

CY7C1062AV33

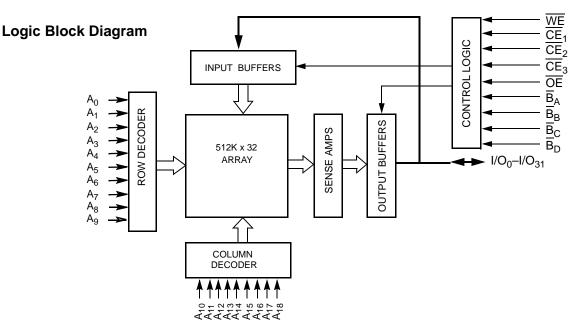
Features

- High speed
 - t_{AA} = 8 ns
- · Low active power
 - 1080 mW (max.)
- Operating voltages of 3.3 ± 0.3V
- 2.0V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 features
- Available in non Pb-free 119-ball PBGA package

Functional Description

The CY7C1062AV33 is a high-performance CMOS Static RAM organized as 524,288 words by 32 bits.

<u>Writing to the device is accomplished by enabling the chip</u> (\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW) and forcing the Write Enable (WE) input LOW. If Byte Enable A (\overline{B}_A) is LOW, then data from I/O


512K x 32 Static RAM

pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₈). If Byte Enable B (\overline{B}_B) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₈). Likewise, B_C and B_D correspond with the I/O pins I/O₁₆ to I/O₂₃ and I/O₂₄ to I/O₃₁, respectively.

<u>Reading</u> from the device is accomplished by enabling the chip (\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW) while forcing the Output Enable (\overline{OE}) LOW and Write Enable (WE) HIGH. If the first Byte Enable (\overline{B}_A) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte Enable B (\overline{B}_B) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. Similarly, \overline{B}_c and \overline{B}_D correspond to the third and fourth bytes. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₀ through I/O₃₁) are placed in a <u>high-impedance</u> state when the device is de<u>sel</u>ected (\overline{CE}_1 , \overline{CE}_2 or \overline{CE}_3 HIGH), the outputs are disabled (\overline{OE} HIGH), the byte selects are disabled (\overline{B}_{A-D} HIGH), or during a write operation (\overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 LOW, and WE LOW).

The CY7C1062AV33 is available in a 119-ball pitch ball grid array (PBGA) package.

Selection Guide

		-8	-10	-12	Unit
Maximum Access Time		8	10	12	ns
Maximum Operating Current	Com'l	300	275	260	mA
	Ind'l	300	275	260	
Maximum CMOS Standby Current	Com'l/Ind'l	50	50	50	mA

Cypress Semiconductor Corporation Document #: 38-05137 Rev. *F 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised August 3, 2006

CY7C1062AV33

			(Toj	p View)			
	1	2	3	4	5	6	7
Α	I/O ₁₆	А	A	A	A	А	I/O ₀
В	I/O ₁₇	А	А	CE ₁	А	А	I/O ₁
С	I/O ₁₈	B _c	CE ₂	NC	CE ₃	B _a	I/O ₂
D	I/O ₁₉	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₃
E	I/O ₂₀	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₄
F	I/O ₂₁	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₅
G	I/O ₂₂	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₆
Н	I/O ₂₃	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₇
J	NC	V_{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	DNU
ĸ	I/O ₂₄	V_{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₈
L	I/O ₂₅	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₉
М	I/O ₂₆	V_{DD}	V _{SS}	V _{SS}	V _{SS}	V_{DD}	I/O ₁₀
N	I/O ₂₇	V _{SS}	V _{DD}	V _{SS}	V _{DD}	V _{SS}	I/O ₁₁
Р	I/O ₂₈	V _{DD}	V _{SS}	V _{SS}	V _{SS}	V _{DD}	I/O ₁₂
R	I/O ₂₉	А	B _d	NC	B _b	А	I/O ₁₃
Т	I/O ₃₀	А	Α	WE	А	А	I/O ₁₄
U	I/O ₃₁	А	A	OE	A	А	I/O ₁₅

119-ball PBGA (Ton View)

Notes:1. NC pins are not connected on the die.2. DNU pins have to be left floating or tied to VSS to ensure proper application.

