CS5566

土2.5 V / 5 V, 5 kSps, 24-bit $\Delta \Sigma$ ADC

Features

\square Differential Analog Input

- On-chip Buffers for High Input Impedance
- Conversion Time $=200 \mu \mathrm{~S}$
\square Settles in One Conversion
- Linearity Error $=0.0005 \%$
- Signal-to-Noise $=110 \mathrm{~dB}$
- 24 Bits, No Missing Codes
- Simple three/four-wire serial interface
- Power Supply Configurations:
- Analog: +5V/GND; IO: +1.8 V to +3.3 V
- Analog: $\pm 2.5 \mathrm{~V} ; \mathrm{IO}:+1.8 \mathrm{~V}$ to +3.3 V
- Power Consumption: $20 \mathrm{~mW} @ 5 \mathrm{kSps}$

General Description

The CS5566 is a single-channel, 24-bit analog-to-digital converter capable of 5 kSps conversion rate. The input accepts a fully differential analog input signal. On-chip buffers provide high input impedance for both the AIN inputs and the VREF+ input. This significantly reduces the drive requirements of signal sources and reduces errors due to source impedances. The CS5566 is a delta-sigma converter capable of switching multiple input channels at a high rate with no loss in throughput. The ADC uses a low-latency digital filter architecture. The filter is designed for fast settling and settles to full accuracy in one conversion. The converter's 24-bit data output is in serial form, with the serial port acting as either a master or a slave. The converter is designed to support bipolar, ground-referenced signals when operated from $\pm 2.5 \mathrm{~V}$ analog supplies.
The converter can operate from an analog supply of $0-5 \mathrm{~V}$ or from $\pm 2.5 \mathrm{~V}$. The digital interface supports standard logic operating from $1.8,2.5$, or 3.3 V .

ORDERING INFORMATION:

See Ordering Information on page 30.

TABLE OF CONTENTS

1. CHARACTERISTICS AND SPECIFICATIONS 4
ANALOG CHARACTERISTICS 4
SWITCHING CHARACTERISTICS 6
DIGITAL CHARACTERISTICS 10
DIGITAL FILTER CHARACTERISTICS 10
GUARANTEED LOGIC LEVELS 11
RECOMMENDED OPERATING CONDITIONS 12
ABSOLUTE MAXIMUM RATINGS 12
2. OVERVIEW 13
3. THEORY OF OPERATION 13
3.1 Converter Operation 14
3.2 Power Consumption 15
3.3 Clock 16
3.4 Voltage Reference 16
3.5 Analog Input 17
3.6 Output Coding Format 17
3.7 Typical Connection Diagrams 18
3.8 AIN \& VREF Sampling Structures 20
3.9 Converter Performance 20
3.10 Digital Filter Characteristics 23
3.11 Serial Port 24
3.11.1 SSC Mode 24
3.11.2 SEC Mode 24
3.12 Power Supplies \& Grounding 25
3.13 Using the CS5566 in Multiplexing Applications 25
3.14 Synchronizing Multiple Converters 25
4. PIN DESCRIPTIONS 26
5. PACKAGE DIMENSIONS 29
6. ORDERING INFORMATION 30
7. ENVIRONMENTAL, MANUFACTURING, \& HANDLING INFORMATION 30
8. REVISION HISTORY 30
Figure 1. Converter Status 6
Figure 2. SSC Mode - Read Timing, CS remaining low 7
Figure 3. SSC Mode - Read Timing, CS falling after RDY falls 8
Figure 4. SEC Mode - Continuous SCLK Read Timing 9
Figure 5. SEC Mode - Discontinuous SCLK Read Timing 10
Figure 6. Power Consumption vs. Conversion Rate 15
Figure 7. Voltage Reference Circuit 16
Figure 8. CS5566 Configured Using $\pm 2.5 \mathrm{~V}$ Analog Supplies 18
Figure 9. CS5566 Configured Using a Single 5V Analog Supply 19
Figure 10. CS5566 DNL Plot 20
Figure 11. Spectral Performance, 0 dB 21
Figure 12. Spectral Performance, -6 dB 21
Figure 13. Spectral Performance, -12 dB 21
Figure 14. Spectral Performance, -20 dB 21
Figure 15. Spectral Performance, -80 dB 21
Figure 16. Spectral Performance, -120 dB 21
Figure 17. Spectral Performance, -130 dB 22
Figure 19. Noise Histogram (4096 Samples) 22
Figure 18. Spectral Plot of Noise with Shorted Input 22
Figure 20. Digital Filter Response (DC to 2.5 kHz) 23
LIST OF TABLES
Table 1. Output Coding, Two's Complement 17
Table 2. Output Coding, Offset Binary 17

1. CHARACTERISTICS AND SPECIFICATIONS

- Min / Max characteristics and specifications are guaranteed over the specified operating conditions.
- Typical characteristics and specifications are measured at nominal supply voltages and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
- $\mathrm{VLR}=0 \mathrm{~V}$. All voltages with respect to 0 V .

ANALOG CHARACTERISTICS $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V} 1+=\mathrm{V} 2+=+2.5 \mathrm{~V}, \pm 5 \% ; \mathrm{V} 1-=\mathrm{V} 2-=-2.5 \mathrm{~V}$,

 $\pm 5 \%$; VL -VLR $=3.3 \mathrm{~V}, \pm 5 \%$; VREF $=(\mathrm{VREF}+)$ - (VREF- $)=4.096 \mathrm{~V} ; \mathrm{MCLK}=8 \mathrm{MHz} ;$ SMODE $=\mathrm{VL}$. BUFEN $=\mathrm{V} 1+$ unless otherwise stated. Connected per Figure 8. Bipolar mode unless otherwise stated.| Parameter | Min | Typ | Max | Unit | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Accuracy | | - | 0.0005 | - | $\pm \% \mathrm{FS}$ |
| Linearity Error | (Note 1) | - | ± 0.1 | - | LSB_{24} |
| Differential Linearity Error | | - | 1.0 | - | $\% \mathrm{FS}$ |
| Positive Full-scale Error | | - | 1.0 | - | $\% \mathrm{FS}$ |
| Negative Full-scale Error | (Note 2) | - | 1 | - | $\mathrm{PPM} /{ }^{\circ} \mathrm{C}$ |
| Full-scale Drift | (Note 2) | - | ± 500 | - | LSB_{24} |
| Bipolar Offset | (Note 2) | - | 1 | - | $\mathrm{LSB} /{ }^{\circ} \mathrm{C}$ |
| Bipolar Offset Drift | | - | 9.5 | - | $\mu \mathrm{Vrms}$ |
| Noise | | | | | |

