |     | _                     |
| 0005 <sub>H</sub>                         | WATR                  | Oscillation stabilization wait time setting register        | R/W | 11111111 <sub>B</sub> |
| 0006 <sub>H</sub>                         | _                     | (Disabled)                                                  | _   | _                     |
| 0007 <sub>H</sub>                         | SYCC                  | System clock control register                               | R/W | 0000X011 <sub>B</sub> |
| 0008 <sub>H</sub>                         | STBC                  | Standby control register                                    | R/W | 00000XXX <sub>B</sub> |
| 0009 <sub>H</sub>                         | RSRR                  | Reset source register                                       | R   | XXXXXXXX <sub>B</sub> |
| 000A <sub>H</sub>                         | TBTC                  | Timebase timer control register                             | R/W | 00000000 <sub>B</sub> |
| 000B <sub>H</sub>                         | WPCR                  | Watch prescaler control register                            | R/W | 00000000 <sub>B</sub> |
| 000C <sub>H</sub>                         | WDTC                  | Watchdog timer control register                             | R/W | 00000000 <sub>B</sub> |
| 000D <sub>H</sub>                         | SYCC2                 | System clock control register 2                             | R/W | XX100011 <sub>B</sub> |
| 000E <sub>H</sub> to<br>0015 <sub>H</sub> | _                     | (Disabled)                                                  | _   | _                     |
| 0016 <sub>H</sub>                         | _                     | (Disabled)                                                  | _   | _                     |
| 0017 <sub>H</sub>                         | _                     | (Disabled)                                                  | _   | _                     |
| 0018 <sub>H</sub> to<br>0027 <sub>H</sub> | _                     | (Disabled)                                                  | _   | _                     |
| 0028 <sub>H</sub>                         | PDRF                  | Port F data register                                        | R/W | 00000000 <sub>B</sub> |
| 0029 <sub>H</sub>                         | DDRF                  | Port F direction register                                   | R/W | 00000000 <sub>B</sub> |
| 002A <sub>H</sub>                         | PDRG                  | Port G data register                                        | R/W | 00000000 <sub>B</sub> |
| 002B <sub>H</sub>                         | DDRG                  | Port G direction register                                   | R/W | 00000000 <sub>B</sub> |
| 002C <sub>H</sub>                         | PUL0                  | Port 0 pull-up register                                     | R/W | 00000000 <sub>B</sub> |
| 002D <sub>H</sub> to<br>0034 <sub>H</sub> |                       | (Disabled)                                                  | _   | _                     |
| 0035 <sub>H</sub>                         | PULG                  | Port G pull-up register                                     | R/W | 00000000 <sub>B</sub> |
| 0036 <sub>H</sub>                         | T01CR1                | 8/16-bit composite timer 01 status control register 1 ch. 0 | R/W | 00000000 <sub>B</sub> |
| 0037 <sub>H</sub>                         | T00CR1                | 8/16-bit composite timer 00 status control register 1 ch. 0 | R/W | 00000000 <sub>B</sub> |
| 0038 <sub>H</sub>                         | _                     | (Disabled)                                                  | _   | _                     |
| 0039 <sub>H</sub>                         | _                     | (Disabled)                                                  | _   | _                     |
| 003A <sub>H</sub> to<br>0048 <sub>H</sub> | _                     | (Disabled)                                                  | _   | _                     |
| 0049 <sub>H</sub>                         | EIC10                 | External interrupt circuit control register ch. 2/ch. 3     | R/W | 00000000 <sub>B</sub> |



| Address                                   | Register abbreviation | Register name                                                     | R/W | Initial value         |
|-------------------------------------------|-----------------------|-------------------------------------------------------------------|-----|-----------------------|
| 004A <sub>H</sub>                         | EIC20                 | External interrupt circuit control register ch. 4/ch. 5           | R/W | 00000000 <sub>B</sub> |
| 004B <sub>H</sub>                         | EIC30                 | External interrupt circuit control register ch. 6/ch. 7           | R/W | 00000000 <sub>B</sub> |
| 004C <sub>H</sub> to<br>004F <sub>H</sub> | _                     | (Disabled)                                                        | _   | _                     |
| 0050 <sub>H</sub>                         | SCR                   | LIN-UART serial control register                                  | R/W | 00000000 <sub>B</sub> |
| 0051 <sub>H</sub>                         | SMR                   | LIN-UART serial mode register                                     | R/W | 00000000 <sub>B</sub> |
| 0052 <sub>H</sub>                         | SSR                   | LIN-UART serial status register                                   | R/W | 00001000 <sub>B</sub> |
| 0053 <sub>H</sub>                         | RDR/TDR               | LIN-UART receive/transmit data register                           | R/W | 00000000 <sub>B</sub> |
| 0054 <sub>H</sub>                         | ESCR                  | LIN-UART extended status control register                         | R/W | 00000100 <sub>B</sub> |
| 0055 <sub>H</sub>                         | ECCR                  | LIN-UART extended communication control register                  | R/W | 000000XX <sub>B</sub> |
| 0056 <sub>H</sub> to<br>006B <sub>H</sub> | _                     | (Disabled)                                                        | _   | _                     |
| 006C <sub>H</sub>                         | ADC1                  | 8/10-bit A/D converter control register 1                         | R/W | 00000000 <sub>B</sub> |
| 006D <sub>H</sub>                         | ADC2                  | 8/10-bit A/D converter control register 2                         | R/W | 00000000 <sub>B</sub> |
| 006E <sub>H</sub>                         | ADDH                  | 8/10-bit A/D converter data register (Upper)                      | R/W | 00000000 <sub>B</sub> |
| 006F <sub>H</sub>                         | ADDL                  | 8/10-bit A/D converter data register (Lower)                      | R/W | 00000000 <sub>B</sub> |
| 0070 <sub>H</sub> ,<br>0071 <sub>H</sub>  | _                     | (Disabled)                                                        | _   | _                     |
| 0072 <sub>H</sub>                         | FSR                   | Flash memory status register                                      | R/W | 000X0000 <sub>B</sub> |
| 0073 <sub>H</sub> to<br>0075 <sub>H</sub> | _                     | (Disabled)                                                        | _   | _                     |
| 0076 <sub>H</sub>                         | WREN                  | Wild register address compare enable register                     | R/W | 00000000 <sub>B</sub> |
| 0077 <sub>H</sub>                         | WROR                  | Wild register data test setting register                          | R/W | 00000000 <sub>B</sub> |
| 0078 <sub>H</sub>                         | _                     | Mirror of register bank pointer (RP) and direct bank pointer (DP) | _   | _                     |
| 0079 <sub>H</sub>                         | ILR0                  | Interrupt level setting register 0                                | R/W | 11111111 <sub>B</sub> |
| 007A <sub>H</sub>                         | ILR1                  | Interrupt level setting register 1                                | R/W | 11111111 <sub>B</sub> |
| 007B <sub>H</sub>                         | ILR2                  | Interrupt level setting register 2                                | R/W | 11111111 <sub>B</sub> |
| 007C <sub>H</sub>                         | _                     | (Disabled)                                                        | _   | _                     |
| 007D <sub>H</sub>                         | ILR4                  | Interrupt level setting register 4                                | R/W | 11111111 <sub>B</sub> |
| 007E <sub>H</sub>                         | ILR5                  | Interrupt level setting register 5                                | R/W | 11111111 <sub>B</sub> |
| 007F <sub>H</sub>                         | _                     | (Disabled)                                                        | _   | _                     |
| 0F80 <sub>H</sub>                         | WRARH0                | Wild register address setting register (Upper) ch. 0              | R/W | 00000000 <sub>B</sub> |



| Address                                   | Register abbreviation | Register name                                                    | R/W | Initial value         |
|-------------------------------------------|-----------------------|------------------------------------------------------------------|-----|-----------------------|
| 0F81 <sub>H</sub>                         | WRARL0                | Wild register address setting register (Lower) ch. 0             | R/W | 00000000 <sub>B</sub> |
| 0F82 <sub>H</sub>                         | WRDR0                 | Wild register data setting register ch. 0                        | R/W | 00000000 <sub>B</sub> |
| 0F83 <sub>H</sub>                         | WRARH1                | Wild register address setting register (Upper) ch. 1             | R/W | 00000000 <sub>B</sub> |
| 0F84 <sub>H</sub>                         | WRARL1                | Wild register address setting register (Lower) ch. 1             | R/W | 00000000 <sub>B</sub> |
| 0F85 <sub>H</sub>                         | WRDR1                 | Wild register data setting register ch. 1                        | R/W | 00000000 <sub>B</sub> |
| 0F86 <sub>H</sub>                         | WRARH2                | Wild register address setting register (Upper) ch. 2             | R/W | 00000000 <sub>B</sub> |
| 0F87 <sub>H</sub>                         | WRARL2                | Wild register address setting register (Lower) ch. 2             | R/W | 00000000 <sub>B</sub> |
| 0F88 <sub>H</sub>                         | WRDR2                 | Wild register data setting register ch. 2                        | R/W | 00000000 <sub>B</sub> |
| 0F89 <sub>H</sub> to<br>0F91 <sub>H</sub> | _                     | (Disabled)                                                       |     | _                     |
| 0F92 <sub>H</sub>                         | T01CR0                | 8/16-bit composite timer 01 status control register 0 ch. 0      | R/W | 00000000 <sub>B</sub> |
| 0F93 <sub>H</sub>                         | T00CR0                | 8/16-bit composite timer 00 status control register 0 ch. 0      | R/W | 00000000 <sub>B</sub> |
| 0F94 <sub>H</sub>                         | T01DR                 | 8/16-bit composite timer 01 data register ch. 0                  | R/W | 00000000 <sub>B</sub> |
| 0F95 <sub>H</sub>                         | T00DR                 | 8/16-bit composite timer 00 data register ch. 0                  | R/W | 00000000 <sub>B</sub> |
| 0F96 <sub>H</sub>                         | TMCR0                 | 8/16-bit composite timer 00/01 timer mode control register ch. 0 | R/W | 00000000 <sub>B</sub> |
| 0F97 <sub>H</sub>                         | _                     | (Disabled)                                                       | _   | _                     |
| 0F98 <sub>H</sub>                         | _                     | (Disabled)                                                       | _   | _                     |
| 0F99 <sub>H</sub>                         | _                     | (Disabled)                                                       | _   | _                     |
| 0F9A <sub>H</sub>                         | _                     | (Disabled)                                                       | _   | _                     |
| 0F9B <sub>H</sub>                         | _                     | (Disabled)                                                       | _   | _                     |
| 0F9C <sub>H</sub> to<br>0FBB <sub>H</sub> | _                     | (Disabled)                                                       |     | _                     |
| 0FBC <sub>H</sub>                         | BGR1                  | LIN-UART baud rate generator register 1                          | R/W | 00000000 <sub>B</sub> |
| 0FBD <sub>H</sub>                         | BGR0                  | LIN-UART baud rate generator register 0                          | R/W | 00000000 <sub>B</sub> |
| 0FBE <sub>H</sub> to<br>0FC2 <sub>H</sub> | _                     | (Disabled)                                                       |     | _                     |
| 0FC3 <sub>H</sub>                         | AIDRL                 | A/D input disable register (Lower)                               | R/W | 00000000 <sub>B</sub> |
| 0FC4 <sub>H</sub> to<br>0FE3 <sub>H</sub> | _                     | (Disabled)                                                       |     | _                     |
| 0FE4 <sub>H</sub>                         | CRTH                  | Main CR clock trimming register (Upper)                          | R/W | 1XXXXXXX <sub>B</sub> |
| 0FE5 <sub>H</sub>                         | CRTL                  | Main CR clock trimming register (Lower)                          | R/W | 000XXXXX <sub>B</sub> |



| Address                                   | Register abbreviation | Register name                                | R/W | Initial value         |
|-------------------------------------------|-----------------------|----------------------------------------------|-----|-----------------------|
| 0FE6 <sub>H</sub> ,<br>0FE7 <sub>H</sub>  | _                     | (Disabled)                                   | _   | _                     |
| 0FE8 <sub>H</sub>                         | SYSC                  | System configuration register                | R/W | 11000011 <sub>B</sub> |
| 0FE9 <sub>H</sub>                         | CMCR                  | Clock monitoring control register            | R/W | 00000000 <sub>B</sub> |
| 0FEA <sub>H</sub>                         | CMDR                  | Clock monitoring data register               | R/W | 00000000 <sub>B</sub> |
| 0FEB <sub>H</sub>                         | WDTH                  | Watchdog timer selection ID register (Upper) | R/W | XXXXXXXX <sub>B</sub> |
| 0FEC <sub>H</sub>                         | WDTL                  | Watchdog timer selection ID register (Lower) | R/W | XXXXXXXX <sub>B</sub> |
| 0FED <sub>H</sub>                         | _                     | (Disabled)                                   | _   | _                     |
| 0FEE <sub>H</sub>                         | ILSR                  | Input level select register                  | R/W | 00000000 <sub>B</sub> |
| 0FEF <sub>H</sub> to<br>0FFF <sub>H</sub> | _                     | (Disabled)                                   | _   | _                     |