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C

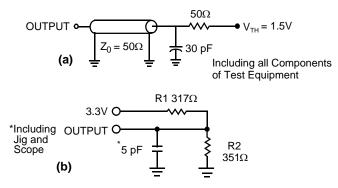
Supply Voltage on V_{CC} to Relative GND^[3] -0.5V to +4.6V

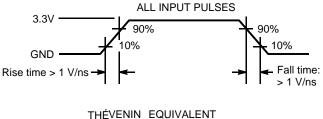
DC Voltage Applied to Outputs in High-Z State^[3].....–0.5V to V_{CC} + 0.5V

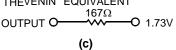
DC Electrical Characteristics Over the Operating Range

DC Input Voltage ^[3]	–0.5V to V _{CC} + 0.5V
---------------------------------	---------------------------------

Current into Outputs (LOW)...... 20 mA **Operating Range**


Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$3.3V\pm0.3V$
Industrial	–40°C to +85°C	


				-	-8		10		12	
Parameter	Description	Test Condition	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.$	0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0	mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[3]			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1	+1	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$, Output Disabled		-1	+1	-1	+1	-1	+1	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		300		275		260	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		300		275		260	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \text{ or } \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$			70		70		70	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{array}{l} \underline{\text{Max}}. \ \text{V}_{\text{CC}}, \\ \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{or} \ \text{V}_{\text{IN}} \leq 0.3\text{V}, \ \text{f} = 0 \end{array}$	Com'l/ Ind'l		50		50		50	mA


Capacitance^[4]

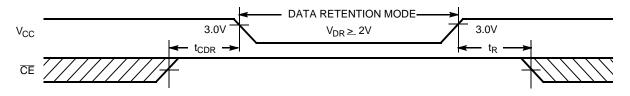
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = 3.3V$	8	pF
C _{OUT}	I/O Capacitance		10	pF

AC Test Loads and Waveforms^[5]

Notes:

3. V_{II} (min.) = -2.0V for pulse durations of less than 20 ns.

4. Tested initially and after any design or process changes that may affect these parameters.


5. Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1 ms (T_{power}) after reaching the minimum operating V_{DD} , normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR} , 2.0V) voltage.

AC Switching Characteristics Over the Operating Range^[6]

		-	-8	-10		-12		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
t _{power}	V _{CC} (typical) to the first access ^[7]	1		1		1		ms
t _{RC}	Read Cycle Time	8		10		12		ns
t _{AA}	Address to Data Valid		8		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 LOW to Data Valid		8		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		5		6	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	1		1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[8]		5		5		6	ns
t _{LZCE}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 LOW to Low-Z ^[8]	3		3		3		ns
t _{HZCE}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 HIGH to High-Z ^[8]		5		5		6	ns
t _{PU}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 LOW to Power-up ^[9]	0		0		0		ns
t _{PD}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 HIGH to Power-down ^[9]		8		10		12	ns
t _{DBE}	Byte Enable to Data Valid		5		5		6	ns
t _{LZBE}	Byte Enable to Low-Z ^[8]	1		1		1		ns
t _{HZBE}	Byte Disable to High-Z ^[8]		5		5		6	ns
Write Cycle ^{[1}	0, 11]							
t _{WC}	Write Cycle Time	8		10		12		ns
t _{SCE}	\overline{CE}_1 , \overline{CE}_2 , or \overline{CE}_3 LOW to Write End	6		7		8		ns
t _{AW}	Address Set-up to Write End	6		7		8		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		ns
t _{SD}	Data Set-up to Write End	5		5.5		6		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[8]		5		5	1	6	ns
t _{BW}	Byte Enable to End of Write	6		7		8		ns

Data Retention Waveform

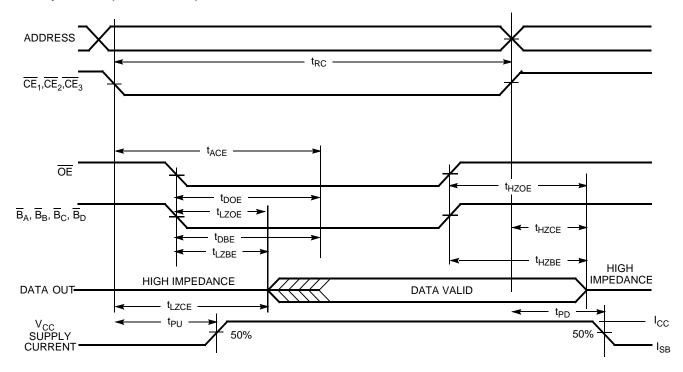
Notes:

Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified l_{OL}/l_{OH} and transmission line loads. Test conditions for the read cycle use output loading as shown in (a) of AC Test Loads, unless specified otherwise.
 This part has a voltage regulator that steps down the voltage from 3V to 2V internally. t_{power} time has to be provided initially before a read/write operation is started.

t_{HZOE}, t_{HZCE}, t_{HZWE}, t_{HZE}, and t_{LZOE}, t_{LZCE}, t_{LZWE}, and t_{LZBE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.