Dynamic Performance

Peak Harmonic or Spurious Noise	$200 \mathrm{~Hz},-0.5 \mathrm{~dB}$ Input	-	-115	-	dB
Total Harmonic Distortion	$200 \mathrm{~Hz},-0.5 \mathrm{~dB}$ Input	-	-110	-100	dB
Signal-to-Noise		108	110	-	dB
$\mathrm{S} /(\mathrm{N}+\mathrm{D})$ Ratio	-0.5 dB Input, 200 Hz	-	109	-	dB
	-60 dB Input, 200 Hz	-	50	-	dB
(Note 3)	-	21	-	kHz	

Analog Input

Analog Input	(Differentia)	Unipolar Bipolar		$\begin{aligned} & 0+V R \\ & \pm V R E \end{aligned}$		$\begin{aligned} & \bar{v} \\ & v \end{aligned}$
Input Capacit				10		pF
CVF Current	(Note 4)	AIN Buffer On (BUFEN = V+) AIN Buffer Off (BUFEN $=V$-)		$\begin{aligned} & \hline 600 \\ & 130 \end{aligned}$		$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Common Mod	ction Ratio		-100	-110	-	dB

1. No missing codes is guaranteed at 24 bits resolution over the specified temperature range.
2. One LSB is equivalent to $(2 \times$ VREF $) \div 2^{24}$ or $(2 \times 4.096) \div 16,777,216=488 \mathrm{nV}$.
3. Scales with MCLK.
4. Measured using an input signal of 1 V DC.

ANALOG CHARACTERISTICS (CONTINUED) $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; $\mathrm{V} 1+=\mathrm{V} 2+=+2.5 \mathrm{~V}, \pm 5 \%$; $\mathrm{V} 1-=$ V2- = -2.5 V, $\pm 5 \%$; VL -VLR = $3.3 \mathrm{~V}, \pm 5 \% ;$ VREF = (VREF+) - (VREF-) $=4.096 \mathrm{~V} ; \mathrm{MCLK}=8 \mathrm{MHz}$; SMODE $=\mathrm{VL} . ;$ BUFEN = V1+ unless otherwise stated. Connected per Figure 8.

Parameter	Min	Typ	Max	Unit
Voltage Reference Input				
Voltage Reference Input Range (VREF+) - (VREF-) (Note 5)	2.4	4.096	4.2	V
Input Capacitance	-	10	-	pF
$\begin{array}{lr} \text { CVF Current } & \text { VREF+ Buffer On (BUFEN }=\text { V+ }) \\ & \text { VREF+ Buffer Off }(B U F E N=V-) \\ \text { VREF- } \end{array}$	-	$\begin{aligned} & 3 \\ & 1 \\ & 1 \end{aligned}$	-	$\mu \mathrm{A}$ mA mA

Power Supplies

Average DC Power Supply Curren	(Note 6)			$\begin{gathered} 5 \\ 0.6 \\ 0.4 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Peak DC Power Supply Currents	(Note 6) $\begin{aligned} & \mathrm{I}_{\mathrm{V} 1} \\ & \mathrm{I}_{\mathrm{V} 2} \\ & \mathrm{I}_{\mathrm{VL}} \end{aligned}$		-	$\begin{gathered} \hline 9 \\ 1.2 \\ 280 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$
Average Power Consumption	Normal Operation Buffers On (Note 6) Buffers Off Sleep (SLEEP = 0)		$\begin{gathered} 20 \\ 15 \\ 6 \end{gathered}$		$\begin{aligned} & \hline \mathrm{mW} \\ & \mathrm{~mW} \\ & \mathrm{~mW} \end{aligned}$
Power Supply Rejection	(Note 7) $\begin{array}{r}\text { V1+, V2+ Supplies } \\ \text { V1-, V2- Supplies }\end{array}$	$\begin{aligned} & 75 \\ & 75 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

5. For optimum performance, VREF+ should always be less than $(\mathrm{V}+)-0.2$ volts to prevent saturation of the VREF+ input buffer.
6. Specification is for MCLK $=8 \mathrm{MHz}$ and 5 kSps conversion rate. MCLK frequency and conversion rate affect power consumption. See Section 3.2 Power Consumption for more details.
7. Tested with $100 \mathrm{mVP}-\mathrm{P}$ on any supply up to 2 kHz . V1+ and $\mathrm{V} 2+$ supplies at the same voltage potential, V1- and V2- supplies at the same voltage potential.

SWITCHING CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; V1+ = V2+ = +2.5 V, $\pm 5 \%$; $\mathrm{V} 1-=\mathrm{V} 2-=-2.5 \mathrm{~V}, \pm 5 \%$;
VL - VLR $=3.3 \mathrm{~V}, \pm 5 \%, 2.5 \mathrm{~V}, \pm 5 \%$, or $1.8 \mathrm{~V}, \pm 5 \%$
Input levels: Logic $0=0 \mathrm{~V}$ Low; Logic 1 = VD+ = High; CL $=15 \mathrm{pF}$.

Parameter	Symbol	Min	Typ	Max	Unit	
Master Clock Frequency	Internal Oscillator	XIN	6	7	8	MHz
	External Clock	$\mathrm{f}_{\text {clk }}$	0.5	8	8.1	MHz
Master Clock Duty Cycle		40	-	60	$\%$	

Reset

$\overline{\text { RST }}$ Low Time	$\mathrm{t}_{\text {res }}$	1	-	-	$\mu \mathrm{s}$	
$\overline{\mathrm{RST}}$ rising to $\overline{\text { RDY }}$ falling	Internal Oscillator 	$\mathrm{t}_{\text {wup }}$	-	240	-	$\mu \mathrm{s}$

Conversion

$\overline{\text { CONV Pulse Width }}$	$\mathrm{t}_{\text {cpw }}$	4	-	-	MCLKs
BP/ $\overline{\text { UP }}$ setup to $\overline{\mathrm{CONV}}$ falling (Note 8)	$\mathrm{t}_{\text {scn }}$	0	-	-	ns
$\overline{\mathrm{CONV}}$ low to start of conversion	$t_{\text {scn }}$	-	1182	1186	MCLKs
Perform Single Conversion ($\overline{\mathrm{CONV}}$ high before $\overline{\mathrm{RDY}}$ falling)	$t_{\text {bus }}$	20	-	-	MCLKs
Conversion Time Start of Conversion to $\frac{\text { (Note 9) }}{\text { RDY falling }}$	$t_{\text {buh }}$	-	-	1604	MCLKs
Sleep Mode \square low to low-power state $\overline{\text { SLEEP }}$ high to device active (Note 10)	$\begin{aligned} & \mathrm{t}_{\mathrm{con}} \\ & \mathrm{t}_{\mathrm{con}} \end{aligned}$	-	$\begin{gathered} 50 \\ 3083 \end{gathered}$	-	