## R/W access symbols

R/W : Readable / Writable

R : Read only W : Write only

## Initial value symbols

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

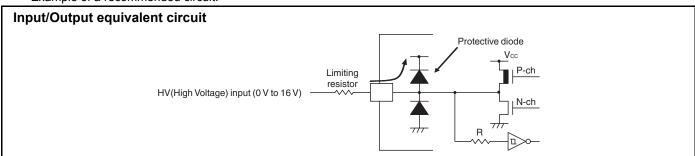
Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an undefined value is returned.



## 12. Interrupt Source Table (MB95220H Series)

|                                        | l44                            | Vector tab        | le address        | Dit                                          | Priority order of                                                       |
|----------------------------------------|--------------------------------|-------------------|-------------------|----------------------------------------------|-------------------------------------------------------------------------|
| Interrupt source                       | Interrupt<br>request<br>number | Upper             | Lower             | Bit name of interrupt level setting register | interrupt sources of<br>the same level<br>(occurring<br>simultaneously) |
| External interrupt ch. 4               | IRQ0                           | FFFA <sub>H</sub> | FFFB <sub>H</sub> | L00 [1:0]                                    | High                                                                    |
| External interrupt ch. 5               | IRQ1                           | FFF8 <sub>H</sub> | FFF9 <sub>H</sub> | L01 [1:0]                                    |                                                                         |
| External interrupt ch. 2               | IDO2                           | FFF6              |                   | 1.02.14.01                                   | <b>1</b> ▲                                                              |
| External interrupt ch. 6               | IRQ2                           | FFF6 <sub>H</sub> | FFF7 <sub>H</sub> | L02 [1:0]                                    |                                                                         |
| External interrupt ch. 3               | IDO2                           | FFF4              | FFFF              | 1.02.14.01                                   | 1                                                                       |
| External interrupt ch. 7               | IRQ3                           | FFF4 <sub>H</sub> | FFF5 <sub>H</sub> | L03 [1:0]                                    |                                                                         |
| _                                      | IRQ4                           | FFF2 <sub>H</sub> | FFF3 <sub>H</sub> | L04 [1:0]                                    |                                                                         |
| 8/16-bit composite timer ch. 0 (Lower) | IRQ5                           | FFF0 <sub>H</sub> | FFF1 <sub>H</sub> | L05 [1:0]                                    | 1                                                                       |
| 8/16-bit composite timer ch. 0 (Upper) | IRQ6                           | FFEE <sub>H</sub> | FFEF <sub>H</sub> | L06 [1:0]                                    | 1                                                                       |
| LIN-UART (reception)                   | IRQ7                           | FFEC <sub>H</sub> | FFED <sub>H</sub> | L07 [1:0]                                    | 1                                                                       |
| LIN-UART (transmission)                | IRQ8                           | FFEA <sub>H</sub> | FFEB <sub>H</sub> | L08 [1:0]                                    | 1                                                                       |
| _                                      | IRQ9                           | FFE8 <sub>H</sub> | FFE9 <sub>H</sub> | L09 [1:0]                                    |                                                                         |
| _                                      | IRQ10                          | FFE6 <sub>H</sub> | FFE7 <sub>H</sub> | L10 [1:0]                                    | 1                                                                       |
| _                                      | IRQ11                          | FFE4 <sub>H</sub> | FFE5 <sub>H</sub> | L11 [1:0]                                    | 1                                                                       |
| _                                      | IRQ12                          | FFE2 <sub>H</sub> | FFE3 <sub>H</sub> | L12 [1:0]                                    | 1                                                                       |
| _                                      | IRQ13                          | FFE0 <sub>H</sub> | FFE1 <sub>H</sub> | L13 [1:0]                                    | 1                                                                       |
| _                                      | IRQ14                          | FFDE <sub>H</sub> | FFDF <sub>H</sub> | L14 [1:0]                                    | 1                                                                       |
| _                                      | IRQ15                          | FFDC <sub>H</sub> | FFDD <sub>H</sub> | L15 [1:0]                                    | 1                                                                       |
| _                                      | IRQ16                          | FFDA <sub>H</sub> | FFDB <sub>H</sub> | L16 [1:0]                                    | 1                                                                       |
| _                                      | IRQ17                          | FFD8 <sub>H</sub> | FFD9 <sub>H</sub> | L17 [1:0]                                    | 1                                                                       |
| 8/10-bit A/D converter                 | IRQ18                          | FFD6 <sub>H</sub> | FFD7 <sub>H</sub> | L18 [1:0]                                    |                                                                         |
| Timebase timer                         | IRQ19                          | FFD4 <sub>H</sub> | FFD5 <sub>H</sub> | L19 [1:0]                                    | 1                                                                       |
| Watch prescaler                        | IRQ20                          | FFD2 <sub>H</sub> | FFD3 <sub>H</sub> | L20 [1:0]                                    |                                                                         |
| _                                      | IRQ21                          | FFD0 <sub>H</sub> | FFD1 <sub>H</sub> | L21 [1:0]                                    | <u> </u>                                                                |
| _                                      | IRQ22                          | FFCE <sub>H</sub> | FFCF <sub>H</sub> | L22 [1:0]                                    | ▼                                                                       |
| Flash memory                           | IRQ23                          | FFCC <sub>H</sub> | FFCD <sub>H</sub> | L23 [1:0]                                    | Low                                                                     |




## 13. Electrical Characteristics

## 13.1 Absolute Maximum Ratings

| Doromotor                                 | Cumbal                 | Rating               |                       | l lmi4 | Domonico                                                                                  |  |  |
|-------------------------------------------|------------------------|----------------------|-----------------------|--------|-------------------------------------------------------------------------------------------|--|--|
| Parameter                                 | Symbol                 | Min                  | Max                   | Unit   | Remarks                                                                                   |  |  |
| Power supply voltage*1                    | V <sub>CC</sub>        | V <sub>SS</sub> -0.3 | V <sub>SS</sub> + 6   | V      |                                                                                           |  |  |
|                                           | V <sub>I1</sub>        | V <sub>SS</sub> -0.3 | V <sub>CC</sub> + 0.3 | V      | Other than PF2*2                                                                          |  |  |
| Input voltage*1                           | V <sub>I2</sub>        | V <sub>SS</sub> -0.3 | 10.5                  | V      | PF2                                                                                       |  |  |
| Output voltage*1                          | Vo                     | V <sub>SS</sub> -0.3 | V <sub>SS</sub> + 6   | V      | *2                                                                                        |  |  |
| Maximum clamp current                     | I <sub>CLAMP</sub>     | -2                   | + 2                   | mA     | Applicable to specific pins*3                                                             |  |  |
| Total maximum clamp<br>current            | SII <sub>CLAMP</sub> I | _                    | 20                    | mA     | Applicable to specific pins*3                                                             |  |  |
| "L" level maximum output                  | I <sub>OL1</sub>       |                      | 15                    | m 1    | Other than P05, P06                                                                       |  |  |
| current                                   | I <sub>OL2</sub>       | _                    | 15                    | mA     | P05, P06                                                                                  |  |  |
| "L" level average current                 | I <sub>OLAV1</sub>     |                      | 4                     | - mA   | Other than P05, P06 Average output current = operating current × operating ratio (1 pin)  |  |  |
| L level average current                   | I <sub>OLAV2</sub>     | _                    | 12                    | IIIA   | P05, P06 Average output current = operating current × operating ratio (1 pin)             |  |  |
| "L" level total maximum output current    | SI <sub>OL</sub>       | _                    | 100                   | mA     |                                                                                           |  |  |
| "L" level total average output<br>current | SI <sub>OLAV</sub>     | _                    | 50                    | mA     | Total average output current = operating current × operating ratio (Total number of pins) |  |  |
| "H" level maximum output                  | I <sub>OH1</sub>       |                      | -15                   | A      | Other than P05, P06                                                                       |  |  |
| current                                   | I <sub>OH2</sub>       | _                    | -15                   | - mA   | P05, P06                                                                                  |  |  |
| "L" lovel everage current                 | I <sub>OHAV1</sub>     |                      | -4                    | m A    | Other than P05, P06 Average output current = operating current × operating ratio (1 pin)  |  |  |
| "H" level average current                 | I <sub>OHAV2</sub>     | _                    | -8                    | - mA   | P05, P06 Average output current = operating current × operating ratio (1 pin)             |  |  |
| "H" level total maximum output current    | SI <sub>OH</sub>       | _                    | -100                  | mA     |                                                                                           |  |  |
| 'H" level total average output<br>current | SI <sub>OHAV</sub>     | _                    | -50                   | mA     | Total average output current = operating current × operating ratio (Total number of pins) |  |  |
| Power consumption                         | Pd                     | _                    | 320                   | mW     |                                                                                           |  |  |
| Operating temperature                     | T <sub>A</sub>         | -40                  | + 85                  | °C     |                                                                                           |  |  |
| Storage temperature                       | Tstg                   | -55                  | + 150                 | °C     |                                                                                           |  |  |

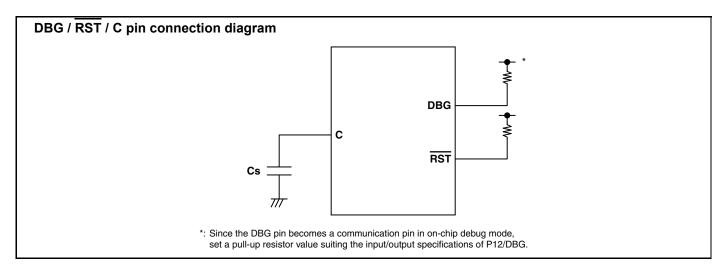


- \*1: The parameter is based on  $V_{SS}$  = 0.0 V.
- \*2: V<sub>I</sub> and V<sub>O</sub> must not exceed V<sub>CC</sub>+0.3 V. V<sub>I</sub> must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I<sub>CLAMP</sub> rating is used instead of the V<sub>I</sub> rating.
- \*3: Applicable to the following pins: P01 to P07, PG1, PG2, PF0, PF1
  - · Use under recommended operating conditions.
  - · Use with DC voltage (current).
  - The HV (High Voltage) signal is an input signal exceeding the V<sub>CC</sub> voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
  - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
  - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential
    may pass through the protective diode to increase the potential of the V<sub>CC</sub> pin, affecting other devices.
  - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
  - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may
    not be sufficient to enable a power-on reset.
  - Do not leave the HV (High Voltage) input pin unconnected.
  - Example of a recommended circuit:



