

4-Mbit (256 K × 16) Static RAM

Features

■ Very high speed: 45 ns■ Temperature range□ Industrial: -40 °C to +85 °C

■ Wide voltage range: 2.20 V to 3.60 V

Ultra low standby power
 Typical standby current: 1 μA

□ Maximum standby current: 7 μA (Industrial)

■ Ultra low active power

□ Typical active current: 2 mA at f = 1 MHz

■ Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} Features

■ Automatic power down when deselected

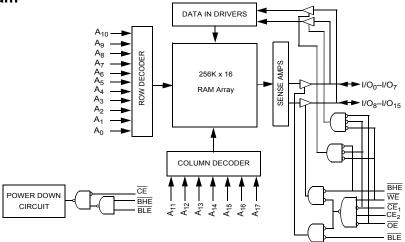
Complementary metal oxide semiconductor (CMOS) for optimum speed and power

■ Available in Pb-free 44-pin thin small outline package (TSOP) Il package

■ Byte power down feature

Functional Description

The CY621472EV30 is a high performance CMOS static RAM (SRAM) organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra low active current. It is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device


also has an automatic power down feature that significantly reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99 percent when deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW or both BLE and BHE are HIGH). The input and output pins (I/O $_0$ through I/O $_{15}$) are placed in a high impedance state when:

- Deselected (CE₁ HIGH or CE₂ LOW)
- Outputs are disabled (OE HIGH)
- <u>Both Byte</u> High Enable and Byte Low Enable are disabled (BHE, BLE HIGH)
- Write operation is active (CE₁ LOW and CE₂ HIGH and WE LOW)

To write to the device, take Chip Enable ($\overline{\text{CE}}_1$ LOW and CE_2 <u>HIGH</u>) and Write Enable ($\overline{\text{WE}}$) inputs LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$) is written into the location specified on the address pins (A_0 through A $_1$ 7). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_1$ 5) is written into the location specified on the address pins (A_0 through A $_1$ 7).

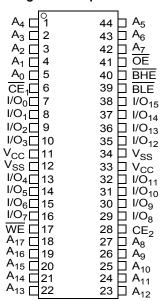
To read from the device, tak<u>e</u> Chip Enable (CE₁ LOW and CE₂ HIGH and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appear on I/O_0 to I/O_7 . If Byte High Enable (BHE) is LOW, then data from memory appears on I/O_8 to I/O_{15} . See the Truth Table on page 10 for a complete description of read and write modes.

Logic Block Diagram

Contents

Product Portfolio	3
Pin Configuration	
Maximum Ratings	
Operating Range	
Electrical Characteristics	
Capacitance	
Thermal Resistance	
Data Retention Characteristics	5
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	11
Ordering Code Definitions	11
Package Diagrams	12
Acronyms	12
Document Conventions	12
Units of Measure	12
Document History Page	13
Sales, Solutions, and Legal Information	14
Worldwide Sales and Design Support	
Products	
PSoC Solutions	1/



Product Portfolio

							F	Power Di	ssipatio	n			
Product	Range	V _{CC} Range (V)		V _{CC} Range (V)		Vac Range (V)		C	perating	J I _{CC} (mA	١)	Standb	y I _{SB2}
			`		(,	f = 1 MHz		f = f _{max}		(μ Ă)			
		Min	Typ ^[1]	Max		Typ ^[1]	Max	Typ ^[1]	Max	Typ ^[1]	Max		
CY621472EV30LL	Industrial	2.2	3.0	3.6	45	2	2.5	15	20	1	7		

Pin Configuration

Figure 1. 44-pin TSOP II

Note

^{1.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. User guidelines are not tested.