8. $\mathrm{BP} / \overline{\mathrm{UP}}$ can be changed coincident $\overline{\mathrm{CONV}}$ falling. $\mathrm{BP} / \overline{\mathrm{UP}}$ must remain stable until $\overline{\mathrm{RDY}}$ falls.
9. If $\overline{\mathrm{CONV}}$ is held low continuously, conversions occur every 1600 MCLK cycles. If RDY is tied to CONV, conversions will occur every 1602 MCLKs.
If CONV is operated asynchronously to MCLK, a conversion may take up to 1604 MCLKs. RDY falls at the end of conversion.
10. $\overline{\mathrm{RDY}}$ will fall when the device is fully operational when coming out of sleep mode.

Figure 1. Converter Status (Not to scale)

SWITCHING CHARACTERISTICS (Continued)

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; V1+ = V2+ $=+2.5 \mathrm{~V}, \pm 5 \% ; \mathrm{V} 1-=\mathrm{V} 2-=-2.5 \mathrm{~V}, \pm 5 \% ;$
VL - VLR $=3.3 \mathrm{~V}, \pm 5 \%, 2.5 \mathrm{~V}, \pm 5 \%$, or 1.8 V , $\pm 5 \%$
Input levels: Logic $0=0 \mathrm{~V}$ Low; Logic 1 = VD+ = High; CL = 15 pF .

11. SDO and SCLK will be high impedance when $\overline{\mathrm{CS}}$ is high. In some systems it may require a pull-down resistor.
12. $\operatorname{SCLK}=\mathrm{MCLK} / 2$.

Figure 2. SSC Mode - Read Timing, $\overline{\text { CS }}$ remaining low (Not to Scale)

SWITCHING CHARACTERISTICS (Continued)

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V} 1+=\mathrm{V} 2+=+2.5 \mathrm{~V}, \pm 5 \% ; \mathrm{V} 1-=\mathrm{V} 2-=-2.5 \mathrm{~V}, \pm 5 \% ;$
VL - VLR $=3.3 \mathrm{~V}, \pm 5 \%, 2.5 \mathrm{~V}, \pm 5 \%$, or $1.8 \mathrm{~V}, \pm 5 \%$
Input levels: Logic $0=0 \mathrm{~V}$ Low; Logic 1 = VD+ = High; CL $=15 \mathrm{pF}$.

Parameter	Symbol	Min	Typ	Max	Unit
Serial Port Timing in SSC Mode (SMODE = VL)					
Data hold time after SCLK rising	t_{7}	-	10	-	ns
Serial Clock (Out) Pulse Width (low) (Note 13, 14) Pulse Width (high)	$\begin{aligned} & \mathrm{t}_{8} \\ & \mathrm{t}_{9} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	-	ns ns
$\overline{\mathrm{RDY}}$ rising after last SCLK rising	t_{10}	-	8	-	MCLKs
$\overline{\overline{C S}}$ falling to MSB stable	t_{11}	-	10	-	ns
First SCLK rising after $\overline{\overline{C S}}$ falling	t_{12}	-	8	-	MCLKs
$\overline{\overline{C S}}$ hold time (low) after SCLK rising	t_{13}	10	-	-	ns
SCLK, SDO tri-state after $\overline{\mathrm{CS}}$ rising	t_{14}	-	5	-	ns

13. SDO and SCLK will be high impedance when $\overline{\mathrm{CS}}$ is high. In some systems SCLK and SDO may require pull-down resistors.
14. $\operatorname{SCLK}=\mathrm{MCLK} / 2$.

Figure 3. SSC Mode - Read Timing, $\overline{\mathrm{CS}}$ falling after $\overline{\mathrm{RDY}}$ falls (Not to Scale)

SWITCHING CHARACTERISTICS (Continued)

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; V1+ = V2+ = +2.5 V, $\pm 5 \%$; V1- = V2- = -2.5 V, $\pm 5 \%$;
$\mathrm{VL}-\mathrm{VLR}=3.3 \mathrm{~V}, \pm 5 \%, 2.5 \mathrm{~V}, \pm 5 \%$, or $1.8 \mathrm{~V}, \pm 5 \%$
Input levels: Logic $0=0 \mathrm{~V}$ Low; Logic 1 = VD+ = High; CL $=15 \mathrm{pF}$.

Parameter	Symbol	Min	Typ	Max	Unit	
Serial Port Timing in SEC Mode (SMODE = VLR)	-	30	-	-	ns	
SCLK(in) Pulse Width (High)	-	30	-	-	ns	
SCLK(in) Pulse Width (Low)	t_{15}	10	-	-	ns	
$\overline{\mathrm{CS}}$ hold time (high) after $\overline{\mathrm{RDY}}$ falling	t_{16}	10	-	-	ns	
$\overline{\mathrm{CS}}$ hold time (high) after SCLK rising	(Note 15)	t_{17}	-	10	-	ns
$\overline{\mathrm{CS}}$ low to SDO out of Hi-Z	t_{18}	-	10	-	ns	
Data hold time after SCLK rising	t_{19}	10	-	-	ns	
Data setup time before SCLK rising	t_{20}	10	-	$\frac{1}{2}$	-10	ns
$\overline{\mathrm{CS}}$ hold time (low) after SCLK rising	t_{21}	-	10	-	ns	
$\overline{\mathrm{RDY}}$ rising after SCLK falling						

15. SDO will be high impedance when $\overline{\mathrm{CS}}$ is high. In some systems SDO may require a pull-down resistor.