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Document Number: 002-07513 Rev. \*A Page 21 of 58




## 13.2 Recommended Operating Conditions

 $(V_{SS} = 0.0 V)$ 

| Parameter           | Symbol          | Value   |                                 | Unit | Remarks                       |                               |  |  |  |
|---------------------|-----------------|---------|---------------------------------|------|-------------------------------|-------------------------------|--|--|--|
| Farameter           | Syllibol        | Min Max |                                 | Vei  | Kemarks                       |                               |  |  |  |
|                     |                 | 2.4*1*2 | 5.5* <sup>1</sup>               |      | In normal operation           | Other than on ship debug made |  |  |  |
| Power supply        | \ \/            | 2.3     | 5.5 V Hold condition in stop mo |      | Hold condition in stop mode   | Other than on-chip debug mode |  |  |  |
| voltage             | V <sub>CC</sub> | 2.9     | 5.5                             | V    | In normal operation           | On this debug made            |  |  |  |
|                     |                 | 2.3     | 5.5                             |      | Hold condition in stop mode   | On-chip debug mode            |  |  |  |
| Smoothing capacitor | C <sub>S</sub>  | 0.022   | 1                               | μF   | *3                            |                               |  |  |  |
| Operating           | т               | -40     | +85                             | °C   | Other than on-chip debug mode |                               |  |  |  |
| temperature         | T <sub>A</sub>  | +5      | +35                             |      | On-chip debug mode            |                               |  |  |  |

- \*1: The value varies depending on the operating frequency, the machine clock and the analog guaranteed range.
- \*2: The value is 2.88 V when the low-voltage detection reset is used.
- \*3: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The bypass capacitor for the V<sub>CC</sub> pin must have a capacitance larger than C<sub>S</sub>. For the connection to a smoothing capacitor C<sub>S</sub>, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C<sub>S</sub> and the distance between C<sub>S</sub> and the V<sub>SS</sub> pin when designing the layout of a printed circuit board.



WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device.

All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges.

Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

Document Number: 002-07513 Rev. \*A



## 13.3 DC Characteristics

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| _                                                      |                   |                                                 |                                          |                      | Value | .0 121070, 1          |          |                                                            |
|--------------------------------------------------------|-------------------|-------------------------------------------------|------------------------------------------|----------------------|-------|-----------------------|----------|------------------------------------------------------------|
| Parameter                                              | Symbol            | Pin name                                        | Condition                                | Min                  | Тур   | Max                   | Unit     | Remarks                                                    |
|                                                        | V <sub>IHI</sub>  | P04                                             | *1                                       | 0.7 V <sub>CC</sub>  | _     | V <sub>CC</sub> +0.3  | ٧        | When CMOS input<br>level (hysteresis input)<br>is selected |
| "H" level input<br>voltage                             | $V_{IHS}$         | P01 to P07, P12,<br>PF0, PF1,<br>PG1, PG2       | *1                                       | 0.8 V <sub>CC</sub>  | _     | V <sub>CC</sub> +0.3  | <b>V</b> | Hysteresis input                                           |
|                                                        | V <sub>IHM</sub>  | PF2                                             | _                                        | 0.7 V <sub>CC</sub>  |       | 10.5                  | V        | Hysteresis input*3                                         |
| (1 )) I                                                | $V_{IL}$          | P04                                             | *1                                       | V <sub>SS</sub> -0.3 | _     | 0.3 V <sub>CC</sub>   | <b>V</b> | When CMOS input<br>level (hysteresis input)<br>is selected |
| "L" level input<br>voltage                             | $V_{ILS}$         | P01 to P07, P12,<br>PF0, PF1,<br>PG1, PG2       | *1                                       |                      | _     | 0.2 V <sub>CC</sub>   | <b>V</b> | Hysteresis input                                           |
|                                                        | $V_{ILM}$         | PF2                                             | _                                        | V <sub>SS</sub> -0.3 | _     | 0.3 V <sub>CC</sub>   | V        | Hysteresis input                                           |
| Open-drain output application voltage                  | $V_D$             | PF2, P12                                        | _                                        | V <sub>SS</sub> -0.3 | _     | V <sub>SS</sub> + 5.5 | ٧        |                                                            |
| "H" level output voltage                               | V <sub>OH1</sub>  | Output pins other<br>than P05, P06,<br>P12, PF2 | I <sub>OH</sub> = -4 mA                  | V <sub>CC</sub> -0.5 | _     | _                     | ٧        |                                                            |
|                                                        | V <sub>OH2</sub>  | P05, P06                                        | I <sub>OH</sub> = -8 mA                  | V <sub>CC</sub> -0.5 | _     | _                     | ٧        |                                                            |
| "L" level output voltage                               | $V_{OL1}$         | Output pins other than P05, P06                 | I <sub>OL</sub> = 4 mA                   | _                    | _     | 0.4                   | ٧        |                                                            |
| voitage                                                | $V_{OL2}$         | P05, P06                                        | I <sub>OL</sub> = 12 mA                  |                      |       | 0.4                   | ٧        |                                                            |
| Input leak<br>current (Hi-Z<br>output leak<br>current) | l <sub>LI</sub>   | All input pins                                  | 0.0 V < V <sub>I</sub> < V <sub>CC</sub> | -5                   | _     | +5                    | μA       | When pull-up resistance is disabled                        |
| Pull-up<br>resistance                                  | R <sub>PULL</sub> | P01 to P07, PG1,<br>PG2                         | V <sub>I</sub> = 0 V                     | 25                   | 50    | 100                   | kΩ       | When pull-up resistance is enabled                         |
| Input capacitance                                      | C <sub>IN</sub>   | Other than V <sub>CC</sub> and V <sub>SS</sub>  | f = 1 MHz                                | _                    | 5     | 15                    | pF       |                                                            |



 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

|                                     |                    | <b>D</b> :                                                                                      | <b>.</b>                                                                                                          |     | Value |      |      | Domonico                                          |
|-------------------------------------|--------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|-------|------|------|---------------------------------------------------|
| Parameter                           | Symbol             | Pin name                                                                                        | Condition                                                                                                         | Min | Тур   | Max  | Unit | Remarks                                           |
|                                     |                    |                                                                                                 | V <sub>CC</sub> = 5.5 V<br>F <sub>CH</sub> = 32 MHz                                                               | _   | 13    | 17   | mA   | Flash memory product (except writing and erasing) |
|                                     | I <sub>CC</sub>    |                                                                                                 | F <sub>MP</sub> = 16 MHz<br>Main clock mode<br>(divided by 2)                                                     | _   | 33.5  | 39.5 | mA   | Flash memory product (at writing and erasing)     |
|                                     |                    |                                                                                                 |                                                                                                                   | _   | 15    | 21   | mA   | At A/D conversion                                 |
| Power supply current*2  Iccls  Iccr |                    | $V_{CC}$ = 5.5 V<br>$F_{CH}$ = 32 MHz<br>$F_{MP}$ = 16 MHz<br>Main sleep mode<br>(divided by 2) | _                                                                                                                 | 5.5 | 9     | mA   |      |                                                   |
|                                     | I <sub>CCL</sub>   | V <sub>CC</sub><br>(External clock<br>operation)                                                | $V_{CC}$ = 5.5 V<br>$F_{CL}$ = 32 kHz<br>$F_{MPL}$ = 16 kHz<br>Subclock mode<br>(divided by 2)<br>$T_{A}$ = +25°C | _   | 65    | 153  | μΑ   |                                                   |
|                                     | I <sub>CCLS</sub>  |                                                                                                 | $V_{CC}$ = 5.5 V<br>$F_{CL}$ = 32 kHz<br>$F_{MPL}$ = 16 kHz<br>Subsleep mode<br>(divided by 2)<br>$T_A$ = +25°C   | _   | 10    | 84   | μΑ   |                                                   |
|                                     | I <sub>CCT</sub>   |                                                                                                 | $V_{CC}$ = 5.5 V<br>$F_{CL}$ = 32 kHz<br>Watch mode<br>Main stop mode<br>$T_A$ = +25°C                            | _   | 5     | 30   | μΑ   |                                                   |
|                                     | I <sub>CCMCR</sub> | V <sub>CC</sub>                                                                                 | $V_{CC}$ = 5.5 V<br>$F_{CRH}$ = 10 MHz<br>$F_{MP}$ = 10 MHz<br>Main CR clock<br>mode                              | _   | 8.6   | _    | mA   |                                                   |
|                                     | Iccscr             |                                                                                                 | V <sub>CC</sub> = 5.5 V<br>Sub-CR clock mode<br>(divided by 2)<br>T <sub>A</sub> = +25°C                          | _   | 110   | 410  | μA   |                                                   |



 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| Parameter                                                                  | Symbol            | Pin name                                                            | Condition                                                                                 | ( - (( | Value | 1070, 133 | Unit | Remarks                                   |
|----------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------|-------|-----------|------|-------------------------------------------|
| raiailletei                                                                | Syllibol          | Fill Hallie                                                         | Condition                                                                                 | Min    | Тур   | Max       |      | Remarks                                   |
|                                                                            | I <sub>CCTS</sub> | V <sub>CC</sub><br>(External clock<br>operation)                    | $V_{CC}$ = 5.5 V<br>$F_{CH}$ = 32 MHz<br>Timebase timer<br>mode<br>$T_{A}$ = +25°C        | _      | 1.1   | 3         | mA   |                                           |
| Power supply current*2  I <sub>CCH</sub> I <sub>LVD</sub> I <sub>CRH</sub> | I <sub>CCH</sub>  | operation)                                                          | $V_{CC}$ = 5.5 V<br>Substop mode<br>$T_A$ = +25°C                                         | _      | 3.5   | 22.5      | μA   | Main stop mode for single clock selection |
|                                                                            |                   | Current<br>consumption for<br>low-voltage<br>detection circuit only | _                                                                                         | 37     | 54    | μΑ        |      |                                           |
|                                                                            | I <sub>CRH</sub>  | V <sub>CC</sub>                                                     | Current<br>consumption for the<br>internal main CR<br>oscillator                          | _      | 0.5   | 0.6       | mA   |                                           |
|                                                                            | I <sub>CRL</sub>  |                                                                     | Current<br>consumption for the<br>internal sub-CR<br>oscillator oscillating<br>at 100 kHz | _      | 20    | 72        | μΑ   |                                           |

<sup>\*1:</sup> The input level of P04 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

- See "13.4. AC Characteristics: 13.4.1. Clock Timing" for  ${\rm F}_{\rm CH}$  and  ${\rm F}_{\rm CL}$
- See "13.4. AC Characteristics: 13.4.2. Source Clock/Machine Clock" for F<sub>MP</sub> and F<sub>MPL</sub>.

Document Number: 002-07513 Rev. \*A

<sup>\*2: •</sup> The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (I<sub>LVD</sub>) to one of the value from I<sub>CC</sub> to I<sub>CCH</sub>. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (I<sub>CRH</sub>, I<sub>CRL</sub>) and a specified value. In on-chip debug mode, the CR oscillator (I<sub>CRH</sub>) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.