± 200 mV from steady-state voltage.
9. These parameters are guaranteed by design and are not tested.
10. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, CE₃ LOW, and WE LOW. The chip enables must be active and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the local set the aircraft the terminates the write. the leading edge of the signal that terminates the write

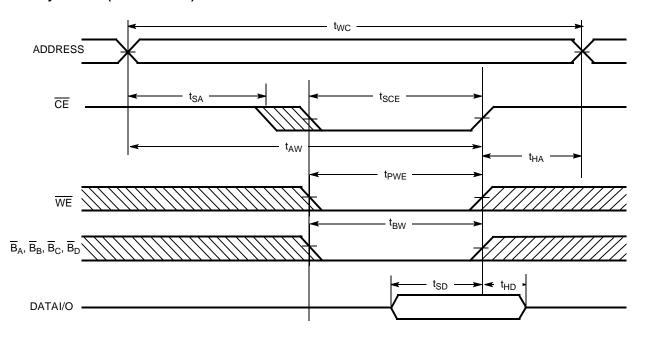
11. The minimum write cycle time for Write Cycle No. 3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD}.


CY7C1062AV33

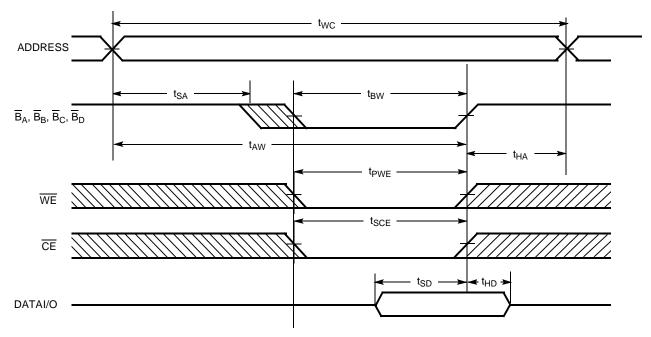
Switching Waveforms

Read Cycle No. 1^[12, 13]

Read Cycle No. 2 (OE Controlled)^[13, 14]


Notes:

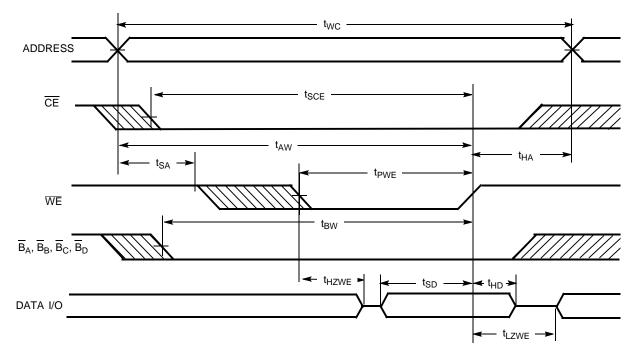
12. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{B}_A , \overline{B}_B , \overline{B}_C , $\overline{B}_D = V_{IL}$. 13. WE is HIGH for read cycle. 14. Address valid prior to or coincident with \overline{CE} transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)^[15, 16, 17]

Write Cycle No. 2 (BLE or BHE Controlled)^[15, 16, 17]

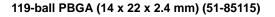


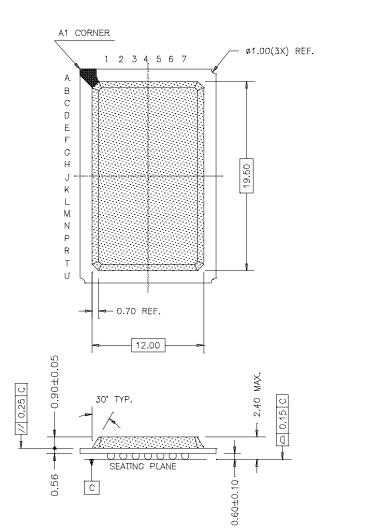
- **Notes:** 15. CE indicates a combination of <u>all</u> three chip enables. When ACTIVE LOW, \overline{CE} indicates the \overline{CE}_1 , \overline{CE}_2 , and \overline{CE}_3 are LOW. 16. Data I/O is high-impedance if \overline{OE} or \overline{B}_A , \overline{B}_B , \overline{B}_C , $\overline{B}_D = V_{IH}$. 17. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