Figure 4. SEC Mode - Continuous SCLK Read Timing (Not to Scale)

Figure 5. SEC Mode - Discontinuous SCLK Read Timing (Not to Scale)

DIGITAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=\mathrm{TMIN}$ to $\mathrm{TMAX} ; \mathrm{VL}=3.3 \mathrm{~V}, \pm 5 \%$ or $\mathrm{VL}=2.5 \mathrm{~V}, \pm 5 \%$ or $1.8 \mathrm{~V}, \pm 5 \% ; \mathrm{VLR}=0 \mathrm{~V}$

Parameter	Symbol	Min	Typ	Max	Unit
Input Leakage Current	$\mathrm{I}_{\text {in }}$	-	-	2	$\mu \mathrm{~A}$
Digital Input Pin Capacitance	$\mathrm{C}_{\text {in }}$	-	3	-	pF
Digital Output Pin Capacitance	$\mathrm{C}_{\text {out }}$	-	3	-	pF

DIGITAL FILTER CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=\mathrm{TMIN}$ to TMAX; $\mathrm{VL}=3.3 \mathrm{~V}, \pm 5 \%$ or $\mathrm{VL}=2.5 \mathrm{~V}, \pm 5 \%$ or $1.8 \mathrm{~V}, \pm 5 \% ; \mathrm{VLR}=0 \mathrm{~V}$

	Parameter	Symbol	Min	Typ	Max	Unit
Group Delay	(Note 16)	-	-	160	-	MCLKs

16. See Figure 4 to understand conversion timing. The 160 MCLK group delay occurs during the 354 MCLK high-power period of a conversion cycle. See Section 3.2 Power Consumption for more detail.

GUARANTEED LOGIC LEVELS

$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C} ; \mathrm{V} 1+=\mathrm{V} 2+=+2.5 \mathrm{~V}, \pm 5 \% ; \mathrm{V} 1-=\mathrm{V} 2-=-2.5 \mathrm{~V}, \pm 5 \% ;$
VL - VLR $=3.3 \mathrm{~V}, \pm 5 \%, 2.5 \mathrm{~V}, \pm 5 \%$, or 1.8 V , $\pm 5 \%$
Input levels: Logic $0=0 \mathrm{~V}$ Low; Logic $1=\mathrm{VD}+=$ High; $\mathrm{CL}=15 \mathrm{pF}$.

Parameter	Sym	VL	Guaranteed Limits				
			Min	Typ	Max	Unit	Conditions
Logic Inputs							
Minimum High-level Input Voltage:	V_{IH}	3.3	1.9			V	
		2.5	1.6				
		1.8	1.2				
Maximum Low-level Input Voltage:	$\mathrm{V}_{\text {IL }}$	3.3			1.1	V	
		2.5			0.95		
		1.8			0.6		

Logic Outputs

Minimum High-level Output Voltage:	V_{OH}	3.3	2.9		V	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$
		2.5	2.1			
		1.8	1.65			
Maximum Low-level Output Voltage:	$\mathrm{V}_{\text {OL }}$	3.3		0.36	V	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$
		2.5		0.36		
		1.8		0.44		

RECOMMENDED OPERATING CONDITIONS

(VLR $=0 \mathrm{~V}$, see Note 17)

Parameter		Symbol	Min	Typ	Max	Unit
Single Analog Supply						
DC Power Supplies:	(Note 17)					
	V1+	V1+	4.75	5.0	5.25	V
	V2+	V2-	4.75	5.0	5.25	V
	V1-	V1+	-	0	-	V
	V2-	V2-	-	0	-	V
Dual Analog Supplies						
DC Power Supplies:	(Note 17)					
	V1+	V1+	+2.375	+2.5	+2.625	V
	V2+	V2-	+2.375	+2.5	+2.625	V
	V1-	V1+	-2.375	-2.5	-2.625	V
	V2-	V2-	-2.375	-2.5	-2.625	V
Analog Reference Voltage	(Note 18) [VREF+] - [VREF-]	VREF	2.4	4.096	4.2	V

17. The logic supply can be any value $\mathrm{VL}-\mathrm{VLR}=+1.71$ to +3.465 volts as long as $\mathrm{VLR} \geq \mathrm{V} 2-$ and $\mathrm{VL} \leq 3.465 \mathrm{~V}$.
18. The differential voltage reference magnitude is constrained by the V1+ or V1- supply magnitude.

ABSOLUTE MAXIMUM RATINGS

$(\mathrm{VLR}=0 \mathrm{~V})$

Parameter	Symbol	Min	Typ	Max	Unit	
DC Power Supplies:						
[V1+] - [V1-] (Note 19)	-	0	-	5.5	V	
VL + [\|V1-] (Note 20)	-	0	-	6.1	V
Input Current, Any Pin Except Supplies (Note 21)	I_{IN}	-	-	± 10	mA	
Analog Input Voltage (AIN and VREF pins)	$\mathrm{V}_{\text {INA }}$	(V1-) - 0.3	-	(V1+) + 0.3	V	
Digital Input Voltage	$\mathrm{V}_{\text {IND }}$	VLR - 0.3	-	VL + 0.3	V	
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65	-	150	${ }^{\circ} \mathrm{C}$	

Notes: 19. V1+= V2+; V1- = V2-
20. V1- = V2-
21. Transient currents of up to 100 mA will not cause SCR latch-up.

WARNING:

Recommended Operating Conditions indicate limits to which the device is functionally operational. Absolute Maximum Ratings indicate limits beyond which permanent damage to the device may occur. The Absolute Maximum Ratings are stress ratings only and the device should not be operated at these limits. Operation at conditions beyond the Recommended Operating Conditions may affect device reliability, and functional operation beyond Recommended Operating Conditions is not implied. Performance specifications are intended for the conditions specified for each table in the Characteristics and Specifications section.

2. OVERVIEW

The CS5566 is a 24-bit analog-to-digital converter capable of 5 kSps conversion rate. The device is capable of switching multiple input channels at a high rate with no loss in throughput. The ADC uses a low-latency digital filter architecture. The filter is designed for fast settling and settles to full accuracy in one conversion.

The converter is a serial output device. The serial port can be configured to function as either a master or a slave.

The converter can operate from an analog supply of 5 V or from $\pm 2.5 \mathrm{~V}$. The digital interface supports standard logic operating from $1.8,2.5$, or 3.3 V .

The CS5566 converts at 5 kSps when operating from a 8 MHz input clock.

3. THEORY OF OPERATION

The CS5566 converter provides high-performance measurement of DC or AC signals. The converter can be used to perform single conversions or continuous conversions upon command. Each conversion is independent of previous conversions and can settle to full specified accuracy, even with a full-scale input voltage step. This is due to the converter architecture which uses a combination of a high-speed delta-sigma modulator and a low-latency filter architecture.

Once power is established to the converter, a reset must be performed. A reset initializes the internal converter logic.
If $\overline{\mathrm{CONV}}$ is held low then the converter will convert continuously with $\overline{\mathrm{RDY}}$ falling every 1600 MCLKs. This is equivalent to 5 kSps if $\mathrm{MCLK}=8.0 \mathrm{MHz}$. If $\overline{\mathrm{CONV}}$ is tied to $\overline{\mathrm{RDY}}$, a conversion will occur every 1602 MCLKs. If CONV is operated asynchronously to MCLK, it may take up to 1604 MCLKs from CONV falling to $\overline{\mathrm{RDY}}$ falling.