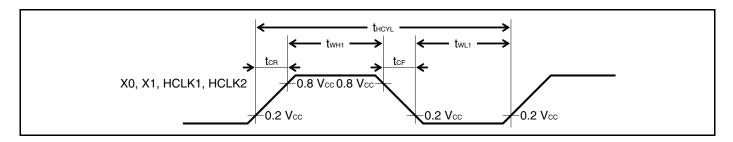
<sup>\*3:</sup> PF2 act as high voltage supply for the flash memory during program and erase. It can tolerate high voltage input. For details, see section "13.6. Flash Memory Program/Erase Characteristics".



## 13.4 AC Characteristics

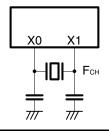
13.4.1 Clock Timing

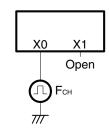
 $(V_{CC} = 2.4 \text{ V to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

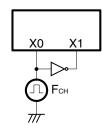

| Doromotor        | Cumbal            | Din nama                   | Condition |      | Value  |       | Unit | Domorko                                                                                          |  |
|------------------|-------------------|----------------------------|-----------|------|--------|-------|------|--------------------------------------------------------------------------------------------------|--|
| Parameter        | Symbol            | Pin name                   | Condition | Min  | Тур    | Max   | Unit | Remarks                                                                                          |  |
|                  |                   | X0, X1                     | _         | 1    | 1      | 16.25 | MHz  | When the main oscillation circuit is used                                                        |  |
|                  | F <sub>CH</sub>   | X0,<br>HCLK1,<br>HCLK2     | X1 open   | 1    |        | 12    | MHz  | When the main external                                                                           |  |
|                  |                   | X0, X1,<br>HCLK1,<br>HCLK2 | _         | 1    | _      | 32.5  | MHz  | clock is used                                                                                    |  |
|                  |                   |                            |           | 9.7  | 10     | 10.3  | MHz  | When the main CR clock is                                                                        |  |
|                  |                   |                            |           | 7.76 | 8      | 8.24  | MHz  | used                                                                                             |  |
| Clock frequency  | F <sub>CRH</sub>  | _                          | _         | 0.97 | 1      | 1.03  | MHz  | $2.4 \text{ V} \le \text{Vcc} < 5.5 \text{ V} (0 \text{ °C} \le \text{T}_{A} \le 40 \text{ °C})$ |  |
|                  |                   |                            |           | 9.5  | 10     | 10.5  | MHz  | When the main CR clock is                                                                        |  |
|                  |                   |                            |           | 7.6  | 8      | 8.4   | MHz  | used<br>2.4 V ≤ Vcc < 5.5 V                                                                      |  |
|                  |                   |                            |           | 0.95 | 1      | 1.05  | MHz  | $(-40 \text{ °C} \le T_A < 0 \text{ °C}, 40 \text{ °C} < T_A \le 85 \text{ °C})$                 |  |
|                  | E.                | X0A, X1A                   |           | _    | 32.768 | _     | kHz  | When the sub oscillation circuit is used                                                         |  |
|                  | F <sub>CL</sub>   |                            | _         | _    | 32.768 | _     | kHz  | When the sub-external clock is used                                                              |  |
|                  | F <sub>CRL</sub>  | _                          | _         | 50   | 100    | 200   | kHz  | When the sub-CR clock is used                                                                    |  |
|                  |                   | X0, X1                     | _         | 61.5 | _      | 1000  | ns   | When the main oscillation circuit is used                                                        |  |
| Clock cycle time | t <sub>HCYL</sub> | X0,<br>HCLK1,<br>HCLK2     | X1 open   | 83.4 | _      | 1000  | ns   | When the external clock is                                                                       |  |
| olook dydic time |                   | X0, X1,<br>HCLK1,<br>HCLK2 | _         | 30.8 | _      | 1000  | ns   | used                                                                                             |  |
|                  | t <sub>LCYL</sub> | X0A, X1A                   |           | _    | 30.5   |       | μs   | When the subclock is used                                                                        |  |

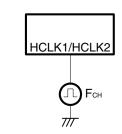


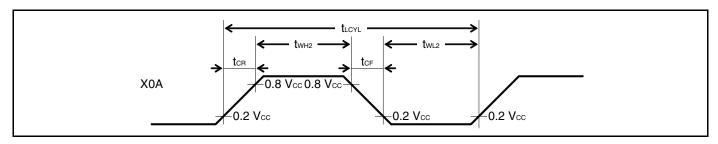
 $(V_{CC} = 2.4 \text{ V to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 


| Parameter               | Symbol             | Pin name                   | Condition                                          |                                                   | Value |     | Unit                   | Remarks                        |  |  |
|-------------------------|--------------------|----------------------------|----------------------------------------------------|---------------------------------------------------|-------|-----|------------------------|--------------------------------|--|--|
| Parameter               | Syllibol           | Fill Haille                | Condition                                          | Min                                               | Тур   | Max | Oilit                  | Remarks                        |  |  |
|                         | t <sub>WH1</sub>   | X0,<br>HCLK1,<br>HCLK2     | X1 open                                            | 33.4                                              | _     | _   | ns When the external o | When the external clock is     |  |  |
| Input clock pulse width | t <sub>WL1</sub>   | X0, X1,<br>HCLK1,<br>HCLK2 | X1,<br>K1, — 12.4 — ns used, the contrarge between | used, the duty ratio should range between 40% and |       |     |                        |                                |  |  |
|                         | t <sub>WH2</sub>   | X0A                        |                                                    |                                                   | 15.2  |     | μs                     |                                |  |  |
| Input clock rise        | t <sub>CR</sub>    | X0,<br>HCLK1,<br>HCLK2     | X1 open                                            |                                                   | _     | 5   | ns                     | When the external clock is     |  |  |
| time and fall time      | t <sub>CF</sub>    | X0, X1,<br>HCLK1,<br>HCLK2 |                                                    | 1                                                 | _     | 5   | ns                     | used                           |  |  |
| CR oscillation start    | t <sub>CRHWK</sub> | _                          | _                                                  | _                                                 | _     | 80  | μs                     | When the main CR clock is used |  |  |
| time                    | t <sub>CRLWK</sub> | _                          | _                                                  | _                                                 | _     | 10  | μs                     | When the sub-CR clock is used  |  |  |



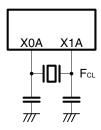





## Figure of main clock input port external connection

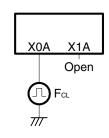

When a crystal oscillator or When the external clock is used When the external clock is a ceramic oscillator is used (X1 is open) used used










## Figure of subclock input port external connection

When a crystal oscillator or a ceramic oscillator is used



When the external clock is used

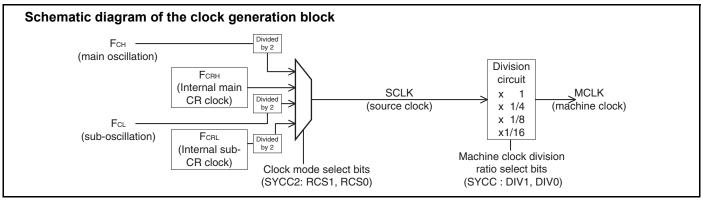


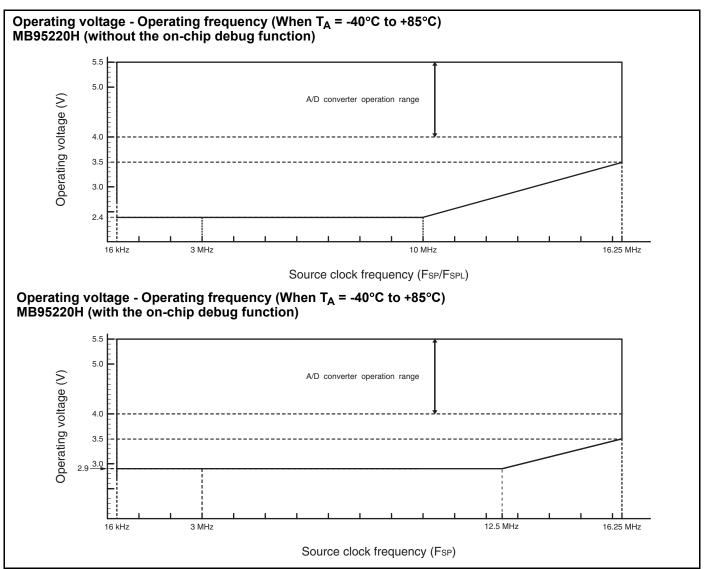


#### 13.4.2 Source Clock/Machine Clock

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| Donomoton                                       | Comple of         | Pin  |        | Value  |        | Unit | Demonto                                                                                                                                  |
|-------------------------------------------------|-------------------|------|--------|--------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                                       | Symbol            | name | Min    | Тур    | Max    | Unit | Remarks                                                                                                                                  |
|                                                 |                   |      | 61.5   | _      | 2000   | ns   | When the main external clock is used Min: F <sub>CH</sub> = 32.5 MHz, divided by 2 Max: F <sub>CH</sub> = 1 MHz, divided by 2            |
| Source clock cycle time*1                       | t <sub>SCLK</sub> | _    | 100    | _      | 1000   | ns   | When the main CR clock is used Min: F <sub>CRH</sub> = 10 MHz Max: F <sub>CRH</sub> = 1 MHz                                              |
|                                                 |                   |      | _      | 61     |        | μs   | When the sub-CR clock is used $F_{CL}$ = 32.768 kHz, divided by 2                                                                        |
|                                                 |                   |      | _      | 20     | _      | μs   | When the sub-oscillation clock is used F <sub>CRL</sub> = 100 kHz, divided by 2                                                          |
|                                                 | F <sub>SP</sub>   |      | 0.5    | _      | 16.25  | MHz  | When the main oscillation clock is used                                                                                                  |
| Source clock                                    | ' SP              |      | 1      | _      | 10     | MHz  | When the main CR clock is used                                                                                                           |
| frequency                                       |                   | _    | _      | 16.384 |        | kHz  | When the sub-oscillation clock is used                                                                                                   |
|                                                 | F <sub>SPL</sub>  |      | _      | 50     | _      | kHz  | When the sub-CR clock is used F <sub>CRL</sub> = 100 kHz, divided by 2                                                                   |
|                                                 |                   | 1    | 61.5   | _      | 32000  | ns   | When the main oscillation clock is used Min: $F_{SP}$ = 16.25 MHz, no division Max: $F_{SP}$ = 0.5 MHz, divided by 16                    |
| Machine clock cycle time* <sup>2</sup> (minimum |                   |      | 100    | _      | 16000  | ns   | When the main CR clock is used Min: $F_{SP}$ = 10 MHz Max: $F_{SP}$ = 1 MHz, divided by 16                                               |
| instruction execution time)                     | t <sub>MCLK</sub> |      | 61     | _      | 976.5  | μs   | When the sub-oscillation clock is used Min: F <sub>SPL</sub> = 16.384 kHz, no division Max: F <sub>SPL</sub> = 16.384 kHz, divided by 16 |
|                                                 |                   |      | 20     | _      | 320    | μs   | When the sub-CR clock is used Min: F <sub>SPL</sub> = 50 kHz, no division Max: F <sub>SPL</sub> = 50 kHz, divided by 16                  |
|                                                 | F                 |      | 0.031  | _      | 16.25  | MHz  | When the main oscillation clock is used                                                                                                  |
| Machine clock                                   | F <sub>MP</sub>   |      | 0.0625 | _      | 10     | MHz  | When the main CR clock is used                                                                                                           |
| frequency                                       |                   | —    | 1.024  | _      | 16.384 | kHz  | When the sub-oscillation clock is used                                                                                                   |
|                                                 | F <sub>MPL</sub>  |      | 3.125  | _      | 50     | kHz  | When the sub-CR clock is used F <sub>CRL</sub> = 100 kHz                                                                                 |


<sup>\*1:</sup> This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits (SYCC: DIV1 and DIV0). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC: DIV1 and DIV0). In addition, a source clock can be selected from the following.


- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2

- Source clock (no division)
- · Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

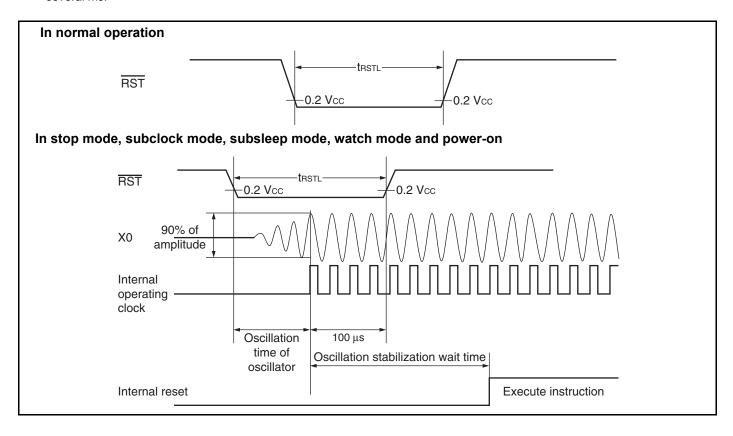
<sup>\*2:</sup> This is the operating clock of the microcontroller. A machine clock can be selected from the following.







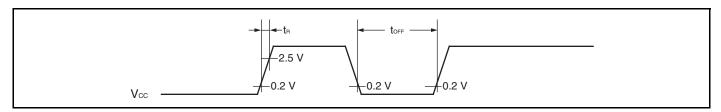



#### 13.4.3 External Reset

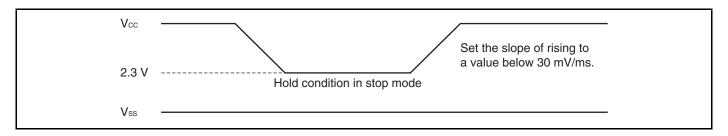
| $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +8$ | -40°C to +85°C | /, T <sub>Δ</sub> = | $0.0^{\circ}$ | $V_{SS}$ | V±10%, | $_{CC} = 5.0$ | (V |
|----------------------------------------------------------------------------------------------|----------------|---------------------|---------------|----------|--------|---------------|----|
|----------------------------------------------------------------------------------------------|----------------|---------------------|---------------|----------|--------|---------------|----|

| Parameter                 | Symbol            | Value                                    |     |      | Remarks                                                               |  |
|---------------------------|-------------------|------------------------------------------|-----|------|-----------------------------------------------------------------------|--|
| raiailletei               | Syllibol          | Min                                      | Max | Unit | Remarks                                                               |  |
| RST "L" level pulse width | t <sub>RSTL</sub> | 2 t <sub>MCLK</sub> *1                   |     | ns   | In normal operation                                                   |  |
|                           |                   | Oscillation time of the oscillator*2+100 |     | μs   | In stop mode, subclock mode, sub-sleep mode, watch mode, and power on |  |
|                           |                   | 100                                      | _   | μs   | In timebase timer mode                                                |  |

<sup>\*1:</sup> See "13.4.2. Source Clock/Machine Clock" for t<sub>MCLK</sub>.


<sup>\*2:</sup> The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of μs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several μs and several ms.





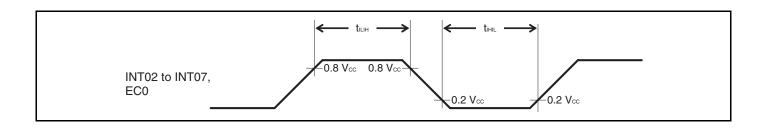

#### 13.4.4 Power-on Reset

| Parameter                | Svmbol           | Condition | Va | lue | Unit  | Remarks                  |  |
|--------------------------|------------------|-----------|----|-----|-------|--------------------------|--|
| raiametei                | Syllibol         | Condition |    | Max | Oilit | Nemarks                  |  |
| Power supply rising time | t <sub>R</sub>   | _         | _  | 50  | ms    |                          |  |
| Power supply cutoff time | t <sub>OFF</sub> |           | 1  |     | ms    | Wait time until power-on |  |



Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.






## 13.4.5 Peripheral Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| Parameter                        | Symbol            | Pin name              | Value                 |     | Unit |
|----------------------------------|-------------------|-----------------------|-----------------------|-----|------|
|                                  |                   |                       | Min                   | Max | Oill |
| Peripheral input "H" pulse width | t <sub>ILIH</sub> | INT02 to INT07, EC0   | 2 t <sub>MCLK</sub> * | _   | ns   |
| Peripheral input "L" pulse width | t <sub>IHIL</sub> | 111102 to 111107, EGO | 2 t <sub>MCLK</sub> * |     | ns   |

<sup>\*</sup> See "13.4.2. Source Clock/Machine Clock" for  $t_{\mbox{\scriptsize MCLK}}.$ 



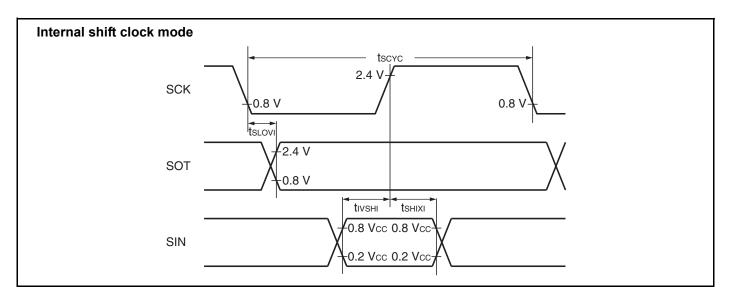


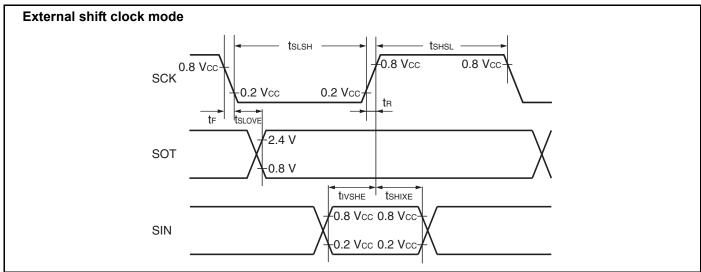
## 13.4.6 LIN-UART Timing (Available only in MB95F222H/F222K/F223H/F223K)

Sampling is executed at the rising edge of the sampling  $clock^{*1}$ , and serial clock delay is disabled  $clock^{*2}$ . (ESCR register:SCES bit = 0, ECCR register:SCDE bit = 0)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| Parameter                                       | Symbol             | Pin name | Condition                                                               | Value                                 |                           | Unit |
|-------------------------------------------------|--------------------|----------|-------------------------------------------------------------------------|---------------------------------------|---------------------------|------|
|                                                 |                    |          |                                                                         | Min                                   | Max                       | Oill |
| Serial clock cycle time                         | t <sub>SCYC</sub>  | SCK      | Internal clock<br>operation output pin:<br>C <sub>L</sub> = 80 pF+1 TTL | 5 t <sub>MCLK</sub> *3                | _                         | ns   |
| SCK ↓→SOT delay time                            | t <sub>SLOVI</sub> | SCK, SOT |                                                                         | -95                                   | +95                       | ns   |
| $Valid\;SIN\toSCK\;\!\!\uparrow$                | t <sub>IVSHI</sub> | SCK, SIN |                                                                         | t <sub>MCLK</sub> *3+190              | _                         | ns   |
| $SCK \uparrow \to valid \; SIN \; hold \; time$ | t <sub>SHIXI</sub> | SCK, SIN |                                                                         | 0                                     | _                         | ns   |
| Serial clock "L" pulse width                    | t <sub>SLSH</sub>  | SCK      | External clock<br>operation output pin:<br>C <sub>L</sub> = 80 pF+1 TTL | 3 t <sub>MCLK</sub> *3-t <sub>R</sub> | _                         | ns   |
| Serial clock "H" pulse width                    | t <sub>SHSL</sub>  | SCK      |                                                                         | t <sub>MCLK</sub> *3+95               | _                         | ns   |
| SCK ↓→SOT delay time                            | t <sub>SLOVE</sub> | SCK, SOT |                                                                         | _                                     | 2 t <sub>MCLK</sub> *3+95 | ns   |
| $Valid\;SIN\toSCK\;\!\!\uparrow$                | t <sub>IVSHE</sub> | SCK, SIN |                                                                         | 190                                   | _                         | ns   |
| SCK ↑→valid SIN hold time                       | t <sub>SHIXE</sub> | SCK, SIN |                                                                         | t <sub>MCLK</sub> *3+95               | _                         | ns   |
| SCK fall time                                   | t <sub>F</sub>     | SCK      |                                                                         | _                                     | 10                        | ns   |
| SCK rise time                                   | t <sub>R</sub>     | SCK      |                                                                         | <u>-</u>                              | 10                        | ns   |


<sup>\*1:</sup> There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.


Document Number: 002-07513 Rev. \*A Page 34 of 58

<sup>\*2:</sup> The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

<sup>\*3:</sup> See "13.4.2. Source Clock/Machine Clock" for t<sub>MCLK</sub>.





