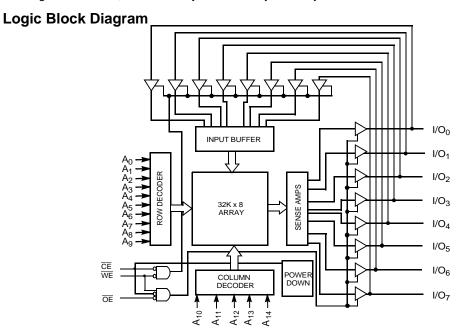


256K (32K x 8) Static RAM

Features

- Temperature Ranges
 - Industrial: -40°C to 85°C
 - Automotive-A: -40°C to 85°C
- Single 3.3V power supply
- · Ideal for low-voltage cache memory applications
- · High speed: 12 ns
- Low active power
 - 180 mW (max.)
- Low-power alpha immune 6T cell
- Available in Pb-free and non Pb-free Plastic SOJ and TSOP I packages


Functional Description^[1]

The CY7C1399BN is a high-performance 3.3V CMOS Static RAM organized as 32,768 words by 8 bits. Easy memory

expansion is provided by an active LOW Chip Enable (\overline{CE}) and active LOW Output Enable (\overline{OE}) and tristate drivers. The device has an automatic power-down feature, reducing the power consumption by more than 95% when deselected.

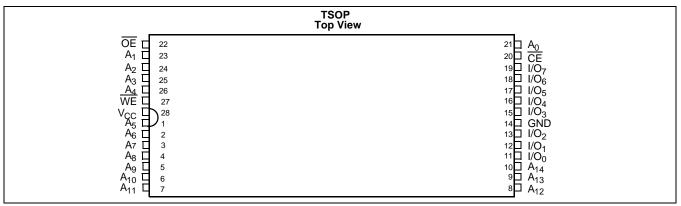
An active LOW Write Enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE} and \overline{WE} inputs are both LOW, data on the eight data input/output pins (I/O_0) through I/O_7 is written into the memory location addressed by the address present on the address pins (A_0) through A_{14} . Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE} and \overline{OE} active LOW, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and Write Enable (WE) is HIGH. The CY7C1399BN is available in 28-pin standard 300-mil-wide SOJ and TSOP Type I packages.

Pin Configurations

	SOJ Top Vi	ew	
A ₅	1 2 3 4	28 27 26 25	V _{CC} WE A ₄ A ₃
A ₉	5 6 7 8	24 23 22 21	A ₂ A ₁ OE A ₀
A ₁₃	9 10 11 12 13	20 19 18 17 16 15	CE I/O ₇ I/O ₆ I/O ₅ I/O ₄ I/O ₃

Selection Guide


		-12	-15
Maximum Access Time (ns)		12	15
Maximum Operating Current (mA)		55	50
Maximum CMOS Standby Current (μA)	Commercial	500	
	Commercial (L)	50	
	Industrial	500	500
	Automotive-A		500

Note:

^{1.} For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied –55°C to +125°C

Supply Voltage on V_{CC} to Relative $\mbox{GND}^{[2]}$ –0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State $^{[2]}$ -0.5V to V_{CC} + 0.5V

DC Input Voltage $^{[2]}$-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

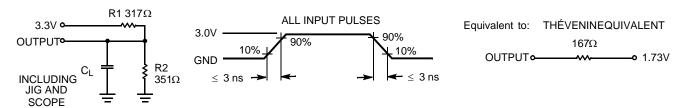
Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	3.3V ±300 mV
Industrial	–40°C to +85°C	
Automotive-A	–40°C to +85°C	

Electrical Characteristics Over the Operating Range[1]

				-1	2	-	15	
Parameter	Description	Test Conditions	•	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -2.0 \text{ mA}$		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 4.0 \text{ mA}$			0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3V	2.2	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[2]			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current			-1	+1	-1	+1	μΑ
l _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC},$ Output Disabled		- 5	+5	- 5	+5	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$, $I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$			55		50	mA
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$,	Comm'l		5			mA
	Power-Down Current—	$V_{IN} \ge V_{IH}$, or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	Comm'l (L)		4			mA
	TTL Inputs	I - IMAX	Ind'l		5		5	mA
			Auto-A				5	mA
I _{SB2}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$,	Comm'l		500			μΑ
	Power-Down Current— CMOS	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, WE $\ge V_{CC} - 0.3V$ or WE $\le 0.3V$,	Comm'l (L)		50			μΑ
	Inputs ^[3]	$\begin{cases} VE \ge V_{CC} - 0.3V \text{ of } VE \le 0.3V, \\ f = f_{MAX} \end{cases}$			500		500	μΑ
			Auto-A				500	μΑ

Notes:

^{2.} Minimum voltage is equal to -2.0V for pulse durations of less than 20 ns.