Multiple converters can operate synchronously if they are driven by the same MCLK source and $\overline{\text { CONV }}$ to each converter falls on the same MCLK falling edge. Alternately, $\overline{\mathrm{CONV}}$ can be held low and all devices are reset with $\overline{\mathrm{RST}}$ rising on the same falling edge of MCLK.

The output coding of the conversion word is a function of the BP/ $\overline{\mathrm{UP}} \mathrm{pin}$.
The active-low $\overline{\operatorname{SLEEP}}$ signal causes the device to enter a low-power state. When exiting sleep, the converter will take 3083 MCLK cycles before conversions can be performed. $\overline{\text { RST should remain inactive }}$ (high) when SLEEP is asserted (low).

3.1 Converter Operation

The converter should be reset after the power supplies and voltage reference are stable.
The CS5566 converts at 5 kSps when synchronously operated ($\overline{\mathrm{CONV}}=\mathrm{VLR}$) from a 8.0 MHz master clock. Conversion is initiated by taking CONV low. A conversion lasts 1600 master clock cycles, but if $\overline{\mathrm{CONV}}$ is asynchronous to MCLK there may be an uncertainty of 0-4 MCLK cycles after $\overline{\text { CONV }}$ falls to when a conversion actually begins. This may extend the throughput to 1604 MCLKs
When the conversion is completed, the output word is placed into the serial port and $\overline{\mathrm{RDY}}$ goes low. To convert continuously, $\overline{C O N V}$ should be held low. In continuous conversion mode with CONV held low, a conversion is performed in 1600 MCLK cycles. Alternately $\overline{\mathrm{RDY}}$ can be tied to $\overline{\mathrm{CONV}}$ and a conversion will occur every 1602 MCLK cycles.

To perform only one conversion, $\overline{\mathrm{CONV}}$ should return high at least 20 master clock cycles before $\overline{\mathrm{RDY}}$ falls.

Once a conversion is completed and $\overline{\mathrm{RDY}}$ falls, $\overline{\mathrm{RDY}}$ will return high when all the bits of the data word are emptied from the serial port or if the conversion data is not read and $\overline{\mathrm{CS}}$ is held low, $\overline{\mathrm{RDY}}$ will go high two MCLK cycles before the end of conversion. RDY will fall at the end of the next conversion when new data is put into the port register.

See Section 3.11 Serial Port for information about reading conversion data.
Conversion performance can be affected by several factors. These include the choice of clock source for the chip, the timing of CONV, and the choice of the serial port mode.

The converter can be operated from an internal oscillator. This clock source has greater jitter than an external crystal-based clock. Jitter may not be an issue when measuring DC signals, or very-low-frequency $A C$ signals, but can become an issue for higher frequency AC signals. For maximum performance when digitizing AC signals, a low-jitter MCLK should be used.
To maximize performance, the $\overline{\mathrm{CONV}}$ pin should be held low in the continuous conversion state to perform multiple conversions, or CONV should occur synchronous to MCLK, falling when MCLK falls.

If the converter is operated at maximum throughput, the SSC serial port mode is less likely to cause interference to measurements as the SCLK output is synchronized to the MCLK. Alternately, any interference due to serial port clocking can also be minimized if data is read in the SEC serial port mode when a conversion is not in progress.

3.2 Power Consumption

The power consumption of the CS5566 converter is a function of the conversion rate. Figure 6 illustrates the typical power consumption of the converter when operating from either MCLK $=8 \mathrm{MHz}$ or MCLK $=4 \mathrm{MHz}$. The rate at which conversions are performed directly affects the power consumption. When the converter is powered but not converting, it is in an idle state where its power consumption is about 11 mW . When the $\overline{\mathrm{CONV}}$ signal goes low to start a conversion, the converter delays the actual start of conversion for 1182 to 1186 MCLK cycles, depending upon how $\overline{\mathrm{CONV}}$ is controlled. The timing for the conversion sequence is shown in Figure 1 on page 6. After the 1182-1186 MCLK delay from when $\overline{\mathrm{CONV}}$ goes low, the converter enters a higher-power state for 354 MCLK cycles and then returns to a lower-power state for 64 MCLK cycles, after which the RDY signal falls to indicate the completion of a conversion. Since the peak operating current for the converter occurs during the 354 MCLK , higher-power state, it is recommended that a large capacitor be used on the supply to the converter (as shown in Figures 9 and 10). This capacitor filters the peak current demand from the power supply. The average power consumption for the converter will depend upon the frequency of MCLK and the rate at which conversions are performed as illustrated in Figure 1 on page 6.

Figure 6. Power Consumption vs. Conversion Rate

3.3 Clock

The CS5566 can be operated from its internal oscillator or from an external master clock. The state of MCLK determines which clock source will be used. If MCLK is tied low, the internal oscillator will start and be used as the clock source for the converter. If an external CMOS-compatible clock is input into MCLK the converter will power down the internal oscillator and use the external clock. If the MCLK pin is held high, the internal oscillator will be held in the stopped state. The MCLK input can be held high to delete clock cycles to aid in operating multiple converters in different phase relationships.

The internal oscillator can be used if the signals to be measured are essentially DC. The internal oscillator exhibits jitter at about 500 picoseconds rms. If the CS5566 is used to digitize AC signals, an external low-jitter clock source should be used.

If the internal oscillator is used as the clock for the CS5566, the maximum conversion rate will be dictated by the oscillator frequency.

If driven from an external MCLK source, the fast rise and fall times of the MCLK signal can result in clock coupling from the internal bond wire of the IC to the analog input. Adding a 50 ohm resistor on the external MCLK source significantly reduces this effect.

3.4 Voltage Reference

The voltage reference for the CS5566 can range from 2.4 volts to 4.2 volts. A 4.096 volt reference is required to achieve the specified performance. Figure 8 and Figure 9 illustrate the connection of the voltage reference with either a single +5 V analog supply or with $\pm 2.5 \mathrm{~V}$.

For optimum performance, the voltage reference device should be one that provides a capacitor connection to provide a means of noise filtering, or the output should include some type of bandwidth-limiting filter. Some 4.096 volt reference devices need only 5 volts total supply for operation and can be connected as shown in Figure 8 or Figure 9. The reference should have a local bypass capacitor and an appropriate output capacitor.