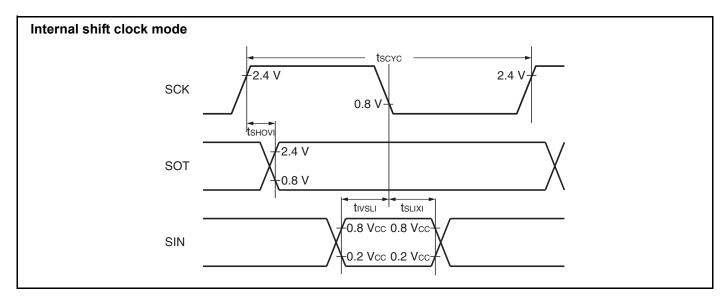


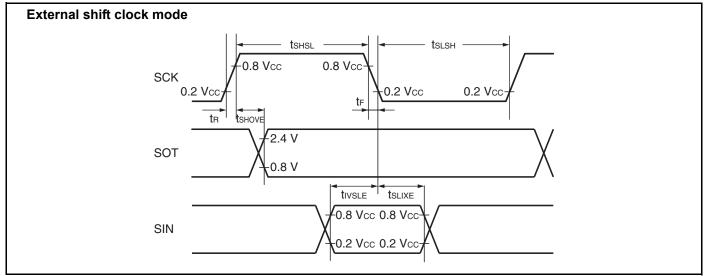


Sampling is executed at the falling edge of the sampling  $clock^{*1}$ , and serial clock delay is disabled  $^{*2}$ . (ESCR register:SCES bit = 1, ECCR register:SCDE bit = 0)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| Parameter                                          | Symbol             | Pin name | Condition                                                               | Value                                 |                           | l lmi4 |
|----------------------------------------------------|--------------------|----------|-------------------------------------------------------------------------|---------------------------------------|---------------------------|--------|
|                                                    | Symbol             |          |                                                                         | Min                                   | Max                       | Unit   |
| Serial clock cycle time                            | t <sub>SCYC</sub>  | SCK      | Internal clock operation output pin: C <sub>L</sub> = 80 pF+1 TTL       | 5 t <sub>MCLK</sub> *3                | _                         | ns     |
| SCK ↑→ SOT delay time                              | t <sub>SHOVI</sub> | SCK, SOT |                                                                         | -95                                   | +95                       | ns     |
| $Valid\;SIN\toSCK\!\!\downarrow$                   | t <sub>IVSLI</sub> | SCK, SIN |                                                                         | t <sub>MCLK</sub> *3+190              | _                         | ns     |
| $SCK \downarrow \rightarrow valid SIN hold time$   | t <sub>SLIXI</sub> | SCK, SIN |                                                                         | 0                                     | _                         | ns     |
| Serial clock "H" pulse width                       | t <sub>SHSL</sub>  | SCK      | External clock<br>operation output pin:<br>C <sub>L</sub> = 80 pF+1 TTL | 3 t <sub>MCLK</sub> *3-t <sub>R</sub> | _                         | ns     |
| Serial clock "L" pulse width                       | t <sub>SLSH</sub>  | SCK      |                                                                         | t <sub>MCLK</sub> *3+95               | _                         | ns     |
| SCK ↑→ SOT delay time                              | t <sub>SHOVE</sub> | SCK, SOT |                                                                         | _                                     | 2 t <sub>MCLK</sub> *3+95 | ns     |
| $Valid\;SIN\toSCK\;\!\downarrow$                   | t <sub>IVSLE</sub> | SCK, SIN |                                                                         | 190                                   | _                         | ns     |
| $SCK\downarrow \rightarrow valid\ SIN\ hold\ time$ | t <sub>SLIXE</sub> | SCK, SIN |                                                                         | t <sub>MCLK</sub> *3+95               | _                         | ns     |
| SCK fall time                                      | t <sub>F</sub>     | SCK      |                                                                         | _                                     | 10                        | ns     |
| SCK rise time                                      | t <sub>R</sub>     | SCK      |                                                                         | _                                     | 10                        | ns     |


<sup>\*1:</sup> There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.


Document Number: 002-07513 Rev. \*A

<sup>\*2:</sup> The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

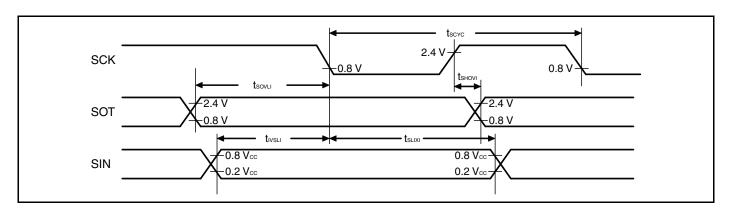
<sup>\*3:</sup> See "13.4.2. Source Clock/Machine Clock" for t<sub>MCLK</sub>.










Sampling is executed at the rising edge of the sampling  $clock^{*1}$ , and  $serial\ clock\ delay\ is\ enabled^{*2}$ . (ESCR register:SCES bit = 0, ECCR register:SCDE bit = 1)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| Parameter                                  | Symbol             | Pin name     | Condition                   | Va                       | Unit                   |       |
|--------------------------------------------|--------------------|--------------|-----------------------------|--------------------------|------------------------|-------|
| Farameter                                  | Symbol             | Pili liaille | Condition                   | Min                      | Max                    | Ullit |
| Serial clock cycle time                    | t <sub>SCYC</sub>  | SCK          |                             | 5 t <sub>MCLK</sub> *3   | _                      | ns    |
| $SCK\uparrow \rightarrow SOT$ delay time   | t <sub>SHOVI</sub> | SCK, SOT     | Internal clock              | -95                      | +95                    | ns    |
| $Valid\;SIN\toSCK\;\!\downarrow$           | t <sub>IVSLI</sub> | SCK, SIN     | operation output pin:       | t <sub>MCLK</sub> *3+190 | _                      | ns    |
| $SCK\downarrow \to valid\;SIN\;hold\;time$ | t <sub>SLIXI</sub> | SCK, SIN     | $C_L = 80 \text{ pF+1 TTL}$ | 0                        | _                      | ns    |
| $SOT \to SCK \downarrow delay \; time$     | t <sub>SOVLI</sub> | SCK, SOT     |                             | _                        | 4 t <sub>MCLK</sub> *3 | ns    |

<sup>\*1:</sup> There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

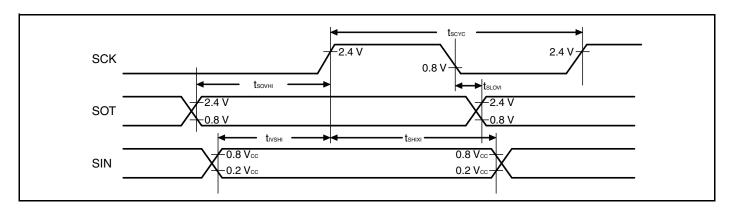
<sup>\*3:</sup> See "13.4.2. Source Clock/Machine Clock" for t<sub>MCLK</sub>.



Document Number: 002-07513 Rev. \*A

<sup>\*2:</sup> The serial clock delay function is a function that delays the output signal of the serial clock for half clock.




Sampling is executed at the falling edge of the sampling  $clock^{*1}$ , and serial clock delay is enabled  $clock^{*2}$ . (ESCR register:SCES bit = 1, ECCR register:SCDE bit = 1)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| Parameter                                       | Symbol Pin name    |              | Condition                   | Va                                    | Unit                   |       |
|-------------------------------------------------|--------------------|--------------|-----------------------------|---------------------------------------|------------------------|-------|
| Faranietei                                      | Symbol             | Fill liaille | Condition                   | Min                                   | Max                    | Oiiii |
| Serial clock cycle time                         | t <sub>SCYC</sub>  | SCK          |                             | 5 t <sub>MCLK</sub> *3                | _                      | ns    |
| $SCK \downarrow \to SOT \ delay \ time$         | t <sub>SLOVI</sub> | SCK, SOT     | Internal clock              | -95                                   | +95                    | ns    |
| $Valid\;SIN\toSCK\;\!\!\uparrow$                | t <sub>IVSHI</sub> | SCK, SIN     | operation output pin:       | t <sub>MCLK</sub> * <sup>3</sup> +190 | _                      | ns    |
| $SCK \uparrow \to valid \; SIN \; hold \; time$ | t <sub>SHIXI</sub> | SCK, SIN     | $C_L = 80 \text{ pF+1 TTL}$ | 0                                     | _                      | ns    |
| $SOT \to SCK \uparrow delay time$               | t <sub>SOVHI</sub> | SCK, SOT     |                             | _                                     | 4 t <sub>MCLK</sub> *3 | ns    |

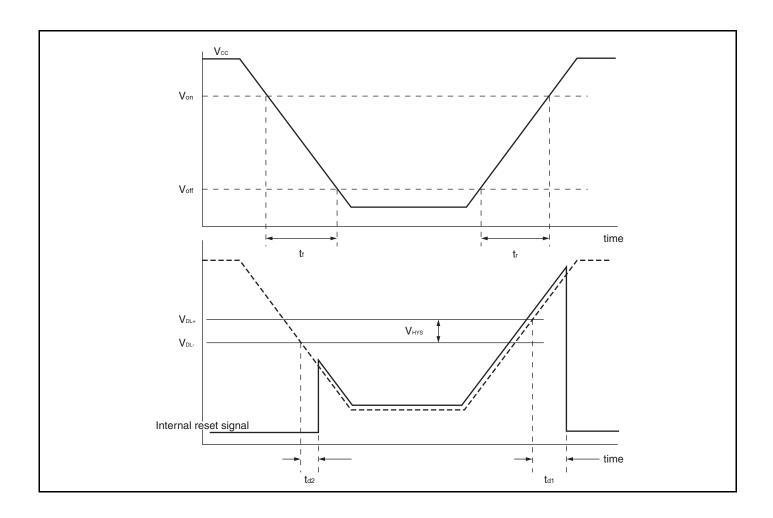
<sup>\*1:</sup>There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

<sup>\*3:</sup> See "13.4.2. Source Clock/Machine Clock" for t<sub>MCLK</sub>.



Document Number: 002-07513 Rev. \*A

<sup>\*2:</sup> The serial clock delay function is a function that delays the output signal of the serial clock for half clock.




## 13.4.7 Low-voltage Detection

 $(V_{SS} = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ 

| _ ,                                                     |                  |      | Value |      |      |                                                                                                       |  |
|---------------------------------------------------------|------------------|------|-------|------|------|-------------------------------------------------------------------------------------------------------|--|
| Parameter                                               | Symbol           | Min  | Тур   | Max  | Unit | Remarks                                                                                               |  |
| Release voltage                                         | V <sub>DL+</sub> | 2.52 | 2.7   | 2.88 | V    | At power supply rise                                                                                  |  |
| Detection voltage                                       | $V_{DL-}$        | 2.42 | 2.6   | 2.78 | V    | At power supply fall                                                                                  |  |
| Hysteresis width                                        | V <sub>HYS</sub> | 70   | 100   | _    | mV   |                                                                                                       |  |
| Power supply start voltage                              | V <sub>off</sub> | _    | _     | 2.3  | V    |                                                                                                       |  |
| Power supply end voltage                                | V <sub>on</sub>  | 4.9  | _     | _    | V    |                                                                                                       |  |
| Power supply voltage change time (at power supply rise) | t <sub>r</sub>   | 1    | _     | _    | μs   | Slope of power supply that the reset release signal generates                                         |  |
|                                                         |                  | _    | 3000  | _    | μs   | Slope of power supply that the reset release signal generates within the rating (V <sub>DL+</sub> )   |  |
| Dower supply voltage change                             |                  | 300  | _     | _    | μs   | Slope of power supply that the reset detection signal generates                                       |  |
| Power supply voltage change time (at power supply fall) | t <sub>f</sub>   | _    | 300   | _    | μs   | Slope of power supply that the reset detection signal generates within the rating (V <sub>DL-</sub> ) |  |
| Reset release delay time                                | t <sub>d1</sub>  | _    | _     | 300  | μs   |                                                                                                       |  |
| Reset detection delay time                              | t <sub>d2</sub>  | _    | _     | 20   | μs   |                                                                                                       |  |