Storage temperature-65 °C to +150 °C

Ambient temperature with

Supply voltage to ground

potential-0.3 V to +3.9 V (V_{CCmax} + 0.3 V)

DC Voltage Applied to Outputs in High Z State [2, 3].....-0.3 V to 3.9 V (V_{CCmax} + 0.3 V)

DC input voltage [2, 3]0.3 V to 3.9 V (V _{CCmax} + 0.3 V)	,
Output current into outputs (LOW)20 mA	
Static discharge voltage > 2001 V (MIL-STD-883, Method 3015)	,
Latch up current> 200 mA	

Operating Range

Device	Range	Ambient Temperature	V _{CC} [4]	
CY621472EV30LL	Industrial	–40 °C to +85 °C	2.2 V to 3.6 V	

Electrical Characteristics

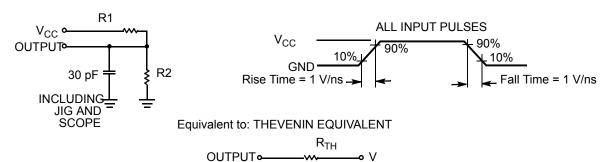
Over the Operating Range

Davameter	Description	Toot Conditions			45 ns		Unit
Parameter	Description	Test Conditions	Min	T yp ^[5]	Max	Unit	
V _{OH}	Output HIGH voltage	I _{OH} = -0.1 mA		2.0	-	_	V
		$I_{OH} = -1.0 \text{ mA}, V_{CC} \ge 2.70 \text{ V}$		2.4	-	-	V
V _{OL}	Output LOW voltage	I _{OL} = 0.1 mA		-	-	0.4	V
		I _{OL} = 2.1 mA, V _{CC} = 2.70 V		_	-	0.4	V
V _{IH}	Input HIGH voltage	V _{CC} = 2.2 V to 2.7 V		1.8	-	V _{CC} + 0.3	V
		V _{CC} = 2.7 V to 3.6 V		2.2	-	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage	V _{CC} = 2.2 V to 2.7 V		-0.3	-	0.6	V
		V _{CC} = 2.7 V to 3.6 V		-0.3	_	0.8	V
I _{IX}	Input leakage current	$GND \le V_1 \le V_{CC}$		-1	-	+1	μΑ
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$, Output Disable	ed	–1	-	+1	μΑ
I _{CC}	V _{CC} operating supply current	$f = f_{\text{max}} = 1/t_{\text{RC}}$ $f = 1 \text{ MHz}$ $V_{\text{CC}} = V_{\text{CC}}$ $I_{\text{OUT}} = 0 \text{ m/z}$	(max)	_	15	20	mA
		f = 1 MHz I _{OUT} = 0 m/ CMOS leve		_	2	2.5	
I _{SB1} ^[6]	Automatic CE power-down current — CMOS inputs	$\begin{array}{ c c c c c c }\hline CE_1 \geq V_{CC} - 0.2 \text{ V}, CE_2 \leq 0.2 \text{ V},\\ V_{IN} \geq V_{CC} - 0.2 \text{ V}, V_{IN} \leq 0.2 \text{ V},\\ f = f_{max} \underbrace{(address\ and\ data\ only)}_{F},\\ f = 0 \underbrace{(OE,\ BHE,\ BLE\ and\ WE)}_{CC} = 3.60 \text{ V} \end{array}$		-	1	7	μА
I _{SB2} ^[6]	Automatic CE Power down current — CMOS inputs	$\begin{array}{ c c c c c }\hline \hline CE_1 \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2\\ \hline (BHE \text{ and } BLE) \ge V_{CC} - 0.2 \text{ V,}\\ \hline V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V,}\\ \hline V_{CC} = 3.60 \text{ V} \end{array}$		-	1	7	μА

Capacitance

Parameter ^[7]	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output Capacitance	• • • • • • • • • • • • • • • • • • • •	10	pF

- 2. $V_{IL(min)} = -2.0 \text{ V}$ for pulse durations less than 20 ns.


- V_{IL(min)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 V_{IH(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.
 Typical values <u>are</u> included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Chip enables (CE₁ and CE₂) need to be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 Tested initially and after any design or process changes that may affect these parameters.

Thermal Resistance

Parameter ^[8]	Description	Test Conditions	44-pin TSOP II Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	77	°C/W
ΘJC	Thermal resistance (junction to case)		13	°C/W

Figure 2. AC Test Load and Waveforms

Parameters	2.50 V	3.0 V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics

Over the Operating Range

 V_{CC}

CE or BHE.BLE

Parameter	Description	Conditions	Min	Typ ^[9]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	-	_	V
I _{CCDR} ^[10]	Data retention current	V_{CC} = 1.5 V, $\overline{CE}_1 \ge V_{CC} - 0.2$ V or $CE_2 \le 0.2$ V or $(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2$ V, $V_{IN} \ge V_{CC} - 0.2$ V or $V_{IN} \le 0.2$ V	_	0.8	7	μА
t _{CDR} ^[8]	Chip deselect to data retention time		0	-	_	ns
t _R ^[11]	Operation recovery time		45	-	_	ns