Some older 4.096 voltage reference designs require more headroom and must operate from an input voltage of 5.5 to 6.5 volts. If this type of voltage reference is used ensure that when power is applied to the system, the voltage reference rise time is slower than the rise time of the V1+ and V1- power supply voltage to the converter. An example circuit to slow the output startup time of the reference is illustrated in Figure 7.

Figure 7. Voltage Reference Circuit

3.5 Analog Input

The analog input of the converter is fully differential with a peak-to-peak input of 4.096 volts on each input. Therefore, the differential, peak-to-peak input is 8.192 volts. This is illustrated in Figure 8 and Figure 9. These diagrams also illustrate a differential buffer amplifier configuration for driving the CS5566.

The capacitors at the outputs of the amplifiers provide a charge reservoir for the dynamic current from the A/D inputs while the resistors isolate the dynamic current from the amplifier. The amplifiers can be powered from higher supplies than those used by the A/D but precautions should be taken to ensure that the opamp output voltage remains within the power supply limits of the A/D, especially under start-up conditions.

3.6 Output Coding Format

The reference voltage directly defines the input voltage range in both the unipolar and bipolar configurations. In the unipolar configuration (BP/UP low), the first code transition occurs 0.5 LSB above zero, and the final code transition occurs 1.5 LSBs below VREF. In the bipolar configuration (BP/UP high), the first code transition occurs 0.5 LSB above -VREF and the last transition occurs 1.5 LSBs below +VREF. See Table 1 for the output coding of the converter.

Table 1. Output Coding, Two's Complement

Bipolar Input Voltage	Two's Complement
$>$ (VREF-1.5 LSB)	7F FF FF
VREF-1.5 LSB	7F FF FF
	7F FF FE
-0.5 LSB	000000
-VREF+0.5 LSB	800001
<(-VREF+0.5 LSB)	800000
	800000

NOTE: VREF = (VREF+) - (VREF-)
Table 2. Output Coding, Offset Binary

Unipolar Input Voltage	Offset Binary
$>$ (VREF-1.5 LSB)	FF FF FF
VREF-1.5 LSB	FF FF FF
FF FF FE	
(VREF/2)-0.5 LSB	800000
+0.5 LSB	7F FF FF
$<(+0.5$ LSB)	000001
	000000

NOTE: VREF = (VREF+) - (VREF-)

3.7 Typical Connection Diagrams

The following figure depicts the CS5566 powered from bipolar analog supplies, +2.5 V and -2.5 V .

Figure 8. CS5566 Configured Using $\pm \mathbf{2} .5 \mathrm{~V}$ Analog Supplies

The following figure depicts the CS5566 device powered from a single 5 V analog supply.

Figure 9. CS5566 Configured Using a Single 5V Analog Supply

3.8 AIN \& VREF Sampling Structures

The CS5566 uses on-chip buffers on the AIN+, AIN-, and the VREF+ inputs. Buffers provide much higher input impedance and therefore reduce the amount of drive current required from an external source. This helps minimize errors.

The Buffer Enable (BUFEN) pin determines if the on-chip buffers are used or not. If the BUFEN pin is connected to the V1+ supply, the buffers will be enabled. If the BUFEN pin is connected to the V1- pin, the buffers are off. The converter will consume about 5 mW less power when the buffers are off, but the input impedances of AIN+, AIN- and VREF+ will be significantly less than with the buffers enabled.

3.9 Converter Performance

The CS5566 achieves excellent differential nonlinearity (DNL). Figure 10 illustrates the code widths on the typical scale of ± 1 LSB and on a zoomed scale of ± 0.2 LSB.

Figure 10. CS5566 DNL Plot

Figure 11 through Figure 16 illustrate the performance of the converter with various input signal magnitudes.

Figure 11. Spectral Performance, 0 dB

Figure 13. Spectral Performance, -12 dB

Figure 15. Spectral Performance, -80 dB

Figure 12. Spectral Performance, -6 dB

Figure 14. Spectral Performance, -20 dB

Figure 16. Spectral Performance, -120 dB

Figure 16 illustrates the device with a small signal $1 / 1,000,000$ of full scale. The signal input for figure 15 is about 8.2 microvolts peak to peak, or about 17 codes peak to peak. Figure 17 illustrates the converter with a signal at about 2.6 microvolts peak to peak, or about 5 codes peak to peak. The CS5566 achieves superb performance with this small signal.
Figure 18 illustrates the noise floor of the converter from 0.1 Hz to 2.5 kHz . The plot is entirely free of spurious frequency content due to digital activity inside the chip.
Figure 19 illustrates a noise histogram of the converter constructed from 4096 samples.

Figure 17. Spectral Performance, -130 dB

Figure 18. Spectral Plot of Noise with Shorted Input

Figure 19. Noise Histogram (4096 Samples)

3.10 Digital Filter Characteristics

The digital filter is designed for fast settling, therefore it exhibits very little in-band attenuation. The filter attenuation is -0.0414 dB at 2.5 kHz when sampling at 5 kSps .

Figure 20. Digital Filter Response (DC to 2.5 kHz)

3.11 Serial Port

The serial port on the CS5566 can operate in two different modes: synchronous self clock (SSC) mode \& synchronous external clock (SEC) mode. The serial port must be placed into the SEC mode if the offset and gain registers of the converter are to be read or written. The converter must be idle when reading or writing to the on-chip registers.

3.11.1 SSC Mode

If the SMODE pin is high (SMODE $=\mathrm{VL}$), the serial port operates in the SSC (Synchronous Self Clock) mode. In the SSC mode the port shifts out conversion data words with SCLK as an output. SCLK is generated inside the converter from MCLK. Data is output from the SDO (Serial Data Output) pin. If $\overline{\mathrm{CS}}$ is high, the SDO and SCLK pins will stay in a high-impedance state. If CS is low when RDY falls, the conversion data word will be output from SDO MSB first. Data is output on the rising edge of SCLK and should be latched into the external logic on the subsequent rising edge of SCLK. When all bits of the conversion word are output from the port the RDY signal will return to high.

