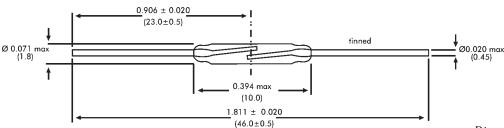

RI-02 Series Dry Reed Switch

RI-02 Series


Ultra-miniature dry-reed switch hermetically sealed in a gasfilled envelope. Single-pole, single-throw (SPST) type, having normally open contacts, and containing two magnetically actuated reeds.

The switch is of the double-ended type and may be actuated by an electromagnet, a permanent magnet or a combination of both.

The device is intended for use in relays, sensors, pulse counters or similar devices.

RI-02 Series Features

- ♦ Ideal for General Purpose reed relays and sensors
- Contact layers: Ruthenium on gold
- Superior glass-to-metal seal and blade alignment

Dimensions in inches (mm)

General data for all models RI-02

AT-Customization / Preformed Leads

Besides the standard models, customized products can also be supplied offering the following options:

- Operate and release ranges to customer specification
- Cropped and/or preformed leads

Coils

All characteristics are measured using the Philips standard coil. For definitions of the Philips Standard Coil, refer to "Application Notes" in the Reed Switch Technical & Application Information Section of this catalog.

Life expectancy and reliability

The life expectancy data given below are valid for a coil energized at 1.25 times the published maximum operate value for each type in the RI-02 series.

No-load conditions (operating frequency: 100 Hz)

Life expectancy: $min.10^8$ operations with a failure rate of less than 2 $x10^{-10}$ with a confidence level of 90%.

End of life criteria:

Contact resistance > 1Ω after 2 ms Release time > 2ms (latching or contact sticking).

Loaded conditions (resistive load: 5V; 100 mA; operating frequency: 125 Hz)

Life expectancy: min. 2×10^6 operations with a failure rate of less than 10^{-8} with a confidence level of 90%. End of life criteria:

Contact resistance > 1Ω after 2.5 ms Release time > 1 ms (latching or contact sticking).

Loaded conditions (resistive load: 20V; 500 mA; operating frequency: 125 Hz)

Life expectancy: min. 2×10^6 operations with a failure rate of $< 10^{-7}$ with a confidence level of 90%.

End of life criteria:

Contact resistance > 2Ω after 2.5 ms Release time > 2.5 ms (latching or contact sticking).

Switching different loads involves different life expect-

RI-02 Series Dry Reed Switch

Model Number			RI-02
Parameters	Test Conditions	Units	
Operating Characteristics			
Operate Range		AT	7-21
Release Range		AT	3-16
Operate Time - including bounce (typ.)	(energization)	ms	0.30 (25 AT)
Bounce Time (typ.)	(energization)	ms	0.10 (25 AT)
Release Time (max)	(energization)	μ s	70 (25 AT)
Resonant Frequency (typ.)		Hz	10800
Electrical Characteristics			
Switched Power (max)		W	10
Switched Voltage DC (max)		V	200
Switched Voltage AC, RMS value (max)		V	140
Switched Current DC (max)		mA	500
Switched Current AC, RMS value (max)		mA	500
Carry Current DC (max)		A	0.5
Breakdown Voltage (min)		V	200
Contact Resistance (initial max)	(energization)	m Ω	150 (25 AT)
Contact Resistance (initial typ.)	(energization)	m Ω	120 (25 AT)
Contact Capacitance (max)	without test coil	pF	0.30
Insulation Resistance (min)	RH ≤ 45%	MΩ	10^{6}

ancy and reliability data. Further information is available on request.

Mechanical Data

Contact arrangement is normally open; lead finish is tinned; net mass is approximately 90mg; and can be mounted in any position.

Shock

The switches are tested in accordance with "IEC 68-2-27", test Ea (peak acceleration 150 G, half sinewave; duration 11 ms). Such a shock will not cause an open switch (no magnetic field present) to close nor a switch kept closed by an 80 AT coil to open.

Vibration

The switches are tested in accordance with "IEC 68-2-26", test Fc (acceleration 10G; below cross-over frequency 57 to 62 Hz; amplitude 0.75 mm; frequency range 10 to 2000 Hz; duration 90 minutes.) Such a vibration will not cause an open switch (no magnetic field present) to close, nor a switch kept closed by an 80 AT coil to open.

Mechanical Strength

The robustness of the terminations is tested in accor-

dance with "IEC 68-2-21", test Ua₁ (load 10 N).

Operating and Storage Temperature

Operating ambient temperature; min: -55°C; max: +125°C. Storage temperature; min: -55°C; max: +125°C. **Note:** Temperature excursions up to 150°C may be permissible. For more information contact your nearest Coto Technology sales office.

Soldering

The switch can withstand soldering heat in accordance with "IEC 68-2-20", test Tb, method 1B: solder bath at $350 \pm 10^{\circ}$ C for 3.5 ± 0.5 s. Solderability is tested in accordance with "IEC 68-2-20" test Ta, method 3: solder globule temperature 235° C; ageing 1b: 4 hours steam.

Welding

The leads can be welded.

Mounting

The leads should not be bent closer than 1 mm to the glass-to-metal seals. Stress on the seals should be avoided. Care must be taken to prevent stray magnetic fields from influencing the operating and measuring conditions.