Figure 3. Data Retention Waveform^[12, 13] DATA RETENTION MODE V_{CC(min)} $V_{CC(min)}$ V_{DR} ≥ 1.5 V t_{CDR} -

Notes

- 8. Tested initially and after any design or process changes that may affect these parameters.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Chip enables (CE₁ and CE₂) need to be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 µs or stable at V_{CC(min)} ≥ 100 µs.
 CE refers to the internal logical combination of CE₁ and CE₂ such that when CE₁ is LOW and CE₂ is HIGH, CE is LOW. For all other cases CE is HIGH.
 BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Over the Operating Range

Parameter ^[14]	Do contest ou	45	45 ns		
Parameter	Description	Min	Max	- Unit	
Read Cycle					
t _{RC}	Read cycle time	45	_	ns	
t _{AA}	Address to data valid	_	45	ns	
t _{OHA}	Data hold from address change	10	_	ns	
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to data valid	-	45	ns	
t _{DOE}	OE LOW to data valid	_	22	ns	
t _{LZOE}	OE LOW to Low Z ^[15]	5	_	ns	
t _{HZOE}	OE HIGH to High Z ^[15, 16]	_	18	ns	
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to Low Z ^[15]	10	_	ns	
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to High Z ^[15, 16]	_	18	ns	
t _{PU}	CE ₁ LOW/CE ₂ HIGH to Power-up	0	_	ns	
t _{PD}	CE ₁ HIGH/CE ₂ LOW to Power-down	-	45	ns	
t _{DBE}	BLE/BHE LOW to data valid	-	45	ns	
t _{LZBE}	BLE/BHE LOW to Low Z ^[15, 17]	5	_	ns	
t _{HZBE}	BLE/BHE HIGH to High Z ^[15, 16]	-	18	ns	
Write Cycle ^{[18}	3]	•			
t _{WC}	Write cycle time	45	_	ns	
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to Write End	35	_	ns	
t _{AW}	Address setup to write end	35	-	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address setup to write start	0	_	ns	
t _{PWE}	WE pulse width	35	_	ns	
t _{BW}	BLE/BHE LOW to write end	35	_	ns	
t _{SD}	Data setup to write end	25	_	ns	
t _{HD}	Data hold from write end	0	_	ns	
t _{HZWE}	WE LOW to High Z ^[15, 16]	-	18	ns	
t _{LZWE}	WE HIGH to Low Z ^[15]	10	-	ns	

^{14.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1 V/ns) or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the Figure 2 on page 5.

15. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device.

16. t_{HZCE}, t_{HZBE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

17. If both byte enables are together, this value is 10 ns.

18. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE, BLE, or both = V_{IL}. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Figure 4. Read Cycle No. 1 (Address Transition Controlled)^[19, 20]

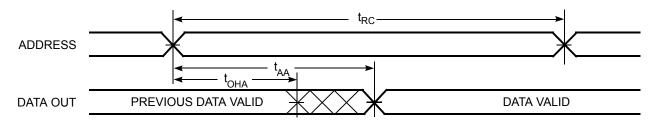
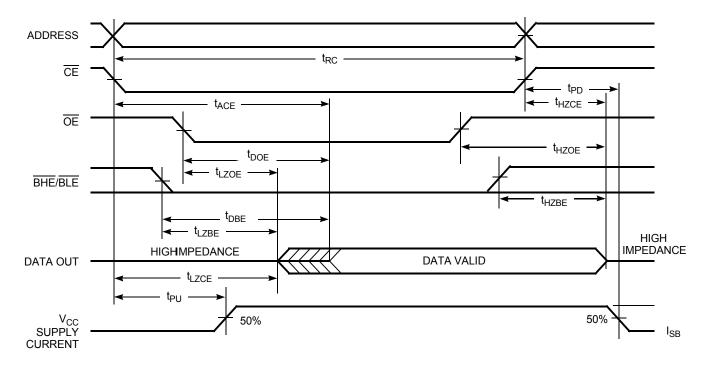



Figure 5. Read Cycle No. 2 $(\overline{\text{OE}} \text{ Controlled})^{[20,\ 21,\ 22]}$

Notes

^{19.} The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} , \overline{BLE} , or both = V_{IL} .