3.11.2 SEC Mode

If the SMODE pin is low (SMODE = VLR), the serial port operates in the SEC (Synchronous External Clock mode). In this mode, the user usually monitors RDY. When $\overline{R D Y}$ falls at the end of a conversion, the conversion data word is placed into the output data register in the serial port. $\overline{\mathrm{CS}}$ is then activated low to enable data output. Note that $\overline{\mathrm{CS}}$ can be held low continuously if it is not necessary to have the SDO output operate in the high impedance state. When $\overline{\mathrm{CS}}$ is taken low (after $\overline{\mathrm{RDY}}$ falls) the conversion data word is then shifted out of the SDO pin by driving the SCLK pin from system logic external to the converter. Data bits are advanced on rising edges of SCLK and latched by the subsequent rising edge of SCLK.
If $\overline{\mathrm{CS}}$ is held low continuously, the $\overline{\mathrm{RDY}}$ signal will fall at the end of a conversion and the conversion data will be placed into the serial port. If the user starts a read, the user will maintain control over the serial port until the port is empty. However, if SCLK is not toggled, the converter will overwrite the conversion data at the completion of the next conversion. If $\overline{\mathrm{CS}}$ is held low and no read is performed, $\overline{\mathrm{RDY}}$ will rise just prior to the end of the next conversion and then fall to signal that new data has been written into the serial port.

3.12 Power Supplies \& Grounding

The CS5566 can be configured to operate with its analog supply operating from 5 V , or with its analog supplies operating from $\pm 2.5 \mathrm{~V}$. The digital interface supports digital logic operating from either $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V .

Figure 8 on page 18 illustrates the device configured to operate from $\pm 2.5 \mathrm{~V}$ analog. Figure 9 on page 19 illustrates the device configured to operate from 5 V analog. Note that the schematic indicates a $47 \mu \mathrm{~F}$ capacitor between V1+ and V1-. This capacitor is necessary to reduce the peak current required from the power supply during conversion. See Power Consumption on page 16 for a more detailed discussion.

To maximize converter performance, the analog ground and the logic ground for the converter should be connected at the converter. In the dual analog supply configuration, the analog ground for the $\pm 2.5 \mathrm{~V}$ supplies should be connected to the VLR pin at the converter with the converter placed entirely over the analog ground plane.

In the single analog supply configuration $(+5 \mathrm{~V})$, the ground for the +5 V supply should be directly tied to the VLR pin of the converter with the converter placed entirely over the analog ground plane. Refer to Figure 9 on page 19.

3.13 Using the CS5566 in Multiplexing Applications

The actual conversion process inside the CS5566 begins 1182 MCLK cycles after the $\overline{\mathrm{CONV}}$ signal is taken low. This would be over 147 microseconds when MCLK $=8 \mathrm{MHz}$. If the input channel of an external multiplexer is changed coincident with $\overline{C O N V}$ going low, the 1182 MCLK delay should be more than an adequate time for settling. If there is an operational amplifier between the multiplexer and the converter, one should be certain that the amplifier can settle within the 1182 MCLK delay period. If not, the multiplexer will need to be switched some time prior to $\overline{\overline{C O N V}}$ going low.

3.14 Synchronizing Multiple Converters

Many measurement systems have multiple converters that need to operate synchronously. The converters should all be driven from the same master clock. In this configuration, the converters will convert synchronously if the same $\overline{\mathrm{CONV}}$ signal is used to drive all the converters, and $\overline{\mathrm{CONV}}$ falls on a falling edge of MCLK. If $\overline{\mathrm{CONV}}$ is held low continuously, reset $(\overline{\mathrm{RST}})$ can be used to synchronize multiple converters if $\overline{R S T}$ is released on a falling edge of MCLK.

4. PIN DESCRIPTIONS

Chip Select	$\overline{\mathbf{C S}} 1 \bullet$	24	RDY	Ready
Factory Test	TST ${ }^{2}$	23	SCLK	Serial Clock Input/Output
Serial Mode Select	SMODE 3	22	SDO	Serial Data Output
Differential Analog Input	AIN+ $\square 4$	21	VL	Logic Interface Power
Differential Analog Input	AIN- 5	20	VLR	Logic Interface Return
Negative Power 1	V1- 6	19	MCLK	Master Clock
Positive Power 1	V1+	18	V2-	Negative Voltage 2
Buffer Enable	BUFEN 8	17	V2+	Positive Voltage 2
Voltage Reference Input	VREF+ $\square 9$	16	DCR	Digital Core Regulator
Voltage Reference Input	VREF- 10	15	CONV	Convert
Bipolar/Unipolar Select	BP/UP 11	14	VLR2	Logic Interface Return
Sleep Mode Select	$\overline{\text { SLEEP }} 12$	13	$\overline{\text { RST }}$	Reset

$\overline{\mathrm{CS}}$ - Chip Select, Pin 1

The Chip Select pin allows an external device to access the serial port. If SMODE = VL (SSC Mode) and $\overline{C S}$ is held high, the SDO output and the SCLK output will be held in a high-impedance output state.

TST - Factory Test, Pin 2

Factory test only. Connect to VLR.
SMODE - Serial Mode Select, Pin 3
The serial interface mode pin (SMODE) dictates whether the serial port behaves as a master or slave interface. If SMODE is tied high (to VL), the port will operate in the Synchronous Self-Clocking (SSC) mode. In SSC mode, the port acts as a master in which the converter outputs both the SDO and SCLK signals. If SMODE is tied low (to VLR), the port will operate in the Synchronous External Clocking (SEC) mode. In SEC mode, the port acts as a slave in which the external logic or microcontroller generates the SCLK used to output the conversion data word from the SDO pin.
AIN+, AIN- - Differential Analog Input, Pin 4, 5
AIN+ and AIN- are differential inputs for the converter.
V1- - Negative Power 1, Pin 6
The V1- and V2- pins provide a negative supply voltage to the core circuitry of the chip. These two pins should be decoupled as shown in the application block diagrams. V1- and V2- should be supplied from the same source voltage. For single-supply operation, these two voltages are nominally 0 V (Ground). For dual-supply operation, they are nominally -2.5 V .
V1+ - Positive Power 1, Pin 7
The $\mathrm{V} 1+$ and $\mathrm{V} 2+$ pins provide a positive supply voltage to the core circuitry of the chip. These two pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should be supplied from the same source voltage. For single supply-operation, these two voltages are nominally +5 V . For dual-supply operation, they are nominally +2.5 V .
BUFEN - Buffer Enable, Pin 8
Buffers on input pins AIN+ and AIN- are enabled if BUFEN is connected to V1+ and disabled if connected to V1-.
VREF+, VREF- - Voltage Reference Input, Pin 9, 10
A differential voltage reference input on these pins functions as the voltage reference for the converter. The voltage between these pins can range between 2.4 volts and 4.2 volts, with 4.096 volts being the nominal reference voltage value.