^{3.} Device draws low standby current regardless of switching on the addresses.

Capacitance^[4]

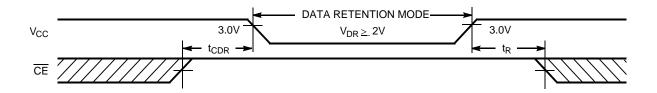
Parameter	Description	Test Conditions	Max.	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	5	pF
C _{IN} : Controls		$V_{CC} = 3.3V$	6	pF
C _{OUT}	Output Capacitance		6	pF

AC Test Loads and Waveforms^[5]

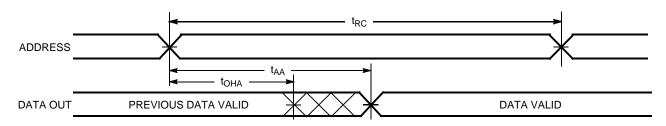
Switching Characteristics Over the Operating Range^[5]

		-	12	-	15	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle		•	•			
t _{RC}	Read Cycle Time	12		15		ns
t _{AA}	Address to Data Valid		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15	ns
t _{DOE}	OE LOW to Data Valid		5		6	ns
t _{LZOE}	OE LOW to Low Z ^[6]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		5		6	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15	ns
Write Cycle ^{[8}	, 9]		ı			
t _{WC}	Write Cycle Time	12		15		ns
t _{SCE}	CE LOW to Write End	8		10		ns
t _{AW}	Address Set-Up to Write End	8		10		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	8		10		ns
t _{SD}	Data Set-Up to Write End	7		8		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[8]		7		7	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		ns

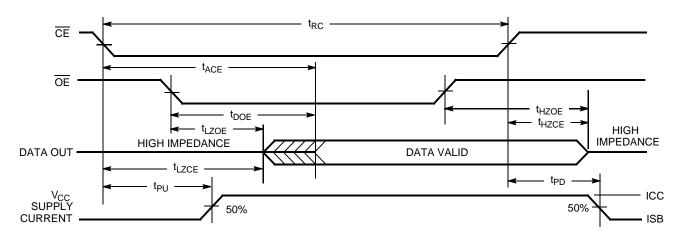
- 4. Tested initially and after any design or process changes that may affect these parameters.5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified


- 5. Test conditions assume signal transition time of 3 ns or less, timing released evens of 1.3v, input pulse levels of 0 to 3.0v, and output locating of the specific localing of the speci

Data Retention Characteristics (Over the Operating Range - L version only)


Parameter	Description	Conditions	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{Q_{CC}} = V_{DR} = 2.0V,$	0	20	μΑ
t _{CDR}	Chip Deselect to Data Retention Time	$ \begin{array}{c} \overline{CE} \ge V_{CC} - 0.3V, \\ V_{IN} \ge V_{CC} - 0.3V \text{ or} \\ V_{IN} \le 0.3V \end{array} $	0		ns
t _R	Operation Recovery Time		t _{RC}		ns

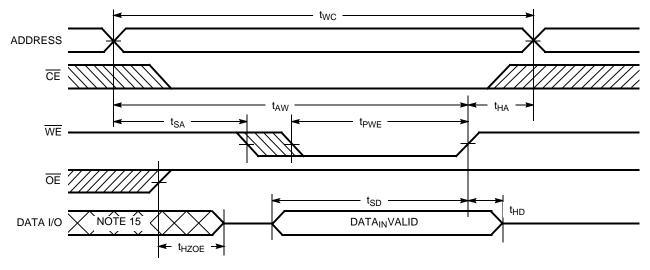
Data Retention Waveform



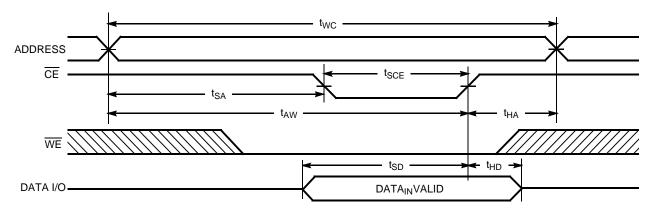
Switching Waveforms

Read Cycle No. 1^[10, 11]

