Full specs

Oscilloscope	Sample Rate	750ksps (shared)
	Bits per Sample	8, 12 ¹
	Bandwidth	$\sim 100 \text{kHz}^2$
	Input Voltage Range	-20V to +20V
	Input Impedance	1 MΩ
	No. of Channels	2
	Coupling	AC/DC
Arbitrary Waveform Generator	Waveform types	Sin, Square, Triangle, Sawtooth, Arbitrary
	Sample Rate	1Msps
	Sample Depth	64 samples (CH1), 1500 samples (CH2)
	Output voltage range	0.15V to 9.5V
	Bits per Sample	8
	Max. Current	10mA ³
	Output Resistance	50Ω
	No. of Channels	2
Variable Power Supply	Voltage Range	4.5V to 15V
	Max. Power	~1.5W
	No. of Outputs	1
	Source Impedance	Negligible ⁴
	Ripple Voltage	+-300mV%@10V 10mA, +-700mV%@10V 100mA
Logic Analyzer	Sample Rate	3Msps per channel
	Supported voltage	3.3V, 5V, 12V
	No. of Channels	2
Digital Output	Voltage	3.3V
	Source Impedance	50Ω
Multimeter ⁵	Input Impedance	1ΜΩ
	Measured Parameters	V, I, R, C
	Voltage Range	-20V to +20V
	Current Range	100uA to 10A
	Resistance Range	1 ohm to 100k
	Capacitance Range	10pf to 1mf

¹ - 12-bit sampling is available at 375ksps, single-channel only.
² - This figure is an approximate "maximum detectable frequency" dictated by the sample rate.

³ - This figure is for source current. Current is sunk partially into the op-amp driving the signal gen and partially into a 1k resistor. Thus, maximum sink current can be calculated by dividing the output voltage by 1k and adding 50µA. This configuration was chosen so that capacitive loads could be driven without significant nonlinearities. In simpler terms, this means that if you're trying to drive current into the waveform generator through use of an external current source, then the maximum current that the waveform generator can handle is reduced. (This is not something that would be an issue for most people.)

⁴ - The Power Supply is controlled by a closed-loop feedback loop that ensures the DC voltage across output remains constant. Thus, it has nonlinear elements, but can still be approximated by a Thévenin circuit with Vth = Vo and Rth = 0.

⁵ - Multimeter ranges vary with reference resistor used.