BP/UP - Bipolar/Unipolar Select, Pin 11

The BP/UP pin determines the span and the output coding of the converter. When set high to select BP (bipolar), the input span of the converter is -4.096 volts to +4.096 volts fully differential (assuming the voltage reference is 4.096 volts) and output data is coded in two's complement format. When set low to select $\overline{U P}$ (unipolar), the input span is 0 to +4.096 fully differential and the output data is coded in binary format.

SLEEP - Sleep Mode Select, Pin 12

When taken low, the $\overline{\text { SLEEP }}$ pin will cause the converter to enter into a low-power state. $\overline{\text { SLEEP }}$ will stop the internal oscillator and power down all internal analog circuitry.

$\overline{\text { RST }}$ - Reset, Pin 13

Reset is necessary after power is initially applied to the converter. When the $\overline{\mathrm{RST}}$ input is taken low, the logic in the converter will be reset. When RST is released to go high, certain portions of the analog circuitry are started. $\overline{\mathrm{RDY}}$ falls when reset is complete.

CONV - Convert, Pin 15

The $\overline{\text { CONV }}$ pin initiates a conversion cycle if taken low, unless a previous conversion is in progress. When the conversion cycle is completed, the conversion word is output to the serial port register and the $\overline{\mathrm{RDY}}$ signal goes low. If $\overline{\mathrm{CONV}}$ is held low and remains low when $\overline{\mathrm{RDY}}$ falls, another conversion cycle will be started.

DCR - Digital Core Regulator, Pin 16
DCR is the output of the on-chip regulator for the digital logic core. DCR should be bypassed with a capacitor to V2-. The DCR pin is not designed to power any external load.
V2+ - Positive Power 2, Pin 17
The V1+ and V2+ pins provide a positive supply voltage to the circuitry of the chip. These two pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should be supplied from the same source voltage. For single-supply operation, these two voltages are nominally +5 V . For dual-supply operation, they are nominally +2.5 V .

V2- - Negative Power 2, Pin 18
The V1- and V2- pins provide a negative supply voltage to the circuitry of the chip. These two pins should be decoupled as shown in the application block diagrams. V1- and V2- should be supplied from the same source voltage. For single-supply operation, these two voltages are nominally 0 V (Ground). For dual-supply operation, they are nominally -2.5 V .

MCLK - Master Clock, Pin 19

The master clock pin (MCLK) is a multi-function pin. If tied low (MCLK = VLR), the on-chip oscillator will be enabled. If tied high $(M C L K=V L)$, all clocks to the internal circuitry of the converter will stop. When MCLK is held high the internal oscillator will also be stopped. MCLK can also function as the input for an external CMOS-compatible clock that conforms to supply voltages on the VL and VLR pins.

VLR2, VLR, VL - Logic Interface Power/Return, Pins 14, 20, 21

VL and VLR are the supply voltages for the digital logic interface. VL and VLR can be configured with a wide range of common mode voltage. The following interface pins function from the VL/VLR supply: SMODE, $\overline{\mathrm{CS}}, \mathrm{SCLK}, \mathrm{SDO}, \overline{\mathrm{RDY}}, \overline{\mathrm{SLEEP}}, \overline{\mathrm{CONV}}, \overline{\mathrm{RST}}, \mathrm{BP} / \overline{\mathrm{UP}}$, and MCLK.
SDO - Serial Data Output, Pin 22
SDO is the output pin for the serial output port. Data from this pin will be output at a rate determined by SCLK and in a format determined by the BP/UP pin. Data is output MSB first and advances to the next data bit on the rising edges of SCLK. SDO will be in a high impedance state when $\overline{\mathrm{CS}}$ is high.

SCLK - Serial Clock Input/Output, Pin 23

The SMODE pin determines whether the SCLK signal is an input or an output signal. SCLK determines the rate at which data is clocked out of the SDO pin. If the converter is in SSC mode, the SCLK frequency will be determined by the master clock frequency of the converter (either MCLK or the internal oscillator). In SEC mode, the user determines the SCLK frequency.

If $\operatorname{SMODE}=\mathrm{VL}$ (SSC Mode), SCLK will be in a high-impedance state when $\overline{\mathrm{CS}}$ is high.

RDY - Ready, Pin 24

If $\overline{\mathrm{CONV}}$ is low the converter will immediately start a conversion and $\overline{\mathrm{RDY}}$ will remain high until the conversion is completed. At the end of any conversion $\overline{R D Y}$ falls to indicate that a conversion word has been placed into the serial port. $\overline{\text { RDY }}$ will return high after all data bits are shifted out of the serial port or two master clock cycles before new data becomes available if the $\overline{\mathrm{CS}}$ pin is inactive (high); or two master clock cycles before new data becomes available if the user holds $\overline{\mathrm{CS}}$ low but has not started reading the data from the converter when in SEC mode.

5. PACKAGE DIMENSIONS

24L SSOP PACKAGE DRAWING

	INCHES			MILLIMETERS			MOX
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
A	--	--	0.084	--	--	2.13	
A1	0.002	0.006	0.010	0.05	0.13	0.25	
A2	0.064	0.068	0.074	1.62	1.73	1.88	
b	0.009	--	0.015	0.22	-	0.38	2,3
D	0.311	0.323	0.335	7.90	8.20	8.50	1
E	0.291	0.307	0.323	7.40	7.80	8.20	
E1	0.197	0.209	0.220	5.00	5.30	5.60	1
e	0.022	0.026	0.030	0.55	0.65	0.75	
L	0.025	0.03	0.041	0.63	0.75	1.03	
(α	0°	4°	8°	0°	4°	8°	

JEDEC \#: MO-150

Controlling Dimension is Millimeters.
Notes: 1."D" and "E1" are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.
2. Dimension " b " does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of " b " dimension at maximum material condition. Dambar intrusion shall not reduce dimension "b" by more than 0.07 mm at least material condition.
3.These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
\longrightarrow CIRRUIS LOCIC

6. ORDERING INFORMATION

Model	Linearity	Temperature	Conversion Time	Throughput	Package
CS5566-ISZ	0.0005%	-40 to $+85^{\circ} \mathrm{C}$	$200 \mu \mathrm{~s}$	5 kSps	$24-$ pin SSOP

7. ENVIRONMENTAL, MANUFACTURING, \& HANDLING INFORMATION

Model Number	Peak Reflow Temp	MSL Rating *	Max Floor Life
CS5566-ISZ	$260^{\circ} \mathrm{C}$	3	7 Days

* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.

8. REVISION HISTORY

Revision	Date	Changes
PP1	MAR 2008	Preliminary release.

Contacting Cirrus Logic Support

For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one nearest to you go to www.cirrus.com

Abstract

IMPORTANT NOTICE "Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.