20. \overline{WE} is HIGH for read cycle.

21. \overline{CE} refers to the internal logical combination of \overline{CE}_1 and \overline{CE}_2 such that when \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE} is LOW. For all other cases \overline{CE} is HIGH.

22. Address valid before or similar to \overline{CE} and \overline{BHE} , \overline{BLE} transition LOW.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 ($\overline{\text{WE}}$ Controlled)[23, 24, 25, 26]

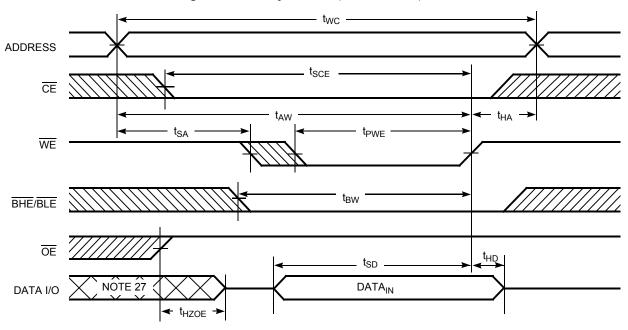
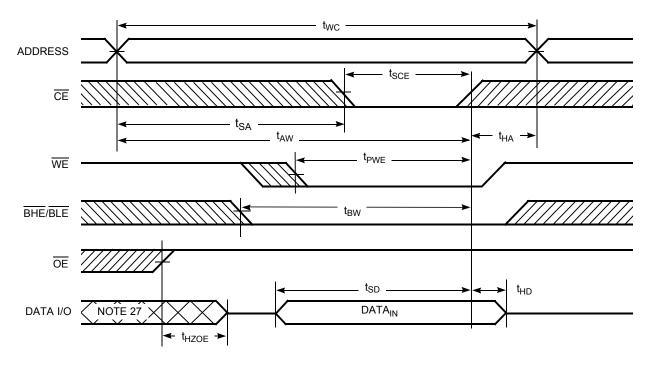



Figure 7. Write Cycle No. 2 $(\overline{\text{CE}} \text{ Controlled})^{[23, 24, 25, 26]}$

Notes

- 23. $\overline{\text{CE}}$ refers to the internal logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$ such that when $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW. For all other cases $\overline{\text{CE}}$ is HIGH.

 24. The internal write time of the memory is defined by the overlap of $\overline{\text{WE}}$, $\overline{\text{CE}} = V_{\parallel}$, $\overline{\text{BHE}}$, $\overline{\text{BLE}}$, or both = V_{\parallel} . All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.
- 25. Data I/O is high impedance if $\overline{OE} = V_{IL}$.

 26. If \overline{CE} goes HIGH simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high impedance state.
- 27. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 8. Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[28, 29]

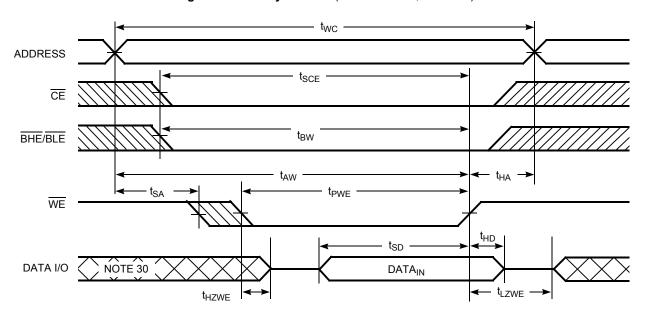
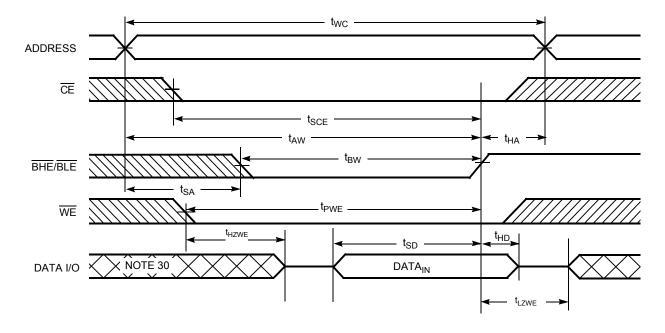



