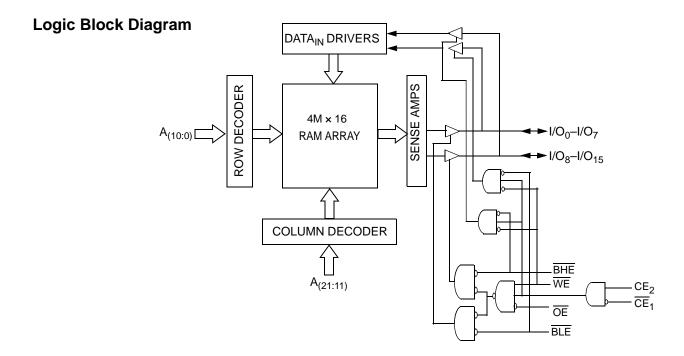


64-Mbit (4 M × 16) Static RAM

Features

- High speed
 □ t_{AA} = 12 ns
- Low active power
 □ I_{CC} = 300 mA at 12 ns
- Low complementary metal oxide semiconductor (CMOS) standby power
 - $I_{SB2} = 100 \text{ mA}$
- Operating voltages of 3.3 ± 0.3 V
- 2.0-V data retention
- Automatic power-down when deselected
- Transistor-transistor logic (TTL)-compatible inputs and outputs
- Easy memory expansion with CE₁ and CE₂ features
- Available in Pb-free 48-ball fine ball grid array (FBGA) package


Functional Description

The CY7C1081DV33 is a high-performance CMOS static RAM organized as 4,194,304 words by 16 bits.

To write to the device, tak<u>e</u> Chip Enables $(\overline{CE}_1 \text{ LOW} \text{ and } CE_2 \text{ HIGH})$ and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0 \text{ through } I/O_7)$ is written into the location specified on the address pins $(A_0 \text{ through } A_{21})$. If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8 \text{ through } I/O_{15})$ is written into the location specified on the address pins $(A_0 \text{ through } A_{21})$.

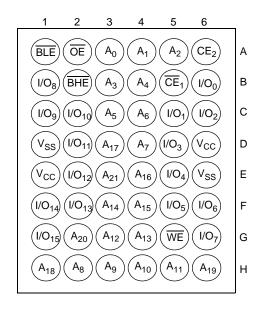
To read from the device, take Chip Enables $(\overline{\text{CE}}_1\text{LOW} \text{ and CE}_2\text{HIGH})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins appears on I/O $_0$ to I/O $_7$. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory appears on I/O $_8$ to I/O $_{15}$. See the Truth Table on page 9 for a complete description of read and write modes.

The input and output pins (I/O $_0$ through I/O $_{15}$) are placed in a high impedance state when the device is deselected (CE $_1$ HIGH or CE $_2$ LOW), the outputs are disabled (OE HIGH), both byte high enable and byte low enable are disabled (BHE, BLE HIGH), or during a write operation (CE $_1$ LOW, CE $_2$ HIGH, and WE LOW).

Contents

Selection Guide	3
Pin Configuration	
Maximum Ratings	4
Operating Range	
DC Electrical Characteristics	4
Capacitance	4
Thermal Resistance	4
Data Retention Characteristics	5
AC Switching Characteristics	6
Switching Waveforms	
Truth Table	

Ordering information	10
Ordering Code Definition	10
Package Diagram	1 1
Acronyms	11
Document Conventions	11
Units of Measure	11
Document History Page	12
Sales, Solutions, and Legal Information	12
Worldwide Sales and Design Support	12
Products	12
PSoC Solutions	12



Selection Guide

Description	-12	Unit
Maximum access time	12	ns
Maximum operating current	300	mA
Maximum CMOS standby current	100	mA

Pin Configuration

Figure 1. 48-Ball FBGA (Top View)

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested. Storage temperature-65 °C to +150 °C

Ambient temperature with

power applied –55 °C to +125 °C Supply voltage on V_{CC} relative to GND $^{[1]}....-0.5$ V to +4.6 V