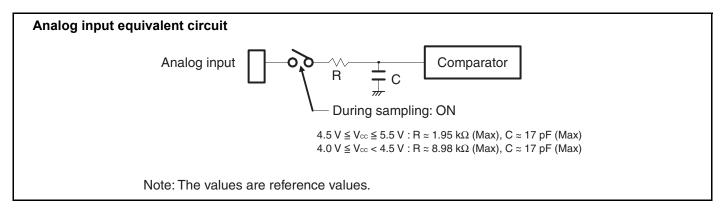


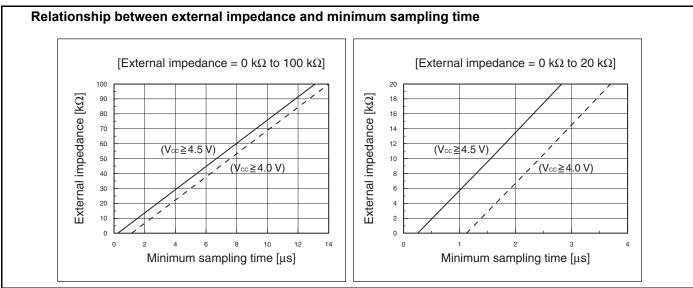


## 13.5 A/D Converter

## 13.5.1 A/D Converter Electrical Characteristics

(V<sub>CC</sub> = 4.0 V to 5.5 V, V<sub>SS</sub> = 0.0 V,  $T_A$  = -40°C to +85°C)


| Davamatar                     | Cumbal           |                          | Value                    | Unit                     | Remarks |                                                                                                                |  |
|-------------------------------|------------------|--------------------------|--------------------------|--------------------------|---------|----------------------------------------------------------------------------------------------------------------|--|
| Parameter                     | Symbol           | Min Typ Max              |                          | Max                      | Unit    | Remarks                                                                                                        |  |
| Resolution                    |                  | <del>_</del>             | _                        | 10                       | bit     |                                                                                                                |  |
| Total error                   |                  | -3                       | _                        | +3                       | LSB     |                                                                                                                |  |
| Linearity error               | _                | -2.5                     | _                        | +2.5                     | LSB     |                                                                                                                |  |
| Differential linear error     |                  | -1.9                     | _                        | +1.9                     | LSB     |                                                                                                                |  |
| Zero transition voltage       | V <sub>OT</sub>  | V <sub>SS</sub> -1.5 LSB | V <sub>SS</sub> +0.5 LSB | V <sub>SS</sub> +2.5 LSB | V       |                                                                                                                |  |
| Full-scale transition voltage | V <sub>FST</sub> | V <sub>CC</sub> -4.5 LSB | V <sub>CC</sub> -2 LSB   | V <sub>CC</sub> +0.5 LSB | V       |                                                                                                                |  |
| Compare time                  | _                | 0.9                      | _                        | 16500                    | μs      | $4.5 \text{ V} \le \text{V}_{CC} \le 5.5 \text{ V}$                                                            |  |
|                               |                  | 1.8                      | _                        | 16500                    | μs      | 4.0 V≤ V <sub>CC</sub> < 4.5 V                                                                                 |  |
| Sampling time                 |                  | 0.6                      | _                        | <b>&amp;</b>             | μs      | $4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{ V}$ , with external impedance $< 5.4 \text{ k}\Omega$ |  |
| Sampling time                 |                  | 1.2                      | _                        | ∞                        | μs      | $4.0 \text{ V} \leq \text{V}_{\text{CC}} \leq 4.5 \text{ V}$ , with external impedance < $2.4 \text{ k}\Omega$ |  |
| Analog input current          | I <sub>AIN</sub> | -0.3                     | _                        | +0.3                     | μΑ      |                                                                                                                |  |
| Analog input voltage          | V <sub>AIN</sub> | V <sub>SS</sub>          | _                        | V <sub>CC</sub>          | V       |                                                                                                                |  |




## 13.5.2 Notes on Using the A/D Converter

## External impedance of analog input and its sampling time

The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about  $0.1~\mu\text{F}$  to the analog input pin.





## A/D conversion error

As  $|V_{CC}-V_{SS}|$  decreases, the A/D conversion error increases proportionately.

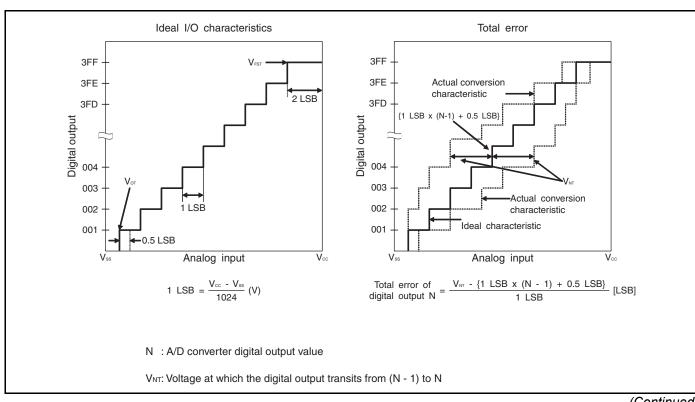


### 13.5.3 Definitions of A/D Converter Terms

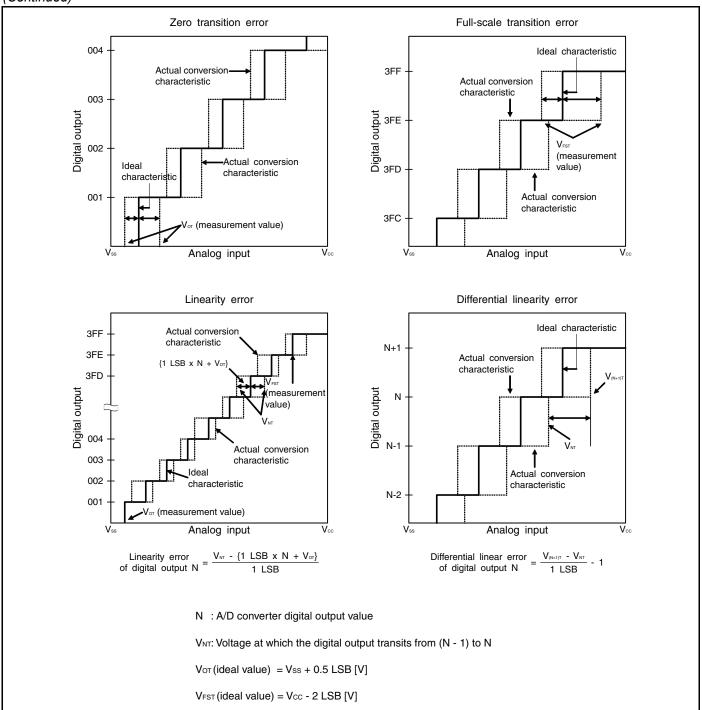
### Resolution

It indicates the level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into  $2^{10}$  = 1024.

## Linearity error (unit: LSB)


It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000"  $\leftarrow \rightarrow$  "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111"  $\leftarrow \rightarrow$  "11 1111 1110") of the same device.

### Differential linear error (unit: LSB)


It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.

## Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.





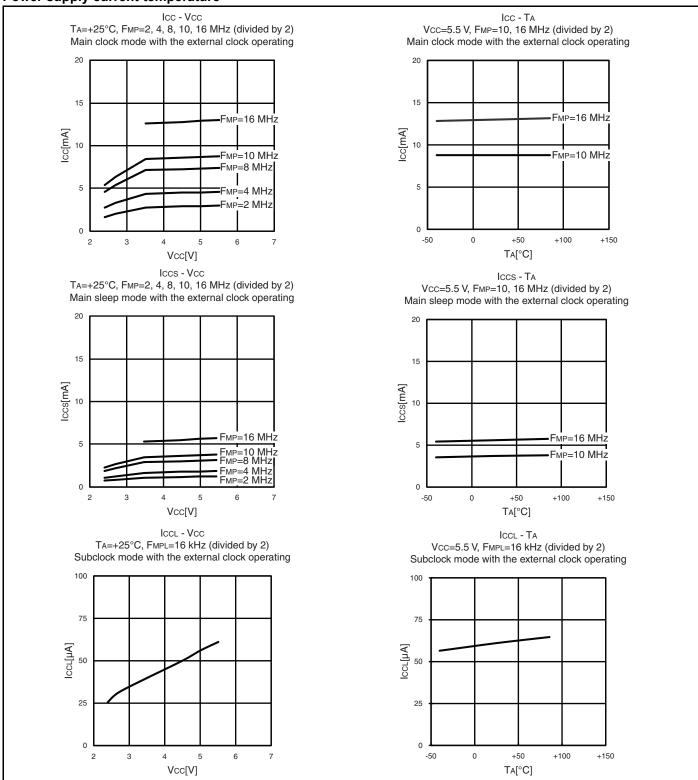




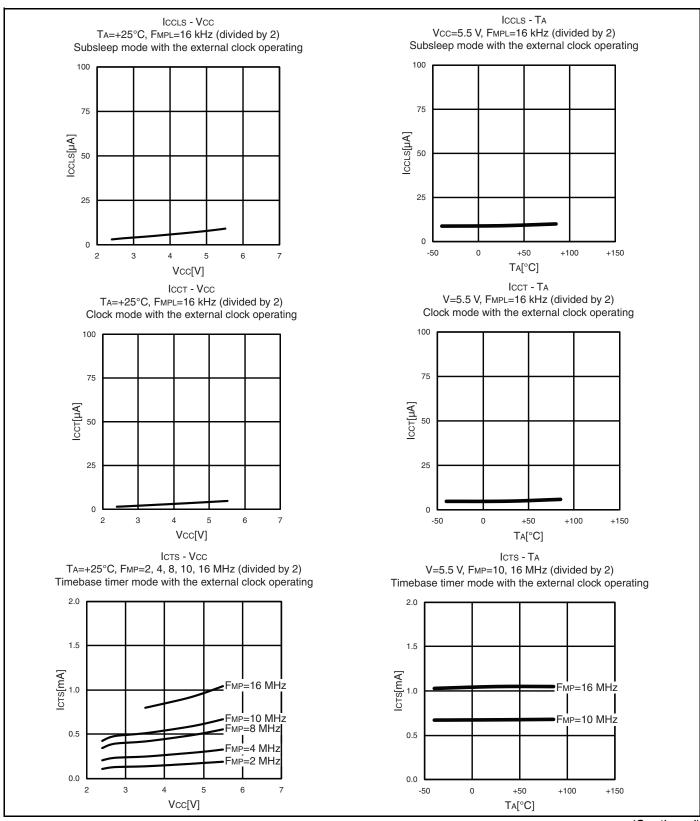
## 13.6 Flash Memory Program/Erase Characteristics

| Parameter                             | Value            |                 |                  | Unit  | Domonto                                                                    |  |
|---------------------------------------|------------------|-----------------|------------------|-------|----------------------------------------------------------------------------|--|
| Parameter                             | Min Typ          |                 | Max              |       | Remarks                                                                    |  |
| Chip erase time                       | _                | 1* <sup>1</sup> | 15* <sup>2</sup> | S     | 00 <sub>H</sub> programming time prior to erasure is excluded.             |  |
| Byte programming time                 | _                | 32              | 3600             | μs    | System-level overhead is excluded.                                         |  |
| Erase/program voltage                 | 9.5              | 10              | 10.5             | V     | The erase/program voltage must be applied to the PF2 pin in erase/program. |  |
| Current drawn on PF2                  | _                | _               | 5.0              | mA    | Current consumption of PF2 pin during flash memory program/erase           |  |
| Erase/program cycle                   | _                | 100000          | _                | cycle |                                                                            |  |
| Power supply voltage at erase/program | 3.0              | _               | 5.5              | V     |                                                                            |  |
| Flash memory data retention time      | 20* <sup>3</sup> | _               | _                | year  | Average T <sub>A</sub> = +85°C                                             |  |

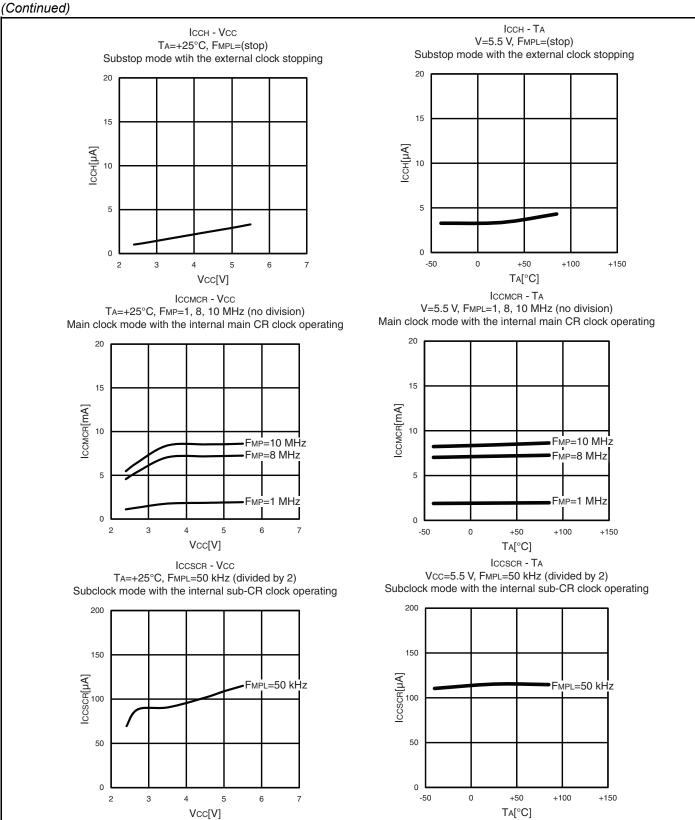
<sup>\*1:</sup>  $T_A = +25$ °C,  $V_{CC} = 5.0$  V, 100000 cycles


<sup>\*2:</sup>  $T_A = +85$ °C,  $V_{CC} = 4.5$  V, 100000 cycles

<sup>\*3:</sup> This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test by using the Arrhenius equation with the average temperature being +85°C).