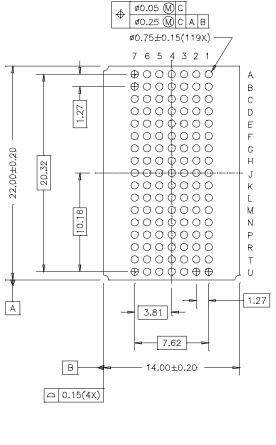
Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)

Truth Table


			OE	WE	B _A	B _B	B _c	B _D	1/0 ₀ - 1/0 ₇	I/O ₈ - I/O ₁₅	I/O ₁₆ - I/O ₂₃	I/O ₂₄ - I/O ₃₁	Mode	Power
Н	Х	Х	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
Х	Н	Х	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
Х	Х	Н	Х	Х	Х	Х	Х	Х	High-Z	High-Z	High-Z	High-Z	Power Down	(I _{SB})
L	L	L	L	Н	L	L	L	L	Data Out	Data Out	Data Out	Data Out	Read All Bits	(I _{CC})
L	L	L	L	Н	L	Н	Н	Н	Data Out	High-Z	High-Z	High-Z	Read Byte A Bits Only	(I _{CC})
L	L	L	L	Н	Н	L	Н	Н	High-Z	Data Out	High-Z	High-Z	Read Byte B Bits Only	(I _{CC})
L	L	L	L	Н	Н	Н	L	Н	High-Z	High-Z	Data Out	High-Z	Read Byte C Bits Only	(I _{CC})
L	L	L	L	Н	Н	Н	Н	L	High-Z	High-Z	High-Z	Data Out	Read Byte D Bits Only	(I _{CC})
L	L	L	Х	L	L	L	L	L	Data In	Data In	Data In	Data In	Write All Bits	(I _{CC})
L	L	L	Х	L	L	Н	Н	Н	Data In	High-Z	High-Z	High-Z	Write Byte A Bits Only	(I _{CC})
L	L	L	Х	L	Н	L	Н	Н	High-Z	Data In	High-Z	High-Z	Write Byte B Bits Only	(I _{CC})
L	L	L	Х	L	Н	Н	L	Н	High-Z	High-Z	Data In	High-Z	Write Byte C Bits Only	(I _{CC})
L	L	L	Х	L	Н	Н	Н	L	High-Z	High-Z	High-Z	Data In	Write Byte D Bits Only	(I _{CC})
L	L	L	Η	Η	Х	Х	Х	Х	High-Z	High-Z	High-Z	High-Z	Selected, Outputs Disabled	(I _{CC})




Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
8	CY7C1062AV33-8BGC	51-85115	119-ball (14 x 22 x 2.4 mm) PBGA	Commercial
10	CY7C1062AV33-10BGC			
	CY7C1062AV33-10BGI			Industrial
12	CY7C1062AV33-12BGC			Commercial
	CY7C1062AV33-12BGI			Industrial

Package Diagram

51-85115-*B

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05137 Rev. *F

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems applications implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109752	02/27/02	HGK	New Data Sheet
*A	117059	09/19/02	DFP	Removed 15-ns bi <u>n</u> and added 8-ns bin. Changed CE_2 TO CE_2 . Changed C_{IN} – input capacitance – from 6 pF to 8 pF. Changed C_{OUT} – output capacitance – from 8 pF to 10 pF.
*В	119389	10/07/02	DFP	Updated I_{CC} , T_{sd} , and T_{doe} parameters. Removed note 7 (I_Z / h_Z comment).
*C	120384	11/13/02	DFP	Final Data Sheet. Removed note 2. Added note 3 to "AC Test Loads and Waveforms" and note 7 to t _{pu} and t _{pd}
*D	124440	2/25/03	MEG	Changed ISB1 from 100 mA to 70 mA
*E	329638	See ECN	RKF	Removed \overline{CE}_2 waveform showing Active High signal timing on Page #5, and included it with the \overline{CE}_1 , \overline{CE}_3 waveform Corrected Truth Table on page 7 with \overline{CE}_2 active low information
*F	492137	See ECN	NXR	Included note #1 and 2 on page #2 Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Updated Ordering Information Table