DC input voltage^[1].....-0.5 V to V_{CC} + 0.5 V

Current into outputs (LOW)	20 mA
Static discharge voltage	>2001 V
(MIL-STD-883, Method 3015)	
Latch-up current	>140 mA

Operating Range

Range	Ambient Temperature	V _{CC}	Speed
Industrial	–40 °C to +85 °C	$3.3 \text{ V} \pm 0.3 \text{ V}$	12 ns

DC Electrical Characteristics

Over the Operating Range

Parameter	Description	Test Conditions		Unit	
rarameter	Description	rest Conditions	Min	Max	Oiiit
V _{OH}	Output HIGH voltage	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$	2.4	_	V
V _{OL}	Output LOW voltage	$V_{CC} = Min, I_{OL} = 8.0 \text{ mA}$	_	0.4	V
V _{IH}	Input HIGH voltage		2.0	$V_{CC} + 0.3$	V
V _{IL}	Input LOW voltage ^[1]		-0.3	0.8	V
I _{IX}	Input leakage current	$GND \le V_{IN} \le V_{CC}$	-1	+1	μΑ
I _{OZ}	Output leakage current	$GND \le V_{OUT} \le V_{CC}$, Output Disabled	-1	+1	μΑ
I _{CC}	V _{CC} operating supply current	$V_{CC} = Max$, $f = f_{max} = 1/t_{RC}$, $I_{OUT} = 0$ mA CMOS levels	_	300	mA
I _{SB1}	Automatic CE power-down current – TTL inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}}_1 \geq \text{V}_{\text{IH}}, \text{CE}_2 \leq \text{V}_{\text{IL}}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{f} = \text{f}_{\text{max}} \end{aligned}$	_	120	mA
I _{SB2}	Automatic CE power-down current – CMOS inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}}_{1} \geq \text{V}_{\text{CC}} - 0.3 \text{ V, CE}_{2} \leq 0.3 \text{ V,} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{ V, or V}_{\text{IN}} \leq 0.3 \text{ V, f} = 0, \end{aligned}$	_	100	mA

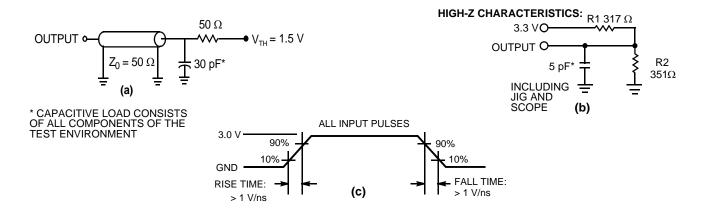
Capacitance

Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 3.3 \text{V}$	32	pF
C _{OUT}	I/O capacitance		40	pF

Thermal Resistance

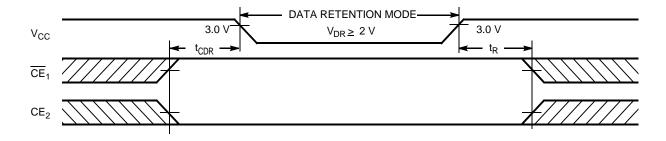
Tested initially and after any design or process changes that may affect these parameters.


Parameter	Description	Test Conditions	FBGA	Unit
$\Theta_{\sf JA}$		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	55	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		23.04	°C/W

Note

^{1.} V_{IL} (min) = -2.0 V and V_{IH} (max) = V_{CC} + 2 V for pulse durations of less than 20 ns.

Figure 2. AC Test Loads and Waveforms^[2]



Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Тур	Max	Unit
V_{DR}	V _{CC} for data retention		2	_	_	V
I _{CCDR}	Data retention current	$\begin{aligned} & V_{CC} = 2 \text{ V}, \overline{\text{CE}}_1 \geq V_{CC} - 0.2 \text{ V}, \text{CE}_2 \leq 0.2 \text{ V}, \\ & V_{\text{IN}} \geq V_{CC} - 0.2 \text{ V or } V_{\text{IN}} \leq 0.2 \text{ V} \end{aligned}$	-	-	100	mA
t _{CDR} ^[3]	Chip deselect to data retention time		0	-	-	ns
t _R ^[4]	Operation recovery time		12	_	-	ns

Figure 3. Data Retention Waveform

Notes

- Valid SRAM operation does not occur until the power supplies reach the minimum operating V_{DD} (3.0 V). 100 µs (t_{power}) after reaching the minimum operating V_{DD}, normal SRAM operation begins to include reduction in V_{DD} to the data retention (V_{CCDR}, 2.0 V) voltage.