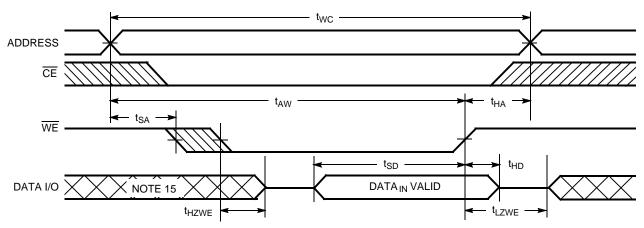
Read Cycle No. $\mathbf{2}^{[11, 12]}$


Notes:

- 10. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}. 11. <u>WE</u> is HIGH for read cycle.
- 12. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



Switching Waveforms (continued)


Write Cycle No. 1 (WE Controlled)^[8, 13, 14]

Write Cycle No. 2 (CE Controlled)[8, 13, 14]

Write Cycle No. 3 (WE Controlled, OE LOW)[9, 14]

13. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

14. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

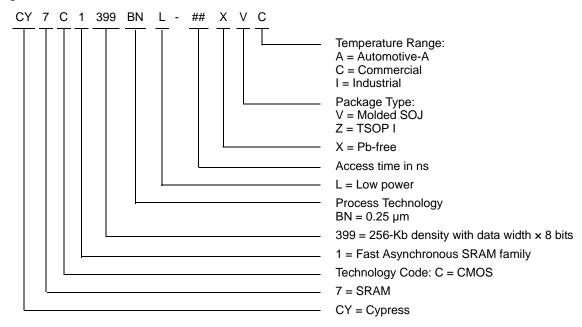
15. During this period, the I/Os are in the output state and input signals should not be applied.

Truth Table

CE	WE	OE	Input/Output	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available.

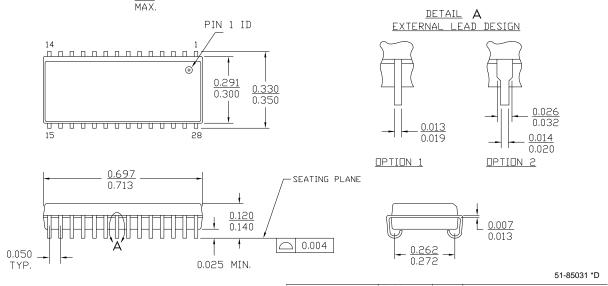

For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1399BN-12VXC	51-85031	28-Lead Molded SOJ (Pb-free)	Commercial
	CY7C1399BN-12ZXC	51-85071	28-Lead TSOP I (Pb-free)	
	CY7C1399BNL-12ZXC		28-Lead TSOP I (Pb-free)	
	CY7C1399BN-12VXI	51-85031	28-Lead Molded SOJ (Pb-free)	Industrial
15	CY7C1399BN-15ZXI	51-85071	28-Lead TSOP I (Pb-free)	Industrial
	CY7C1399BN-15VXA	51-85031	28-Lead Molded SOJ (Pb-free)	Automotive-A

Please contact local sales representative regarding availability of these parts.

Ordering Code Definitions



Package Diagrams

NOTE :

28-Lead (300-Mil) Molded SOJ (51-85031)

- 1. JEDEC STD REF MO088
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES MIN.

28-Lead TSOP 1 (8x13.4 mm) (51-85071)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Document Title: CY7C1399BN 256K (32K x 8) Static RAM Document Number: 001-06490						
REV.	ECN NO.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE			
**	423877	See ECN	NXR	New Data Sheet			
*A	498575	See ECN	NXR	Added Automotive-A range Removed I _{OS} parameter from DC Electrical Characteristics table Updated Ordering Information table.			
*B	2896382	03/19/2010	AJU	Removed obsolete part numbers from Ordering Information table and updated package diagrams.			
*C	3053362	10/08/2010	PRAS	Removed pruned part numbers CY7C1399BNL-15VXC and CY7C1399BNL-15VXCT. Added Ordering Code Definitions.			