Figure 9. Write Cycle No. 4 $(\overline{BHE/BLE}\ Controlled,\ \overline{OE}\ LOW)^{[28,\ 29]}$

Notes

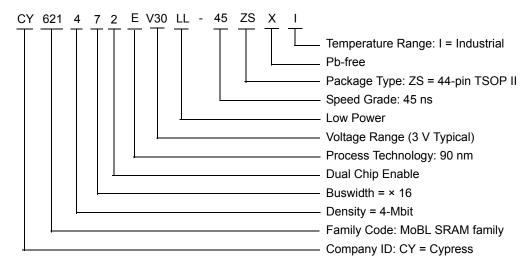
28. $\overline{\text{CE}}_{1}$ refers to the internal logical combination of $\overline{\text{CE}}_{1}$ and $\overline{\text{CE}}_{2}$ such that when $\overline{\text{CE}}_{1}$ is LOW and $\overline{\text{CE}}_{2}$ is HIGH, $\overline{\text{CE}}$ is LOW. For all other cases $\overline{\text{CE}}$ is HIGH.

29. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}} = V_{\text{IH}}$, the output remains in a high impedance state.

30. During this period, the I/Os are in output state. Do not apply input signals.

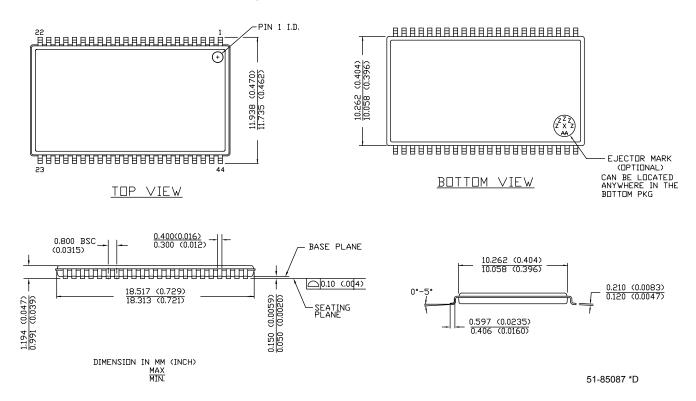
Truth Table

CE1	CE ₂	WE	OE	BHE	BLE	I/Os	Mode	Power
Н	X ^[31]	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[31]	L	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[31]	X ^[31]	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	Н	Data out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data in (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data in (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	Н	L	Х	L	Н	Data in (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})


Note
31. The 'X' (Don't care) state for the chip enables ($\overline{\text{CE}}_1$ and CE_2) in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY621472EV30LL-45ZSXI	51-85087	44-pin Thin Small Outline Package II (Pb-free)	Industrial


Ordering Code Definitions

Package Diagram

Figure 10. 44-pin TSOP II, 51-85087

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
I/O	input/output
OE	output enable
SRAM	static random access memory
TSOP	thin small outline package
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure				
°C	degree Celsius				
MHz	Mega Hertz				
μΑ	micro Amperes				
μS	micro seconds				
mA	milli Amperes				
ns	nano seconds				
Ω	ohms				
%	percent				
pF	pico Farad				
V	Volts				
W	Watts				

Document History Page

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	3184883	RAME	03/01/2011	New Data Sheet
*A	3223503	RAME	04/15/2011	Overline bar ${\sf CE}_2$ removed from the Truth table. Updated all notes as per template.
*B	3261142	RAME	05/19/2011	Updated Switching Characteristics (corrected the Min value of t _{LZBE} parameter). Added Ordering Information and Ordering Code Definitions. Added Acronyms and Units of Measure.
*C	3365953	AJU	09/08/2011	Changed datasheet status from Preliminary to Final. Updated 44-pin TSOP II package spec.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface cypress.com/go/powerpsoc

cypress.com/go/plc
Memory cypress.com/go/memory
Optical & Image Sensing cypress.com/go/image
PSoC cypress.com/go/psoc
Touch Sensing cypress.com/go/touch
USB Controllers cypress.com/go/USB
Wireless/RF cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number:001-67798 Rev. *C

Revised September 13, 2011

Page 14 of 14

MoBL is a registered trademark, and More Battery Life is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.