 Tested initially and after any design or process changes that may affect these parameters.
- 4. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC} (min) \geq 50 μs or stable at V_{CC} (min) \geq 50 μs .

AC Switching Characteristics

Over the Operating Range [5]

	D	-	12	
Parameter	Description	Min	Max	Unit
Read Cycle		<u> </u>		
t _{power}	V _{CC} (typ) to the first access ^[6]	100	_	μS
t _{RC}	Read cycle time	12	-	ns
t _{AA}	Address to data valid	-	12	ns
t _{OHA}	Data hold from address change	3	-	ns
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to Data Valid	-	12	ns
t _{DOE}	OE LOW to data valid	_	7	ns
t _{LZOE}	OE LOW to low-Z	1	-	ns
t _{HZOE}	OE HIGH to high-Z ^[7]	-	7	ns
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to low-Z [7]	3	-	ns
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to high-Z ^[7]	-	7	ns
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up [8]	0	_	ns
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down [8]	_	12	ns
t _{DBE}	Byte enable to data valid	_	7	ns
t _{LZBE}	Byte enable to low-Z	1	_	ns
t _{HZBE}	Byte disable to high-Z	-	7	ns
Write Cycle [9, 10]				1
t _{WC}	Write cycle time	12	_	ns
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	9	-	ns
t _{AW}	Address setup to write end	9	-	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	9	-	ns
t _{SD}	Data setup to write end	7	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{LZWE}	WE HIGH to low-Z [7]	3	_	ns
t _{HZWE}	WE LOW to high-Z [7]	_	7	ns
t _{BW}	Byte enable to end of write	9	_	ns

Notes

^{5.} Test conditions are based on signal transition time of 3 ns or less and timing reference levels of 1.5 V and input pulse levels of 0 to 3.0 V. Test conditions for the read cycle use output loading shown in part a) of AC Test Loads and Waveforms^[2], unless specified otherwise.

6. t_{power} is the minimum amount of time that the power supply must be at typical V_{CC} values until the first memory access can be performed.

7. t_{HZOE}, t_{HZWE}, t_{HZBE} and t_{LZOE}, t_{LZWE}, t_{LZBE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads and Waveforms^[2].

8. These parameters are guaranteed by design and are not tested.

9. The internal memory write time is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. Chip enables must be active and WE and byte enables must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data setup and hold timing must be referenced to the leading edge of the signal that terminates the write cycle item for Write Cycle 3 (WE controlled OE LOW) is the sum of the remaining and the

^{10.} The minimum write cycle time for Write Cycle 2 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

Switching Waveforms

Figure 4. Read Cycle 1 (Address Transition Controlled) [11, 12]

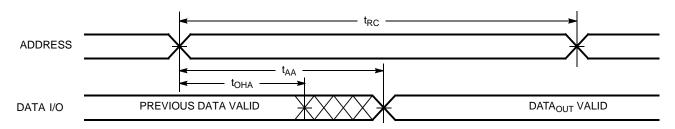
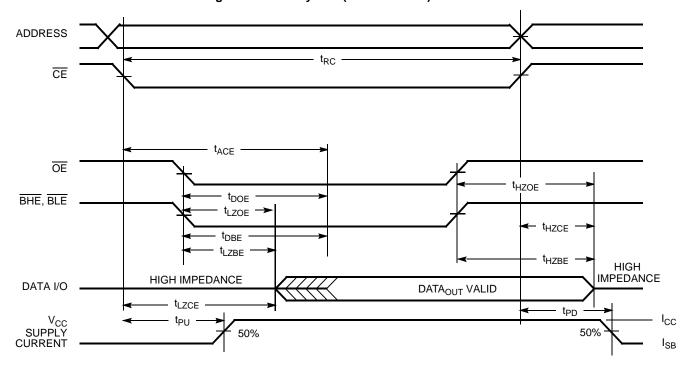



Figure 5. Read Cycle 2 (OE Controlled) [12, 13, 14]

^{11.} Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} or \overline{BHE} or both = V_{IL} , and $CE_2 = V_{IH}$. 12. \overline{WE} is HIGH for read cycle.