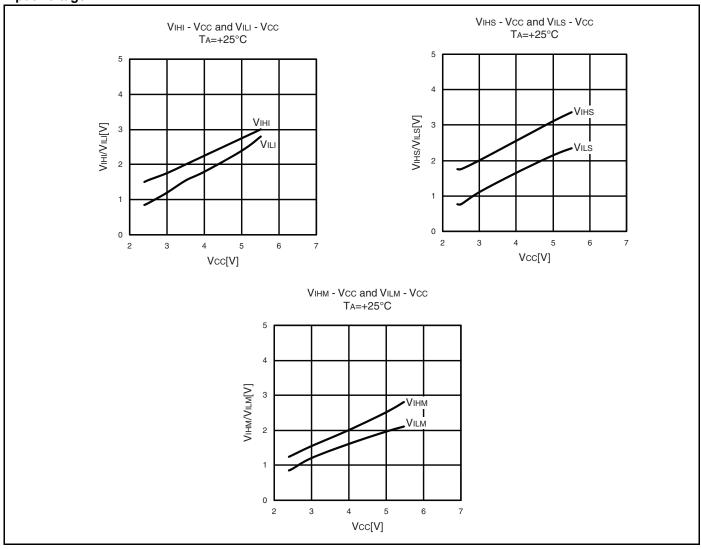



## 14. Sample Electrical Characteristics


## Power supply current-temperature

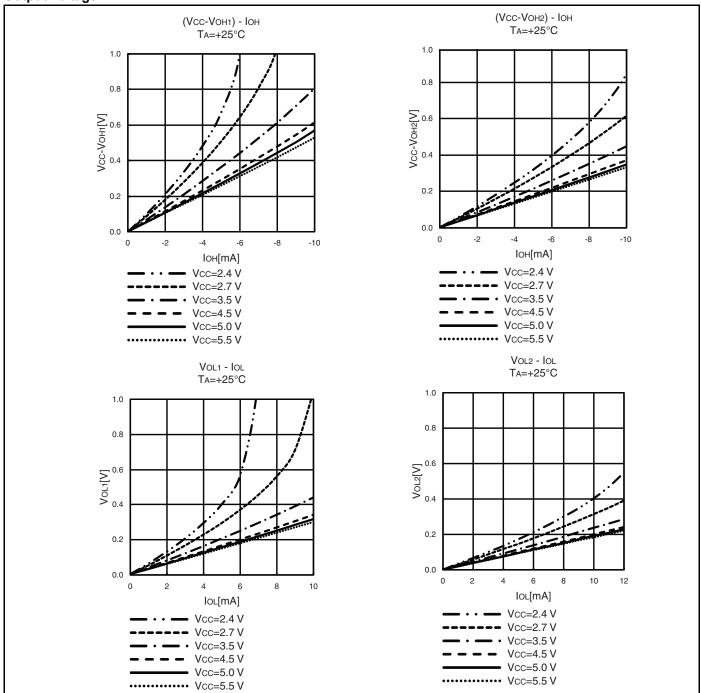






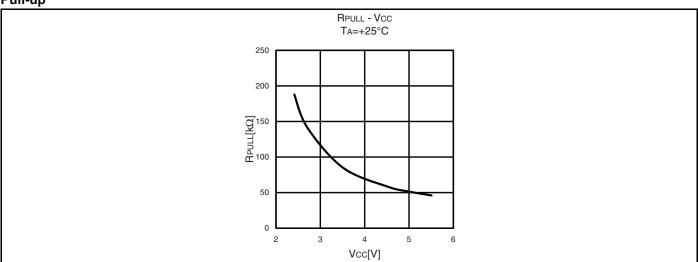





Input voltage











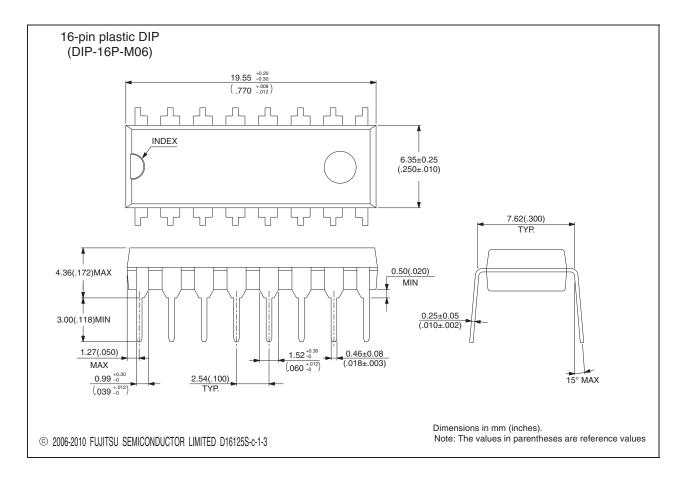




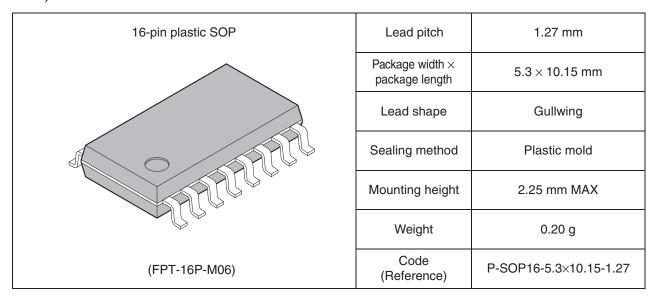


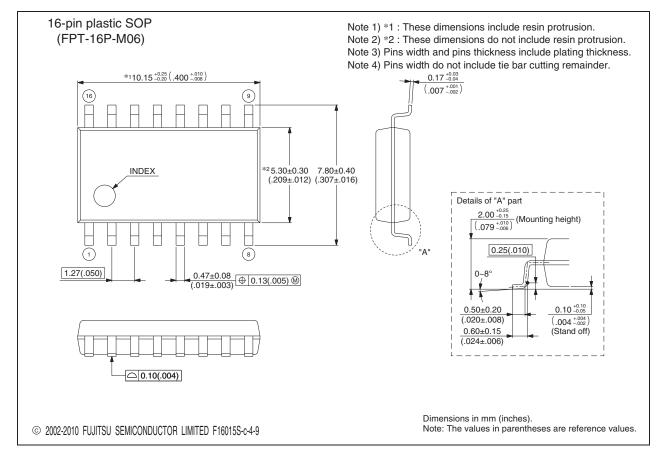

# 15. Mask Options

| No. | Part Number                                                                                        | MB95F222H<br>MB95F223H              | MB95F222K<br>MB95F223K           |
|-----|----------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|
|     | Selectable/Fixed                                                                                   | Fixed                               | Fixed                            |
| 1   | Low-voltage detection reset  With low-voltage detection reset  Without low-voltage detection reset | Without low-voltage detection reset | With low-voltage detection reset |
| 2   | Reset     With dedicated reset input     Without dedicated reset input                             | With dedicated reset input          | Without dedicated reset input    |


# 16. Ordering Information

| Part Number                                                                          | Package                             |
|--------------------------------------------------------------------------------------|-------------------------------------|
| MB95F222HPH-G-SNE2<br>MB95F222KPH-G-SNE2<br>MB95F223HPH-G-SNE2<br>MB95F223KPH-G-SNE2 | 16-pin plastic DIP<br>(DIP-16P-M06) |
| MB95F222HPF-G-SNE1<br>MB95F222KPF-G-SNE1<br>MB95F223HPF-G-SNE1<br>MB95F223KPF-G-SNE1 | 16-pin plastic SOP<br>(FPT-16P-M06) |





## 17. Package Dimensions

| 16-pin plastic DIP | Lead pitch     | 2.54 mm      |
|--------------------|----------------|--------------|
|                    | Sealing method | Plastic mold |
|                    |                |              |
|                    |                |              |
|                    |                |              |
|                    |                |              |
| (DIP-16P-M06)      |                |              |











# 18. Major Changes

 $Spansion \ \textbf{Publication Number: DS07-12626-3E}$ 

| Page | Section                                                 | Change Results                                                                                                          |  |  |
|------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| 21   | Electrical Characteristics  1. Absolute Maximum Ratings | Changed the characteristics of Input voltage.                                                                           |  |  |
| 24   | 3. DC Characteristics                                   | Corrected the maximum value of "H" level input voltage for PF2 pin. $V_{CC}$ + 0.3 $\rightarrow$ 10.5                   |  |  |
| 24   |                                                         | Corrected the maximum value of Open-drain output application voltage. $0.2 \text{Vcc} \rightarrow \text{Vss} + 5.5$     |  |  |
| 26   |                                                         | Added the footnote *3.                                                                                                  |  |  |
| 29   | AC Characteristics     (1) Clock Timing                 | Added a figure of HCLK1/HCLK2.                                                                                          |  |  |
| 32   | (2) Source Clock/Machine Clock                          | Corrected the graph of Operating voltage - Operating frequency (with the on-chip debug function). (Corrected the pitch) |  |  |
| 33   | (3) External Reset                                      | Added and power on to the remarks column.                                                                               |  |  |
|      | 6. Flash Memory Program/                                | Added the row of Current drawn on PF2.                                                                                  |  |  |
| 48   | Erase Characteristics                                   | Corrected the minimum value of Power supply voltage at erase/program. 4.5 $\rightarrow$ 3.0                             |  |  |

NOTE: Please see "Document History" about later revised information.

Document Number: 002-07513 Rev. \*A Page 56 of 58



# **Document History**

|          | Document Title: MB95220H Series F <sup>2</sup> MC-8FX 8-bit Microcontroller Document Number: 002-07513 |                    |                    |                                                                                                       |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| Revision | ECN                                                                                                    | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                 |  |  |  |  |
| **       | _                                                                                                      | AKIH               | 07/26/2010         | Migrated to Cypress and assigned document number 002-07513. No change to document contents or format. |  |  |  |  |
| *A       | 5198887                                                                                                | AKIH               | 03/31/2016         | Updated to Cypress format.                                                                            |  |  |  |  |

Document Number: 002-07513 Rev. \*A Page 57 of 58



## Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

### **Products**

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Lighting & Power Control

Memory

PSoC

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/powerpsoc

cypress.com/pesoc

cypress.com/psoc

PSoC cypress.com/psoc
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless/RF cypress.com/wireless

## PSoC® Solutions

cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

## **Cypress Developer Community**

Community | Forums | Blogs | Video | Training

# Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress in not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.