^{13.} Address valid before or similar to $\overline{\text{CE}}_1$ transition LOW and CE₂ transition HIGH.

14. $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. For all other combinations, $\overline{\text{CE}}$ is HIGH.

Switching Waveforms (continued)

Figure 6. Write Cycle 1 (CE Controlled) [15, 16, 17]

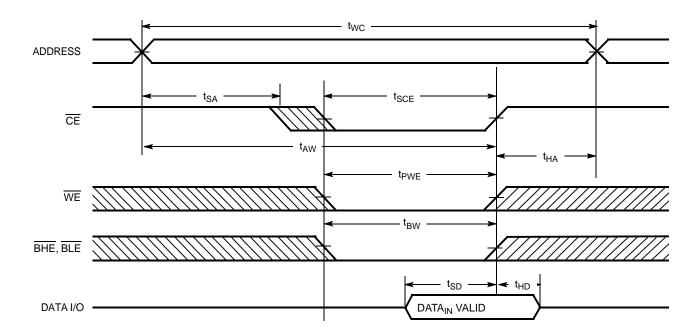
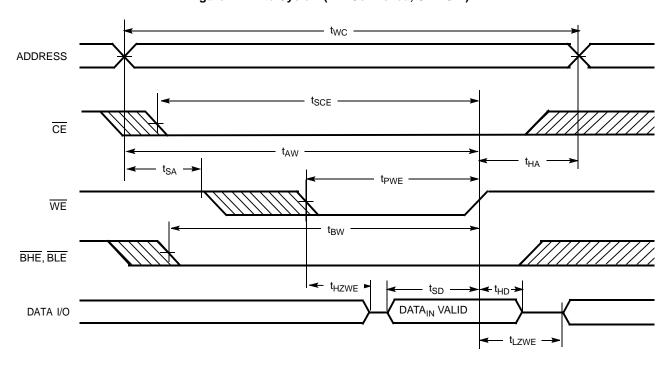
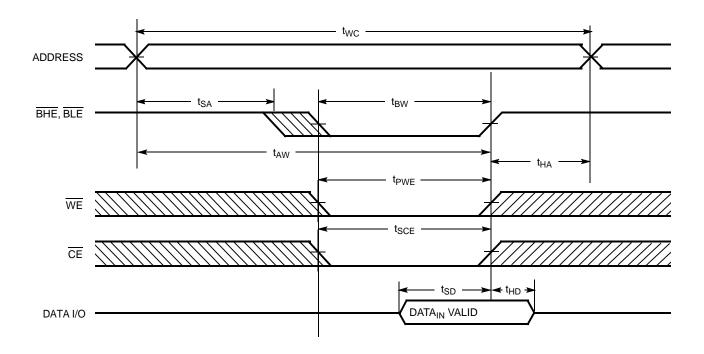



Figure 7. Write Cycle 2 (WE Controlled, OE LOW) [15, 16, 17]


Notes

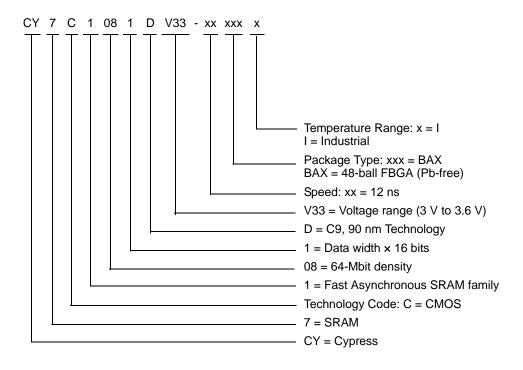
^{15.} $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. For all other combinations, $\overline{\text{CE}}$ is HIGH. 16. Data I/O is high impedance if $\overline{\text{OE}}$ or $\overline{\text{BHE}}$, $\overline{\text{BLE}}$ or both = $\overline{\text{V}}_{\text{IH}}$. 17. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ going HIGH, the output remains in a high impedance state.

Switching Waveforms (continued)

Figure 8. Write Cycle 3 (BLE or BHE Controlled) [18]

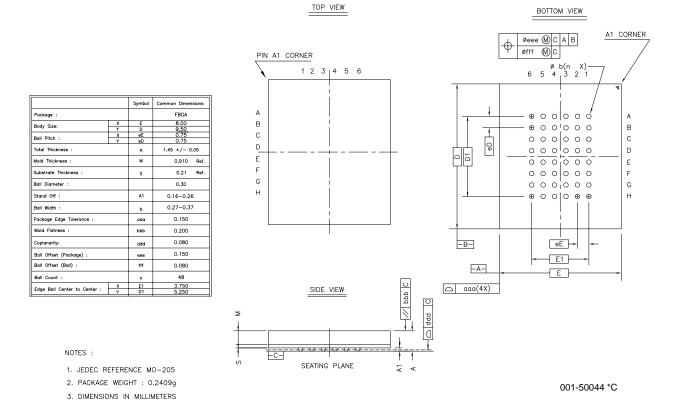
Truth Table

CE ₁	CE ₂	OE	WE	BLE	BHE	I/O ₀ -I/O ₇	I/O ₈ – I/O ₁₅	Mode	Power
Н	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	Power down	Standby (I _{SB})
Х	L	Χ	Χ	Χ	Χ	High-Z	High-Z	Power down	Standby (I _{SB})
L	Н	L	Н	L	L	Data Out	Data Out	Read all bits	Active (I _{CC})
L	Н	L	Н	L	Н	Data Out	High-Z	Read lower bits only	Active (I _{CC})
L	Н	L	Н	Н	L	High-Z	Data Out	Read upper bits only	Active (I _{CC})
L	Н	Х	L	L	L	Data In	Data In	Write all bits	Active (I _{CC})
L	Н	Χ	L	L	Н	Data In	High-Z	Write lower bits only	Active (I _{CC})
L	Н	Х	L	Н	L	High-Z	Data In	Write upper bits only	Active (I _{CC})
L	Н	Н	Н	Х	Х	High-Z	High-Z	Selected, Outputs disabled	Active (I _{CC})


Note ______ 18. $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. For all other combinations, $\overline{\text{CE}}$ is HIGH.

Ordering Information

Speed (ns)	Ordering Code Package Diagram		Package Type	Operating Range	
12	CY7C1081DV33-12BAXI	001-50044	48-Ball FBGA (8 × 9.5 × 1.4 mm) (Pb-free)	Industrial	


Ordering Code Definition

Package Diagram

Figure 9. 48-Ball FBGA (8 x 9.5 x 1.4 mm) (001-50044)

Acronyms

Acronym	Description	
CMOS	complementary metal oxide semiconductor	
FBGA	fine ball grid array	
I/O	input/output	
SRAM	static random access memory	
TTL	transistor-transistor logic	

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
μΑ	microampere		
mA	milliampere		
MHz	megahertz		
ns	nanosecond		
pF	picofarad		
V	volt		
Ω	ohm		
W	watt		

Document History Page

Document Title: CY7C1081DV33, 64-Mbit (4 M × 16) Static RAM Document Number: 001-53992						
Revision	ECN	Submission Date	Orig. of Change	Description of Change		
**	2746867	07/31/2009	VKN/AESA	New datasheet		
*A	3100499	12/02/2010	PRAS	Updated Note 14. Changed datasheet status from Preliminary to Final. Updated Package Diagram and Sales, Solutions, and Legal Information. Added Acronyms, Document Conventions and Ordering Code Definition.		
*B	3178249	21/02/2011	PRAS	Post to external web		
*C	3246293	05/04/2011	PRAS	Modified Figure 44-B all FBGA pin configuration.		
*D	3720094	08/22/2012	TAVA	Minor Text edits.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products PSoC Solutions

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/powerpsoc

cypress.com/go/plc

Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.